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Filling Smooth Knots

Topological Problem: Given a smooth knot K ⊂ S3, find smooth
“filling” surfaces.

F ⊂ B4 with ∂F = K .

There are many options! Find minimal genus:

g4(K ) := min {genus(F ) : ∂F = K} .
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Immersed Fillings of Smooth Knots

One can also try to find immersed fillings with transverse double
points.

4-ball (genus 0) crossing number:

c0
4(K ) := min { double points in disk filling of K} .

Example: c0
4 (m(52)) = 1; c0

4(74) = 2. [Strle-Owens (’15)]
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Geography of Smooth Fillings of Smooth Knots

Smooth Geography Question: Given a smooth knot K ⊂ S3, what
combinations of genus and double points can be realized by smooth
fillings?

It is always possible to:

fix genus and increase the number of double points by 1;
fix number of double points and increase the genus by 1;
eliminate a double point at the cost of increasing the genus.
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Examples of Smooth Geography for Knots
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Smooth Geography of the knot m(52).
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Smooth Geography of the knot 74.
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Higher-Dimensional Geography

Smooth Geography Question: Given a smooth m-dimensional
submanifold K m ⊂ S2m+1, what combinations of Betti numbers and
double points can be realized by a smooth filling F m+1 ⊂ B2m+2?

∃ restrictions from algebraic topology for embedded fillings

I would like to know if others know anything about this problem!
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Lagrangian Geography

Symplectic Problem: Given a Legendrian knot in a 3-dimensional
space, try to find immersed Lagrangian surface fillings in a
4-dimensional space.

Symplectic Problem: Given an m-dimensional Legendrian try to
find (m + 1)-dimensional immersed Lagrangian fillings.

Question: How flexible/rigid are Lagrangian fillings?

How does Lagrangian Geography compare to Smooth Geography?

Higher-Dimensional version is also interesting.
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Preview

Will consider “GF-compatible” fillings. Find much more rigidity!
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Contact and Symplectic Setting

Standard Contact Manifold:
(
R2n+1, ξ = kerα

)
J1(Rn) = T ∗Rn × R = R2n+1, α = dz −

∑
i yidxi

Interested in Legendrians Λn ⊂ J1(Rn) = R2n+1 (TpΛ ⊂ ξ, ∀p)

Reeb Vector Field of α is ∂
∂z :
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Contact and Symplectic Setting

Standard Contact Manifold:
(
R2n+1, ξ = kerα

)

Symplectization:
(
R× R2n+1, ω = d(esα)

)
R
2n+1

s

R
2n+1

s

Interested in exact Lagrangians: Ln+1 s.t. (esα)|L is exact 1-form.

For a Legendrian Λ, the cylinder R× Λ is an exact Lagrangian.
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Interested in exact Lagrangians: Ln+1 s.t. (esα)|L is exact 1-form.

There are no closed, exact Lagrangians (Gromov).
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Lagrangian Cobordism between Legendrians

A Lagrangian cobordism from Λ− to Λ+:

R
2n+2

s

+

_

s+

s_

Λ± are Legendrian submanifolds in {s = s±};

L is exact Lagrangian and cylindrical over Λ± at ±∞:

L ∩ [s−, s+] is compact, L = R× Λ± outside [s−, s+];

L is orientable, Maslov 0 and embedded or immersed.
Today: L has a generating family =⇒ L is exact, Maslov 0.

Arise in relative SFT (Eliashberg-Givental-Hofer)
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Lagrangian Filling of a Legendrian

A Lagrangian filling of Λ:

R
2n+2

s

+

_

s+

s_

L is exact, Maslov 0, embedded or immersed

Today: L has a generating family
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GF-Compatible Lagrangian Fillings

Geography via technique of “generating families of functions”.

Restricting to:
Legendrians that can be “generated” by a function f ;

Probably corresponds to Legendrians whose DGA admits an augmentation ε.

Lagrangian fillings that can be “generated” by an extension, F , of
this function.

Maybe corresponds to fillings that induce specified augmentation ε.
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Generating Families

Classic technique;
Modernized by Laudenbach, Sikorav, Chaperon, Viterbo

For Legendrians Λ ⊂ J1M, want to study Lagrangian fillings
L ⊂ R× J1M via generating families.

In J1(M), describe Legendrian Λ as the “1-jet” of function
f : M × RN → R.

In R× J1M ≡ T ∗(R+ ×M), describe Lagrangian L as the
“derivatives” of function F : R+ ×M × RN → R.

Strategy: Apply analysis/Morse theoretic arguments to these
functions to obtain invariants of and relationships between the
Lagrangian and Legendrian submanifolds.
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“derivatives” of function F : R+ ×M × RN → R.

Strategy: Apply analysis/Morse theoretic arguments to these
functions to obtain invariants of and relationships between the
Lagrangian and Legendrian submanifolds.
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Generating Family of Functions Example

Idea: Construct a 1-parameter family of functions Fx : R = {e} → R

 

∃F : R× R1 → R so that Λ is the “1-jet of F along the fiber critical
submanifold":

Λ =

{(
x ,
∂F
∂x

(x ,e),F (x ,e)

)
:
∂F
∂e

(x ,e) = 0
}
.
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Existence from Rulings

For Legendrian knots: [Chekanov-Pushkar; Fuchs - Rutherford]

∃ (linear at infinity) generating family ⇐⇒ ∃ graded normal ruling

Graded normal rulings of two different Legendrian m(52) knots.

Graded normal ruling of a Legendrian 74 knot.
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Generating Family Cohomology for Legendrians

Λ ⊂ J1M with generating family f : M × RN → R.

Difference function: δf : M × RN × RN → R

δf (x , η, η̃) = f (x , η̃)− f (x , η).

critical points with + value←→ Reeb chords
critical points with 0 value←→ submanifold diffeo to Λ

Generating Family Cohomology Groups:

GHk (Λ, f ) = Hk+N+1(δ∞f , δ
ε
f ).

GF-Polynomials:

ΓΛ,f (t) =
∑

dim GHk (Λ, f )tk .
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Examples of GF-Polynomials

Examples:

t + 2 t
-2t + ( 2t + )

t + 2

All polynomials are of the form Γ(Λ,f ) = t +
∑n

i=0 ci
(
t i + t−i);

[Sabloff Duality]

Every polynomial satisfying Sabloff Duality can be realized by a
Legendrian. [Bourgeois-Sabloff-Traynor]
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GF-Polynomials of Higher Dimensional Legendrians

For a connected m-dimensional Legendrian:

Γ(Λ,f ) = tm + bm−1tm−1 + · · ·+ b1t +
n∑

i≥bm−1
2 c

ci

(
t i + t−i+(m−1)

)
,

where bk + bm−k = dim Hk (Λm).

Examples:
If Λ is Legendrian S2:
Γ(Λ,f ) = t2 + c0(t0 + t1) + c1(t1 + t0) + c2(t2 + t−1) + . . . .

If Λ is Legendrian S3:
Γ(Λ,f ) = t3 + c1(t1 + t1) + c2(t2 + t0) + c3(t3 + t−1) + . . . .

Every polynomial satisfying this duality can be realized by a
Legendrian. [Bourgeois-Sabloff-Traynor]
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Generating Families for Lagrangian Fillings

Lagrangian cobordisms in R× J1M ≡ T ∗(R+ ×M):

ψ : R× J1M → T ∗(R+ ×M)

(s, x , y , z) 7→ (es, x , z,esy).

Identify Lagrangian cobordism L with ψ(L) ⊂ T ∗(R+ ×M):

s t

0

h

1
eh

F is a generating family for L means F : R+ ×M ×RN → R such that

ψ(L) =

{(
x ,
∂F
∂x

(x ,e)

)
:
∂F
∂e

(x ,e) = 0
}
.
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GF-Compatible Lagrangian Fillings

Assume Legendrian Λ and Lagrangian filling L can be described by
compatible generating families:

∃ generating families

f : M × RN → R for Λ; and
F : (R+ ×M)× RN → R for ψ(L) ⊂ T ∗(R+ ×M) that correlates
with f for large t ∈ R+:

F (t , x , η) = t f (x , η)

, t ≥ t+.

GF f for Λ “extends” to a GF for filling L.
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Outline

1 Geography of Fillings

2 Legendrians, Lagrangians, and Lagrangian Cobordisms
Generating Families

3 Obstructions to Lagrangian Fillings

4 Constructions
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GF Seidel Isomorphism

Theorem (Sabloff-Traynor, ’13)
If Λ has a GF f , then any GF-compatible embedded Lagrangian filling L
satisfies:

GHk (Λ, f ) ∼= Hk+1(L, ∂L).

=⇒ If Λ admits an embedded GF-compatible Lagrangian filling,

ΓΛ,f (t) = t + 2c0

and any embedded filling must have genus c0.
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Scarcity of Embedded Fillings

t + 2 t
-2t + ( 2t + )

t + 2

All polynomials are of the form Γ(Λ,f ) = t +
∑n

i=0 ci
(
t i + t−i);

Every polynomial satisfying Sabloff Duality can be realized by a
Legendrian.

Only Legendrians admitting polynomial of the form Γ(Λ,f ) = t + 2c0
have a chance of admitting an embedded filling.
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Immersed Lagrangian Fillings

Legendrians that admit embedded Lagrangian fillings are “rare”.

However, any Λ with a GF will have an immersed GF-compatible
filling. [Bourgeois-Sabloff-Traynor].

Question: What can the GF-polynomial Γ(Λ,f )(t) tell us about
the Lagrangian geography problem?
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Polynomial Obstructions to Immersed Fillings

Theorem (Pezzimenti-Traynor)
If a Legendrian knot has GF-polynomial

ΓΛ,f (t) = t +
n∑

i=0

ci

(
t i + t−i

)
,

then any GF-compatible immersed Lagrangian filling of Λ with
genus 0 has at least c0 + c1 + c2 + · · ·+ cn double points;
genus g has at least |g − c0|+ c1 + · · ·+ cn double points.

Moreover, if p is the number of double points, then

p + g ≡
n∑

i=0

ci mod 2.
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Potential Geography

Potential “check-mark” geography for Lagrangian fillings of Λ with
ΓΛ,f = t +

∑n
i=0 ci

(
t i + t−i):
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if c2 = 1 if c0 = 2, c1 = 1, c2 = 1
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Immersed GF-Isomorphism

All dimensions:

From a GF-compatible immersed Lagrangian filling L,

(L,F ) (C∗(L : X ), ∂),

where C∗(L : X ) records:

the topology of the domain Σ of the immersion;
the number and indices of the double points.

=⇒ Homology groups of immersed filling: H∗(L : X ).

Theorem (Pezzimenti-Traynor)
If (Λ, f ) admits a GF-compatible Lagrangian filling L, then

GHk (Λ, f ) ∼= Hm−k (L : X ).
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Ideas underlying Immersed GF-Isomorphism

• Consider a “sheared difference function” for the Lagrangian filling:

Given a GF F : R+ ×M × RN → R for ψ(L) ⊂ T ∗(R+ ×M), and a
function H : R+ → R,

define the sheared difference function ∆ : R+ ×Mm × R2N → R by:

∆(t , x , η, η̃) = F (t , x , η̃)− F (t , x , η) + H(t).

• Key: If L is the immersed image of Σ, then ∆ has
a critical submanifold diffeomorphic to Σ of index −1 + (N + 1);
for each double point of L, a pair of critical points x±i with
opposite values and indices
(i + bm−1

2 c) + (N + 1) and −(i + bm−1
2 c) + (m − 1) + (N + 1)

a critical point for each Reeb chord of Λ.
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Sketch of Proof of Immersed GF-Isomorphism

• View (∆∞,∆−µ) as a Relative Mapping Cone.

t+

-

t+

F = tf

C( ),t+ (by compatibility)
• Get a long exact sequence:

· · · → Hk+1(∆∞,∆−µ)→ Hm−k (L : X)→ GHk (Λ, f )→ Hk (∆∞,∆−µ)→ · · ·

H∗(∆∞,∆−µ) = 0,∀∗ =⇒

· · · → 0→ Hm−k (L : X )
∼=−→ GHk (Λ, f )→ 0→ · · · .
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Homology Groups of Immersed Fillings

Illustration: What types of fillings can be realized if ΓΛ,f = t + 2?

By Theorem, need:
|H−1(L : X )| = 1,
|H0(L : X )| = 2.

t1

t0

t2

t-2

t-1

C-1

C0

H0( )

H ( )1

C

C

C

1

2

-2

Embedded genus 1 is possible!
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Disk with 1 double point (of index 0) is possible!
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Genus 1 with 2 double points is possible!
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Genus 2 with 1 double point is possible!
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Homology Groups of Immersed Fillings

Illustration: What types of fillings can be realized if ΓΛ,f = t + 2?
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Potential “check-mark” geography for Lagrangian fillings of Λ with
ΓΛ,f = t +

∑n
i=0 ci

(
t i + t−i):
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if c2 = 1 if c0 = 2, c1 = 1, c2 = 1

Question: Which of these can be realized?
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Outline

1 Geography of Fillings

2 Legendrians, Lagrangians, and Lagrangian Cobordisms
Generating Families

3 Obstructions to Lagrangian Fillings

4 Constructions
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Embedded Moves

Theorem (Bourgeois-Sabloff-Traynor ’15)
Suppose Λ+ has a generating family. Then there exists an embedded
GF-compatible Lagragian cobordism between Λ− and Λ+ if:

Λ− is Legendrian isotopic to Λ+;
Λ− is obtained from Λ+ by “pinch moves” (compatible with ruling);
Λ− is obtained by “filling” a trivial unknotted component of Λ+.

-

+

Saddle Min
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Embedded Filling

An embedded filling of 74:
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Embedded Filling

An embedded filling of 74:

∅

Lisa Traynor (Bryn Mawr) Geography of Immersed Lagrangian Fillings Symplectic Zoominar 38 / 51



Construction of Immersed Lagrangian Cobordism

Theorem (Pezzimenti-Traynor)
If a Legendrian knot Λ+ has a ruling that is well behaved with respect
to a clasp, and Λ− is obtained by unclasping,

+

-

i

j

or

then there exist GFs f± for Λ± and an immersed GF-compatible
Lagrangian cobordism from (Λ−, f−) to (Λ+, f+) with a double point of
index |i − j |.

There is also a “clasping” move.
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Immersed Moves

An immersed disk filling of 74 with 3 double points:
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Immersed Moves

An immersed disk filling of 74 with 3 double points:

Lisa Traynor (Bryn Mawr) Geography of Immersed Lagrangian Fillings Symplectic Zoominar 40 / 51



Geography of a Legendrian 74
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From Polynomial

It is always possible to:

fix genus and increase the number of double points by 2; ↑
increase genus by 1 & increase # of double points by 1. ↗
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From Constructions

It is always possible to:

fix genus and increase the number of double points by 2; ↑
increase genus by 1 & increase # of double points by 1. ↗
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It is always possible to:
fix genus and increase the number of double points by 2; ↑
increase genus by 1 & increase # of double points by 1. ↗
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New Fillings from Old:

Lagrangian fillings have Legendrian lifts:

Adding two double points: ↑

 

Adding genus and a double point: ↗
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New Fillings from Old:

Lagrangian fillings have Legendrian lifts:

Adding two double points: ↑

 

Adding genus and a double point: ↗
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Smooth vs Lagrangian Geography: 74
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Smooth vs Lagrangian Geography: m(52)
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Smooth vs Lagrangian Geography: another m(52)
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Further Questions: Geography

• [Geography]

Q: For fixed (Λ, f ), when can one not realize the chart determined by
smooth topology and the polynomial ΓΛ,f (or ΓΛ,ε)?

Are there obstructions from product and A∞ relations on GH∗(Λ, f )
( LCH∗(Λ, ε) )?

Yes, for LCH;
[Etgü ’18, Ekholm-Lekili ’17] ∃(Λ, ε) : Γ(Λ, ε) = t + 6,
but 6 ∃ embedded filling inducing ε.

Q: ∃ obstructions from product and A∞ relations on GH∗(Λ, f ) as
constructed by Ziva Myer?
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Further Questions: Mutation

• [Mutation] How are different fillings of (Λ, f ) related?

Related results:
Smooth World: Can always decrease number of double points by
1 at cost of increasing genus by 1.

Symplectic World:
[Capovilla Searle - Legout - Limouzineau - Murphy - Pan - Traynor]

Double pts with particular indices and actions (VIA) can be traded
for genus.
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Symplectic World:
[Capovilla Searle - Legout - Limouzineau - Murphy - Pan - Traynor]

Double pts with particular indices and actions (VIA) can be traded
for genus.

Q: Can one trade genus for double points?

A: No. Augmentation counts (via A∞ arguments) can prove this.
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Further Questions: Mutation

• [Mutation] How are different fillings of (Λ, f ) related?
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Symplectic World: GF-Fillings
NW-SE portion of “check-mark” has double points with correct
indices.

Q: Can one interchange double points and genus in GF-fillings?
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Further Questions: Botany

• [Botany]
Q: For fixed (Λ, f ), how many options for a fixed topology and number
of immersion points?

Related results:
[Ekholm-Honda-Kálmán ’16, Pan ’17,
Shende-Treumann-Williams-Zaslow ’19]:

Max tb (2,n)-torus link admits Cn = 1
n+1

(
2n
n

)
embedded fillings

that are smoothly isotopic but pairwise not (exact) Lagrangian
isotopic.

[Casals-Gao ’20]: “Most” max tb positive torus knots admit
infinitely many embedded Lagrangian fillings that are smoothly
isotopic but not Hamiltonian isotopic.

Q: For fixed (Λ, f ), count number of fillings with fixed topology and
double points?
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[Casals-Gao ’20]: “Most” max tb positive torus knots admit
infinitely many embedded Lagrangian fillings that are smoothly
isotopic but not Hamiltonian isotopic.

Q: For fixed (Λ, f ), count number of fillings with fixed topology and
double points?
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Thank you!
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