The Geography of Immersed Lagrangian Fillings of Legendrian Submanifolds

Lisa Traynor

Bryn Mawr College

April 2020

Joint Work

Joint work with **Samantha Pezzimenti** (PhD Bryn Mawr '18), Assistant Teaching Professor at Penn State Brandywine.

Outline

- Geography of Fillings
- 2 Legendrians, Lagrangians, and Lagrangian Cobordisms
 Constraint Families
 - Generating Families
- Obstructions to Lagrangian Fillings
- 4 Constructions

Filling Smooth Knots

Topological Problem: Given a smooth knot $K \subset S^3$, find smooth "filling" surfaces.

$$F \subset B^4$$
 with $\partial F = K$.

Filling Smooth Knots

Topological Problem: Given a smooth knot $K \subset S^3$, find smooth "filling" surfaces.

$$F \subset B^4$$
 with $\partial F = K$.

There are many options!

Filling Smooth Knots

Topological Problem: Given a smooth knot $K \subset S^3$, find smooth "filling" surfaces.

$$F \subset B^4$$
 with $\partial F = K$.

There are many options! Find **minimal genus**:

$$g_4(K) := \min \{ \operatorname{genus}(F) : \partial F = K \}$$
.

Immersed Fillings of Smooth Knots

One can also try to find **immersed fillings** with transverse double points.

Immersed Fillings of Smooth Knots

One can also try to find **immersed fillings** with transverse double points.

4-ball (genus 0) crossing number:

 $c_4^0(K) := \min \{ \text{ double points in disk filling of } K \}.$

Immersed Fillings of Smooth Knots

One can also try to find **immersed fillings** with transverse double points.

4-ball (genus 0) crossing number:

 $c_4^0(K) := \min \{ \text{ double points in disk filling of } K \}.$

Example: $c_4^0(m(5_2)) = 1$; $c_4^0(7_4) = 2$. [Strle-Owens ('15)]

Smooth Geography Question: Given a smooth knot $K \subset S^3$, what combinations of genus and double points can be realized by smooth fillings?

Smooth Geography Question: Given a smooth knot $K \subset S^3$, what combinations of genus and double points can be realized by smooth fillings?

It is always possible to:

fix genus and increase the number of double points by 1;

Smooth Geography Question: Given a smooth knot $K \subset S^3$, what combinations of genus and double points can be realized by smooth fillings?

It is always possible to:

- fix genus and increase the number of double points by 1;
- fix number of double points and increase the genus by 1;

Smooth Geography Question: Given a smooth knot $K \subset S^3$, what combinations of genus and double points can be realized by smooth fillings?

It is always possible to:

- fix genus and increase the number of double points by 1;
- fix number of double points and increase the genus by 1;
- eliminate a double point at the cost of increasing the genus.

Examples of Smooth Geography for Knots

Smooth Geography of the knot $m(5_2)$.

Examples of Smooth Geography for Knots

Smooth Geography of the knot $m(5_2)$.

Smooth Geography of the knot 7₄.

Higher-Dimensional Geography

Smooth Geography Question: Given a smooth m-dimensional submanifold $K^m \subset S^{2m+1}$, what combinations of Betti numbers and double points can be realized by a smooth filling $F^{m+1} \subset B^{2m+2}$?

Higher-Dimensional Geography

Smooth Geography Question: Given a smooth m-dimensional submanifold $K^m \subset S^{2m+1}$, what combinations of Betti numbers and double points can be realized by a smooth filling $F^{m+1} \subset B^{2m+2}$?

∃ restrictions from algebraic topology for embedded fillings

Higher-Dimensional Geography

Smooth Geography Question: Given a smooth m-dimensional submanifold $K^m \subset S^{2m+1}$, what combinations of Betti numbers and double points can be realized by a smooth filling $F^{m+1} \subset B^{2m+2}$?

 \exists restrictions from algebraic topology for embedded fillings

I would like to know if others know anything about this problem!

Symplectic Problem: Given a **Legendrian knot** in a 3-dimensional space, try to find **immersed Lagrangian surface fillings** in a 4-dimensional space.

Symplectic Problem: Given a **Legendrian knot** in a 3-dimensional space, try to find **immersed Lagrangian surface fillings** in a 4-dimensional space.

Question: How flexible/rigid are Lagrangian fillings?

Symplectic Problem: Given a **Legendrian knot** in a 3-dimensional space, try to find **immersed Lagrangian surface fillings** in a 4-dimensional space.

Question: How flexible/rigid are Lagrangian fillings?

How does Lagrangian Geography compare to Smooth Geography?

Symplectic Problem: Given an m-dimensional **Legendrian** try to find (m+1)-dimensional **immersed Lagrangian fillings**.

Question: How flexible/rigid are Lagrangian fillings?

How does Lagrangian Geography compare to Smooth Geography?

Higher-Dimensional version is also interesting.

Preview

Will consider "GF-compatible" fillings. Find much more rigidity!

Smooth Geography

Lagrangian Geography

Preview

Will consider "GF-compatible" fillings. Find much more rigidity!

Smooth Geography

Lagrangian Geography

Outline

- Geography of Fillings
- 2 Legendrians, Lagrangians, and Lagrangian Cobordisms
 - Generating Families
- Obstructions to Lagrangian Fillings
- 4 Constructions

Standard Contact Manifold:
$$(\mathbb{R}^{2n+1}, \xi = \ker \alpha)$$

$$J^{1}(\mathbb{R}^{n}) = T^{*}\mathbb{R}^{n} \times \mathbb{R} = \mathbb{R}^{2n+1}, \quad \alpha = dz - \sum_{i} y_{i} dx_{i}$$

Standard Contact Manifold:
$$(\mathbb{R}^{2n+1}, \xi = \ker \alpha)$$

$$J^{1}(\mathbb{R}^{n}) = T^{*}\mathbb{R}^{n} \times \mathbb{R} = \mathbb{R}^{2n+1}, \quad \alpha = dz - \sum_{i} y_{i} dx_{i}$$

Interested in **Legendrians** $\Lambda^n \subset J^1(\mathbb{R}^n) = \mathbb{R}^{2n+1}$ $(T_p\Lambda \subset \xi, \forall p)$

Standard Contact Manifold: $(\mathbb{R}^{2n+1}, \xi = \ker \alpha)$

$$J^1(\mathbb{R}^n) = T^*\mathbb{R}^n \times \mathbb{R} = \mathbb{R}^{2n+1}, \quad \alpha = dz - \sum_i y_i dx_i$$

Interested in **Legendrians** $\Lambda^n \subset J^1(\mathbb{R}^n) = \mathbb{R}^{2n+1} \quad (T_p \Lambda \subset \xi, \forall p)$

Standard Contact Manifold: $(\mathbb{R}^{2n+1}, \xi = \ker \alpha)$

$$J^{1}(\mathbb{R}^{n}) = T^{*}\mathbb{R}^{n} \times \mathbb{R} = \mathbb{R}^{2n+1}, \quad \alpha = dz - \sum_{i} y_{i} dx_{i}$$

Interested in **Legendrians** $\Lambda^n \subset J^1(\mathbb{R}^n) = \mathbb{R}^{2n+1} \quad (T_p \Lambda \subset \xi, \forall p)$

Reeb Vector Field of α is $\frac{\partial}{\partial z}$:

Reeb Chord

Standard Contact Manifold: $(\mathbb{R}^{2n+1}, \xi = \ker \alpha)$

$$J^{1}(\mathbb{R}^{n}) = T^{*}\mathbb{R}^{n} \times \mathbb{R} = \mathbb{R}^{2n+1}, \quad \alpha = dz - \sum_{i} y_{i} dx_{i}$$

Interested in **Legendrians** $\Lambda^n \subset J^1(\mathbb{R}^n) = \mathbb{R}^{2n+1} \quad (T_p \Lambda \subset \xi, \forall p)$

Reeb Vector Field of α is $\frac{\partial}{\partial z}$:

Standard Contact Manifold: $(\mathbb{R}^{2n+1}, \xi = \ker \alpha)$

Standard Contact Manifold: $(\mathbb{R}^{2n+1}, \xi = \ker \alpha)$

Symplectization: $(\mathbb{R} \times \mathbb{R}^{2n+1}, \omega = d(e^s\alpha))$

$$R^{2n+1}$$

Standard Contact Manifold: $(\mathbb{R}^{2n+1}, \xi = \ker \alpha)$

Symplectization: $(\mathbb{R} \times \mathbb{R}^{2n+1}, \omega = d(e^s\alpha))$

• Interested in **Lagrangians**: L^{n+1} s.t. $d(e^s\alpha)|_L = 0$.

Standard Contact Manifold: $(\mathbb{R}^{2n+1}, \xi = \ker \alpha)$

Symplectization: $(\mathbb{R} \times \mathbb{R}^{2n+1}, \omega = d(e^s\alpha))$

• Interested in **exact Lagrangians**: L^{n+1} s.t. $(e^s\alpha)|_L$ is exact 1-form.

Standard Contact Manifold: $(\mathbb{R}^{2n+1}, \xi = \ker \alpha)$

Symplectization: $\left(\mathbb{R}\times\mathbb{R}^{2n+1},\omega=\textit{d}(\textit{e}^{\textit{s}}\alpha)\right)$

• Interested in **exact Lagrangians**: L^{n+1} s.t. $(e^s \alpha)|_L$ is exact 1-form.

There are no *closed*, exact Lagrangians (Gromov).

Standard Contact Manifold: $(\mathbb{R}^{2n+1}, \xi = \ker \alpha)$

Symplectization: $(\mathbb{R} \times \mathbb{R}^{2n+1}, \omega = d(e^s\alpha))$

- Interested in **exact Lagrangians**: L^{n+1} s.t. $(e^s\alpha)|_L$ is exact 1-form.
- For a Legendrian Λ , the cylinder $\mathbb{R} \times \Lambda$ is an exact Lagrangian.

A Lagrangian cobordism from Λ_- to Λ_+ :

A Lagrangian cobordism from Λ_- to Λ_+ :

• Λ_{\pm} are Legendrian submanifolds in $\{s=s_{\pm}\}$;

A Lagrangian cobordism from Λ_- to Λ_+ :

- Λ_{\pm} are Legendrian submanifolds in $\{s = s_{\pm}\}$;
- L is exact Lagrangian and cylindrical over Λ_{\pm} at $\pm \infty$:

$$L \cap [s_-, s_+]$$
 is compact, $L = \mathbb{R} \times \Lambda_{\pm}$ outside $[s_-, s_+]$;

A Lagrangian cobordism from Λ_- to Λ_+ :

- Λ_{\pm} are Legendrian submanifolds in $\{s = s_{\pm}\}$;
- L is exact Lagrangian and cylindrical over Λ_{\pm} at $\pm \infty$:

$$L \cap [s_-, s_+]$$
 is compact, $L = \mathbb{R} \times \Lambda_{\pm}$ outside $[s_-, s_+]$;

• L is orientable, Maslov 0 and embedded or immersed.

A Lagrangian cobordism from Λ_- to Λ_+ :

- Λ_{\pm} are Legendrian submanifolds in $\{s = s_{\pm}\}$;
- L is exact Lagrangian and cylindrical over Λ_{\pm} at $\pm \infty$:

$$L \cap [s_-, s_+]$$
 is compact, $L = \mathbb{R} \times \Lambda_{\pm}$ outside $[s_-, s_+]$;

- L is orientable, Maslov 0 and embedded or immersed.
- **Today:** L has a generating family \implies L is exact, Maslov 0.

A Lagrangian cobordism from Λ_- to Λ_+ :

- Λ_{\pm} are Legendrian submanifolds in $\{s = s_{\pm}\}$;
- L is exact Lagrangian and cylindrical over Λ_{\pm} at $\pm \infty$:

$$L \cap [s_-, s_+]$$
 is compact, $L = \mathbb{R} \times \Lambda_{\pm}$ outside $[s_-, s_+]$;

- L is orientable, Maslov 0 and embedded or immersed.
- **Today:** L has a generating family \implies L is exact, Maslov 0.

Arise in relative SFT (Eliashberg-Givental-Hofer)

Lagrangian Filling of a Legendrian

A Lagrangian filling of Λ :

L is exact, Maslov 0, embedded or immersed

Lagrangian Filling of a Legendrian

A Lagrangian filling of Λ :

L is exact, Maslov 0, embedded or immersed

Today: *L* has a generating family

Geography via technique of "generating families of functions".

Geography via technique of "generating families of functions".

Restricting to:

Legendrians that can be "generated" by a function f;

Probably corresponds to Legendrians whose DGA admits an augmentation ε .

Geography via technique of "generating families of functions".

Restricting to:

Legendrians that can be "generated" by a function f;

Probably corresponds to Legendrians whose DGA admits an augmentation ε .

 Lagrangian fillings that can be "generated" by an extension, F, of this function.

Maybe corresponds to fillings that induce specified augmentation ε .

Classic technique; Modernized by Laudenbach, Sikorav, Chaperon, Viterbo

Classic technique; Modernized by Laudenbach, Sikorav, Chaperon, Viterbo

For Legendrians $\Lambda \subset J^1M$, want to study Lagrangian fillings $L \subset \mathbb{R} \times J^1M$ via generating families.

Classic technique; Modernized by Laudenbach, Sikorav, Chaperon, Viterbo

For Legendrians $\Lambda \subset J^1M$, want to study Lagrangian fillings $L \subset \mathbb{R} \times J^1M$ via generating families.

• In $J^1(M)$, describe Legendrian Λ as the "1-jet" of function $f: M \times \mathbb{R}^N \to \mathbb{R}$.

Classic technique; Modernized by Laudenbach, Sikorav, Chaperon, Viterbo

For Legendrians $\Lambda \subset J^1M$, want to study Lagrangian fillings $L \subset \mathbb{R} \times J^1M$ via generating families.

- In $J^1(M)$, describe Legendrian Λ as the "1-jet" of function $f: M \times \mathbb{R}^N \to \mathbb{R}$.
- In $\mathbb{R} \times J^1 M \equiv T^*(\mathbb{R}^+ \times M)$, describe Lagrangian L as the "derivatives" of function $F : \mathbb{R}^+ \times M \times \mathbb{R}^N \to \mathbb{R}$.

Classic technique; Modernized by Laudenbach, Sikorav, Chaperon, Viterbo

For Legendrians $\Lambda \subset J^1M$, want to study Lagrangian fillings $L \subset \mathbb{R} \times J^1M$ via generating families.

- In $J^1(M)$, describe Legendrian Λ as the "1-jet" of function $f: M \times \mathbb{R}^N \to \mathbb{R}$.
- In $\mathbb{R} \times J^1 M \equiv T^*(\mathbb{R}^+ \times M)$, describe Lagrangian L as the "derivatives" of function $F : \mathbb{R}^+ \times M \times \mathbb{R}^N \to \mathbb{R}$.

Strategy: Apply analysis/Morse theoretic arguments to these functions to obtain **invariants of** and **relationships between** the Lagrangian and Legendrian submanifolds.

Generating Family of Functions Example

Idea: Construct a 1-parameter family of functions $F_x : \mathbb{R} = \{e\} \to \mathbb{R}$

Generating Family of Functions Example

Idea: Construct a 1-parameter family of functions $F_X : \mathbb{R} = \{e\} \to \mathbb{R}$

 $\exists F : \mathbb{R} \times \mathbb{R}^1 \to \mathbb{R}$ so that Λ is the "1-jet of F along the fiber critical submanifold":

$$\Lambda = \left\{ \left(x, \frac{\partial F}{\partial x}(x, e), F(x, e) \right) : \frac{\partial F}{\partial e}(x, e) = 0 \right\}.$$

Existence from Rulings

For Legendrian knots: [Chekanov-Pushkar; Fuchs - Rutherford]

 \exists (linear at infinity) generating family $\iff \exists$ graded normal ruling

Existence from Rulings

For Legendrian knots: [Chekanov-Pushkar; Fuchs - Rutherford]

 \exists (linear at infinity) generating family $\iff \exists$ graded normal ruling

Graded normal rulings of two different Legendrian $m(5_2)$ knots.

Existence from Rulings

For Legendrian knots: [Chekanov-Pushkar; Fuchs - Rutherford]

 \exists (linear at infinity) generating family $\iff \exists$ graded normal ruling

Graded normal rulings of two different Legendrian $m(5_2)$ knots.

Graded normal ruling of a Legendrian 7₄ knot.

 $\Lambda \subset J^1 M$ with generating family $f: M \times \mathbb{R}^N \to \mathbb{R}$.

 $\Lambda \subset J^1M$ with generating family $f: M \times \mathbb{R}^N \to \mathbb{R}$.

Difference function: $\delta_f : M \times \mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R}$

$$\delta_f(x,\eta,\tilde{\eta})=f(x,\tilde{\eta})-f(x,\eta).$$

 $\Lambda \subset J^1M$ with generating family $f: M \times \mathbb{R}^N \to \mathbb{R}$.

Difference function: $\delta_f: M \times \mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R}$

$$\delta_f(x,\eta,\tilde{\eta})=f(x,\tilde{\eta})-f(x,\eta).$$

critical points with + value \longleftrightarrow Reeb chords critical points with 0 value \longleftrightarrow submanifold diffeo to \land

 $\Lambda \subset J^1M$ with generating family $f: M \times \mathbb{R}^N \to \mathbb{R}$.

Difference function: $\delta_f: M \times \mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R}$

$$\delta_f(x, \eta, \tilde{\eta}) = f(x, \tilde{\eta}) - f(x, \eta).$$

critical points with + value \longleftrightarrow Reeb chords critical points with 0 value \longleftrightarrow submanifold diffeo to Λ

Generating Family Cohomology Groups:

$$GH^k(\Lambda, f) = H^{k+N+1}(\delta_f^{\infty}, \delta_f^{\epsilon}).$$

 $\Lambda \subset J^1M$ with generating family $f: M \times \mathbb{R}^N \to \mathbb{R}$.

Difference function: $\delta_f: M \times \mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R}$

$$\delta_f(x, \eta, \tilde{\eta}) = f(x, \tilde{\eta}) - f(x, \eta).$$

critical points with + value \longleftrightarrow Reeb chords critical points with 0 value \longleftrightarrow submanifold diffeo to Λ

Generating Family Cohomology Groups:

$$GH^k(\Lambda, f) = H^{k+N+1}(\delta_f^{\infty}, \delta_f^{\epsilon}).$$

GF-Polynomials:

$$\Gamma_{\Lambda,f}(t) = \sum \dim GH^k(\Lambda,f)t^k.$$

Examples of GF-Polynomials

Examples:

Examples of GF-Polynomials

Examples:

• All polynomials are of the form $\Gamma_{(\Lambda, f)} = t + \sum_{i=0}^{n} c_i (t^i + t^{-i});$ [Sabloff Duality]

Examples of GF-Polynomials

Examples:

- All polynomials are of the form $\Gamma_{(\Lambda,f)} = t + \sum_{i=0}^{n} c_i (t^i + t^{-i});$ [Sabloff Duality]
- Every polynomial satisfying Sabloff Duality can be realized by a Legendrian. [Bourgeois-Sabloff-Traynor]

GF-Polynomials of Higher Dimensional Legendrians

For a connected *m*-dimensional Legendrian:

$$\Gamma_{(\Lambda,f)} = t^m + b_{m-1}t^{m-1} + \dots + b_1t + \sum_{i \geq \lfloor \frac{m-1}{2} \rfloor}^n c_i \left(t^i + t^{-i+(m-1)} \right),$$
 where $b_k + b_{m-k} = \dim H_k(\Lambda^m)$.

Every polynomial satisfying this duality can be realized by a Legendrian. [Bourgeois-Sabloff-Traynor]

GF-Polynomials of Higher Dimensional Legendrians

For a connected *m*-dimensional Legendrian:

$$\Gamma_{(\Lambda,f)} = t^m + b_{m-1}t^{m-1} + \dots + b_1t + \sum_{i \geq \lfloor \frac{m-1}{2} \rfloor}^n c_i \left(t^i + t^{-i+(m-1)} \right),$$
 where $b_k + b_{m-k} = \dim H_k(\Lambda^m).$

Examples:

• If Λ is Legendrian S^2 : $\Gamma_{(\Lambda,f)} = t^2 + c_0(t^0 + t^1) + c_1(t^1 + t^0) + c_2(t^2 + t^{-1}) + \dots$

Every polynomial satisfying this duality can be realized by a Legendrian. [Bourgeois-Sabloff-Traynor]

GF-Polynomials of Higher Dimensional Legendrians

For a connected *m*-dimensional Legendrian:

$$\Gamma_{(\Lambda,f)} = t^m + b_{m-1}t^{m-1} + \dots + b_1t + \sum_{i \geq \lfloor \frac{m-1}{2} \rfloor}^n c_i \left(t^i + t^{-i+(m-1)} \right),$$
 where $b_k + b_{m-k} = \dim H_k(\Lambda^m).$

Examples:

• If Λ is Legendrian S^2 : $\Gamma_{(\Lambda,f)} = t^2 + c_0(t^0 + t^1) + c_1(t^1 + t^0) + c_2(t^2 + t^{-1}) + \dots$

• If Λ is Legendrian S^3 : $\Gamma_{(\Lambda,f)} = t^3 + c_1(t^1 + t^1) + c_2(t^2 + t^0) + c_3(t^3 + t^{-1}) + \dots$

Every polynomial satisfying this duality can be realized by a Legendrian. [Bourgeois-Sabloff-Traynor]

Generating Families for Lagrangian Fillings

Lagrangian cobordisms in $\mathbb{R} \times J^1 M \equiv T^*(\mathbb{R}_+ \times M)$:

$$\psi: \mathbb{R} \times J^1 M \to T^*(\mathbb{R}_+ \times M)$$
$$(s, x, y, z) \mapsto (e^s, x, z, e^s y).$$

Generating Families for Lagrangian Fillings

Lagrangian cobordisms in $\mathbb{R} \times J^1 M \equiv T^*(\mathbb{R}_+ \times M)$:

$$\psi: \mathbb{R} \times J^{1}M \to T^{*}(\mathbb{R}_{+} \times M)$$
$$(s, x, y, z) \mapsto (e^{s}, x, z, e^{s}y).$$

Identify Lagrangian cobordism L with $\psi(L) \subset T^*(\mathbb{R}_+ \times M)$:

Generating Families for Lagrangian Fillings

Lagrangian cobordisms in $\mathbb{R} \times J^1 M \equiv T^*(\mathbb{R}_+ \times M)$:

$$\psi: \mathbb{R} \times J^1 M \to T^*(\mathbb{R}_+ \times M)$$
$$(s, x, y, z) \mapsto (e^s, x, z, e^s y).$$

Identify Lagrangian cobordism L with $\psi(L) \subset T^*(\mathbb{R}_+ \times M)$:

F is a generating family for L means $F: \mathbb{R}_+ \times M \times \mathbb{R}^N \to \mathbb{R}$ such that

$$\psi(L) = \left\{ \left(x, \frac{\partial F}{\partial x}(x, e) \right) : \frac{\partial F}{\partial e}(x, e) = 0 \right\}.$$

Assume Legendrian Λ and Lagrangian filling L can be described by **compatible generating families**:

GF-Compatible Lagrangian Fillings

Assume Legendrian Λ and Lagrangian filling L can be described by compatible generating families:

- \exists generating families
 - $f: M \times \mathbb{R}^N \to \mathbb{R}$ for Λ ; and

GF f for Λ "extends" to a GF for filling L.

GF-Compatible Lagrangian Fillings

Assume Legendrian Λ and Lagrangian filling L can be described by **compatible generating families**:

∃ generating families

- $f: M \times \mathbb{R}^N \to \mathbb{R}$ for Λ ; and
- $F: (\mathbb{R}_+ \times M) \times \mathbb{R}^N \to \mathbb{R}$ for $\psi(L) \subset T^*(\mathbb{R}_+ \times M)$ that correlates with f for large $t \in \mathbb{R}_+$:

$$F(t, x, \eta) = t f(x, \eta), \quad t \ge t_+.$$

GF f for Λ "extends" to a GF for filling L.

Outline

- Geography of Fillings
- Legendrians, Lagrangians, and Lagrangian CobordismsGenerating Families
- Obstructions to Lagrangian Fillings
- Constructions

GF Seidel Isomorphism

Theorem (Sabloff-Traynor, '13)

If \wedge has a GF f, then any GF-compatible embedded Lagrangian filling L satisfies:

$$GH^k(\Lambda, f) \cong H^{k+1}(L, \partial L).$$

GF Seidel Isomorphism

Theorem (Sabloff-Traynor, '13)

If Λ has a GF f, then any GF-compatible embedded Lagrangian filling L satisfies:

$$GH^k(\Lambda, f) \cong H^{k+1}(L, \partial L).$$

 \implies If Λ admits an embedded GF-compatible Lagrangian filling,

$$\Gamma_{\Lambda,f}(t)=t+2c_0$$

GF Seidel Isomorphism

Theorem (Sabloff-Traynor, '13)

If Λ has a GF f, then any GF-compatible embedded Lagrangian filling L satisfies:

$$GH^k(\Lambda, f) \cong H^{k+1}(L, \partial L).$$

⇒ If Λ admits an embedded GF-compatible Lagrangian filling,

$$\Gamma_{\Lambda,f}(t)=t+2c_0$$

and any embedded filling must have genus c_0 .

Scarcity of Embedded Fillings

- All polynomials are of the form $\Gamma_{(\Lambda,f)} = t + \sum_{i=0}^{n} c_i \left(t^i + t^{-i} \right);$
- Every polynomial satisfying Sabloff Duality can be realized by a Legendrian.

Scarcity of Embedded Fillings

- All polynomials are of the form $\Gamma_{(\Lambda,f)} = t + \sum_{i=0}^{n} c_i (t^i + t^{-i});$
- Every polynomial satisfying Sabloff Duality can be realized by a Legendrian.
- Only Legendrians admitting polynomial of the form $\Gamma_{(\Lambda,f)}=t+2c_0$ have a chance of admitting an embedded filling.

Immersed Lagrangian Fillings

Legendrians that admit embedded Lagrangian fillings are "rare".

Immersed Lagrangian Fillings

Legendrians that admit *embedded* Lagrangian fillings are "rare".

However, any Λ with a GF will have an **immersed** GF-compatible filling. [Bourgeois-Sabloff-Traynor].

Immersed Lagrangian Fillings

Legendrians that admit embedded Lagrangian fillings are "rare".

However, any Λ with a GF will have an **immersed** GF-compatible filling. [Bourgeois-Sabloff-Traynor].

Question: What can the GF-polynomial $\Gamma_{(\Lambda,f)}(t)$ tell us about the Lagrangian geography problem?

Theorem (Pezzimenti-Traynor)

If a Legendrian knot has GF-polynomial

$$\Gamma_{\Lambda,f}(t)=t+\sum_{i=0}^n c_i\left(t^i+t^{-i}\right),$$

Theorem (Pezzimenti-Traynor)

If a Legendrian knot has GF-polynomial

$$\Gamma_{\Lambda,f}(t)=t+\sum_{i=0}^n c_i\left(t^i+t^{-i}\right),$$

then any GF-compatible immersed Lagrangian filling of ∧ with

• genus 0 has at least $c_0 + c_1 + c_2 + \cdots + c_n$ double points;

Theorem (Pezzimenti-Traynor)

If a Legendrian knot has GF-polynomial

$$\Gamma_{\Lambda,f}(t)=t+\sum_{i=0}^n c_i\left(t^i+t^{-i}\right),$$

then any GF-compatible immersed Lagrangian filling of ∧ with

- genus 0 has at least $c_0 + c_1 + c_2 + \cdots + c_n$ double points;
- genus g has at least $|g c_0| + c_1 + \cdots + c_n$ double points.

Theorem (Pezzimenti-Traynor)

If a Legendrian knot has GF-polynomial

$$\Gamma_{\Lambda,f}(t)=t+\sum_{i=0}^n c_i\left(t^i+t^{-i}\right),$$

then any GF-compatible immersed Lagrangian filling of Λ with

- genus 0 has at least $c_0 + c_1 + c_2 + \cdots + c_n$ double points;
- genus g has at least $|g c_0| + c_1 + \cdots + c_n$ double points.

Moreover, if p is the number of double points, then

$$p+g\equiv \sum_{i=0}^n c_i \mod 2.$$

Potential Geography

Potential "check-mark" geography for Lagrangian fillings of Λ with $\Gamma_{\Lambda,f} = t + \sum_{i=0}^{n} c_i (t^i + t^{-i})$.

Potential Geography

Potential "check-mark" geography for Lagrangian fillings of Λ with

$$\Gamma_{\Lambda,f} = t + \sum_{i=0}^{n} c_i \left(t^i + t^{-i} \right)$$

if
$$c_2 = 1$$

if
$$c_0 = 2$$
, $c_1 = 1$, $c_2 = 1$

All dimensions:

From a GF-compatible immersed Lagrangian filling L,

$$(L,F) \rightsquigarrow (C_*(L:X),\partial),$$

where $C_*(L:X)$ records:

All dimensions:

From a GF-compatible immersed Lagrangian filling L,

$$(L,F) \rightsquigarrow (C_*(L:X),\partial),$$

where $C_*(L:X)$ records:

• the topology of the domain Σ of the immersion;

All dimensions:

From a GF-compatible immersed Lagrangian filling L,

$$(L,F) \rightsquigarrow (C_*(L:X),\partial),$$

where $C_*(L:X)$ records:

- the topology of the domain Σ of the immersion;
- the number and indices of the double points.

All dimensions:

From a GF-compatible immersed Lagrangian filling *L*,

$$(L,F) \rightsquigarrow (C_*(L:X),\partial),$$

where $C_*(L:X)$ records:

- the topology of the domain Σ of the immersion;
- the number and indices of the double points.
 - \implies Homology groups of immersed filling: $H_*(L:X)$.

All dimensions:

From a GF-compatible immersed Lagrangian filling *L*,

$$(L,F) \rightsquigarrow (C_*(L:X),\partial),$$

where $C_*(L:X)$ records:

- the topology of the domain Σ of the immersion;
- the number and indices of the double points.
 - \implies Homology groups of immersed filling: $H_*(L:X)$.

Theorem (Pezzimenti-Traynor)

If (Λ, f) admits a GF-compatible Lagrangian filling L, then

$$GH^k(\Lambda, f) \cong H_{m-k}(L: X).$$

Ideas underlying Immersed GF-Isomorphism

• Consider a "sheared difference function" for the Lagrangian filling:

Ideas underlying Immersed GF-Isomorphism

• Consider a "sheared difference function" for the Lagrangian filling:

Given a GF $F: \mathbb{R}_+ \times M \times \mathbb{R}^N \to \mathbb{R}$ for $\psi(L) \subset T^*(\mathbb{R}_+ \times M)$, and a function $H: \mathbb{R}_+ \to \mathbb{R}$,

define the sheared difference function $\Delta: \mathbb{R}_+ \times M^m \times \mathbb{R}^{2N} \to \mathbb{R}$ by:

$$\Delta(t,x,\eta,\tilde{\eta}) = F(t,x,\tilde{\eta}) - F(t,x,\eta) + H(t).$$

Ideas underlying Immersed GF-Isomorphism

• Consider a "sheared difference function" for the Lagrangian filling:

Given a GF $F: \mathbb{R}_+ \times M \times \mathbb{R}^N \to \mathbb{R}$ for $\psi(L) \subset T^*(\mathbb{R}_+ \times M)$, and a function $H: \mathbb{R}_+ \to \mathbb{R}$,

define the sheared difference function $\Delta: \mathbb{R}_+ \times M^m \times \mathbb{R}^{2N} \to \mathbb{R}$ by:

$$\Delta(t, x, \eta, \tilde{\eta}) = F(t, x, \tilde{\eta}) - F(t, x, \eta) + H(t).$$

- **Key:** If L is the immersed image of Σ , then Δ has
 - a critical submanifold diffeomorphic to Σ of index -1 + (N+1);
 - for each double point of L, a pair of critical points x_i^{\pm} with opposite values and indices $(i + \lfloor \frac{m-1}{2} \rfloor) + (N+1)$ and $-(i + \lfloor \frac{m-1}{2} \rfloor) + (m-1) + (N+1)$
 - a critical point for each Reeb chord of Λ.

 \bullet View $(\Delta^{\infty},\Delta^{-\mu})$ as a Relative Mapping Cone.

• View $(\Delta^{\infty}, \Delta^{-\mu})$ as a Relative Mapping Cone.

• View $(\Delta^{\infty}, \Delta^{-\mu})$ as a Relative Mapping Cone.

(by compatibility)

Get a long exact sequence:

$$\cdots \to H^{k+1}(\Delta^{\infty}, \Delta^{-\mu}) \to H_{m-k}(L:X) \to GH^k(\Lambda, f) \to H^k(\Delta^{\infty}, \Delta^{-\mu}) \to \cdots$$

• View $(\Delta^{\infty}, \Delta^{-\mu})$ as a Relative Mapping Cone.

(by compatibility)

Get a long exact sequence:

$$\cdots \to H^{k+1}(\Delta^{\infty}, \Delta^{-\mu}) \to H_{m-k}(L:X) \to GH^k(\Lambda, f) \to H^k(\Delta^{\infty}, \Delta^{-\mu}) \to \cdots$$

$$H^*(\Delta^{\infty}, \Delta^{-\mu}) = 0, \forall * \implies$$

$$\cdots \to 0 \to H_{m-k}(L:X) \stackrel{\cong}{\longrightarrow} GH^k(\Lambda,f) \to 0 \to \cdots$$
.

Illustration: What types of fillings can be realized if $\Gamma_{\Lambda,f} = t + 2$?

By Theorem, need:

- $|H_{-1}(L:X)| = 1$,
- $|H_0(L:X)| = 2$.

Embedded genus 1 is possible!

Illustration: What types of fillings can be realized if $\Gamma_{\Lambda,f} = t + 2$?

By Theorem, need:

- $|H_{-1}(L:X)| = 1$,
- $|H_0(L:X)| = 2$.

Disk with 1 double point (of index 0) is possible!

Illustration: What types of fillings can be realized if $\Gamma_{\Lambda,f} = t + 2$?

By Theorem, need:

- $|H_{-1}(L:X)| = 1$,
- $|H_0(L:X)| = 2$.

Genus 1 with 2 double points is possible!

Illustration: What types of fillings can be realized if $\Gamma_{\Lambda,f} = t + 2$?

By Theorem, need:

- $|H_{-1}(L:X)| = 1$,
- $|H_0(L:X)| = 2$.

Genus 2 with 1 double point is possible!

Illustration: What types of fillings can be realized if $\Gamma_{\Lambda,f} = t + 2$?

By Theorem, need:

- $|H_{-1}(L:X)| = 1$,
- $|H_0(L:X)| = 2$.

Disk with 2 double points is not possible!

Potential "check-mark" geography for Lagrangian fillings of Λ with

$$\Gamma_{\Lambda,f} = t + \sum_{i=0}^{n} c_i \left(t^i + t^{-i} \right)$$

if
$$c_2 = 1$$

if
$$c_0 = 2$$
, $c_1 = 1$, $c_2 = 1$

Potential "check-mark" geography for Lagrangian fillings of Λ with

$$\Gamma_{\Lambda,f} = t + \sum_{i=0}^{n} c_i \left(t^i + t^{-i} \right)$$

if $c_2 = 1$

if $c_0 = 2$, $c_1 = 1$, $c_2 = 1$

Question: Which of these can be realized?

Outline

- Geography of Fillings
- 2 Legendrians, Lagrangians, and Lagrangian Cobordisms
 2 Constraint Families
 - Generating Families
- Obstructions to Lagrangian Fillings
- 4 Constructions

Embedded Moves

Theorem (Bourgeois-Sabloff-Traynor '15)

Suppose Λ_+ has a generating family. Then there exists an embedded GF-compatible Lagragian cobordism between Λ_- and Λ_+ if:

Embedded Moves

Theorem (Bourgeois-Sabloff-Traynor '15)

Suppose Λ_+ has a generating family. Then there exists an embedded GF-compatible Lagragian cobordism between Λ_- and Λ_+ if:

• Λ_- is Legendrian isotopic to Λ_+ ;

Embedded Moves

Theorem (Bourgeois-Sabloff-Traynor '15)

Suppose Λ_+ has a generating family. Then there exists an embedded GF-compatible Lagragian cobordism between Λ_- and Λ_+ if:

- Λ_- is Legendrian isotopic to Λ_+ ;
- Λ_- is obtained from Λ_+ by "pinch moves" (compatible with ruling);
- Λ_- is obtained by "filling" a trivial unknotted component of Λ_+ .

Construction of Immersed Lagrangian Cobordism

Theorem (Pezzimenti-Traynor)

If a Legendrian knot Λ_+ has a ruling that is well behaved with respect to a clasp, and Λ_- is obtained by unclasping,

Construction of Immersed Lagrangian Cobordism

Theorem (Pezzimenti-Traynor)

If a Legendrian knot Λ_+ has a ruling that is well behaved with respect to a clasp, and Λ_- is obtained by unclasping,

then there exist GFs f_{\pm} for Λ_{\pm} and an **immersed** GF-compatible Lagrangian cobordism from (Λ_{-}, f_{-}) to (Λ_{+}, f_{+}) with a double point of index |i - j|.

There is also a "clasping" move.

Geography of a Legendrian 74

From Polynomial

Geography of a Legendrian 74

Geography of a Legendrian 74

It is always possible to:

- fix genus and increase the number of double points by 2;
- increase genus by 1 & increase # of double points by 1. /

New Fillings from Old:

Lagrangian fillings have Legendrian lifts:

Adding two double points: ↑

New Fillings from Old:

Lagrangian fillings have Legendrian lifts:

Adding two double points:

Adding genus and a double point: \nearrow

Smooth vs Lagrangian Geography: 74

Smooth Geography

Lagrangian Geography

Smooth vs Lagrangian Geography: $m(5_2)$

Smooth Geography

Lagrangian Geography

Smooth vs Lagrangian Geography: another $m(5_2)$

Smooth Geography

Lagrangian Geography

• [Geography]

Q: For fixed (Λ, f) , when can one *not* realize the chart determined by smooth topology and the polynomial $\Gamma_{\Lambda, f}$ (or $\Gamma_{\Lambda, \varepsilon}$)?

[Geography]

Q: For fixed (Λ, f) , when can one *not* realize the chart determined by smooth topology and the polynomial $\Gamma_{\Lambda, f}$ (or $\Gamma_{\Lambda, \varepsilon}$)?

Are there obstructions from product and A_{∞} relations on $GH^*(\Lambda, f)$ ($LCH^*(\Lambda, \varepsilon)$)?

• [Geography]

Q: For fixed (Λ, f) , when can one *not* realize the chart determined by smooth topology and the polynomial $\Gamma_{\Lambda, f}$ (or $\Gamma_{\Lambda, \varepsilon}$)?

Are there obstructions from product and A_{∞} relations on $GH^*(\Lambda, f)$ ($LCH^*(\Lambda, \varepsilon)$)?

• Yes, for LCH; [Etgü '18, Ekholm-Lekili '17] $\exists (\Lambda, \varepsilon) : \Gamma(\Lambda, \varepsilon) = t + 6$, but $\not\exists$ embedded filling inducing ε .

• [Geography]

Q: For fixed (Λ, f) , when can one *not* realize the chart determined by smooth topology and the polynomial $\Gamma_{\Lambda, f}$ (or $\Gamma_{\Lambda, \varepsilon}$)?

Are there obstructions from product and A_{∞} relations on $GH^*(\Lambda, f)$ ($LCH^*(\Lambda, \varepsilon)$)?

- Yes, for *LCH*; [Etgü '18, Ekholm-Lekili '17] $\exists (\Lambda, \varepsilon) : \Gamma(\Lambda, \varepsilon) = t + 6$, but $\not\exists$ embedded filling inducing ε .
- **Q:** \exists obstructions from product and A_{∞} relations on $GH^*(\Lambda, f)$ as constructed by Ziva Myer?

• [Mutation] How are different fillings of (Λ, f) related?

Related results:

 Smooth World: Can always decrease number of double points by 1 at cost of increasing genus by 1.

• [Mutation] How are different fillings of (Λ, f) related?

Related results:

- Smooth World: Can always decrease number of double points by 1 at cost of increasing genus by 1.
- Symplectic World:

[Capovilla Searle - Legout - Limouzineau - Murphy - Pan - Traynor]

 Double pts with particular indices and actions (VIA) can be traded for genus.

[Mutation] How are different fillings of (Λ, f) related?

Symplectic World:

[Capovilla Searle - Legout - Limouzineau - Murphy - Pan - Traynor]

 Double pts with particular indices and actions (VIA) can be traded for genus.

[Mutation] How are different fillings of (Λ, f) related?

Symplectic World:

[Capovilla Searle - Legout - Limouzineau - Murphy - Pan - Traynor]

- Double pts with particular indices and actions (VIA) can be traded for genus.
- Q: Can one trade genus for double points?

• [Mutation] How are different fillings of (Λ, f) related?

Symplectic World:

[Capovilla Searle - Legout - Limouzineau - Murphy - Pan - Traynor]

- Double pts with particular indices and actions (VIA) can be traded for genus.
- Q: Can one trade genus for double points? A: No. Augmentation counts (via A_{∞} arguments) can prove this.

• [Mutation] How are different fillings of (Λ, f) related?

- Symplectic World: GF-Fillings
 - NW-SE portion of "check-mark" has double points with correct indices.

• [Mutation] How are different fillings of (Λ, f) related?

- Symplectic World: GF-Fillings
 - NW-SE portion of "check-mark" has double points with correct indices.
 - Q: Can one interchange double points and genus in GF-fillings?

• [Botany]

Q: For fixed (Λ, f) , **how many** options for a fixed topology and number of immersion points?

• [Botany]

Q: For fixed (Λ, f) , **how many** options for a fixed topology and number of immersion points?

Related results:

• [Ekholm-Honda-Kálmán '16, Pan '17, Shende-Treumann-Williams-Zaslow '19]:

Max tb (2, n)-torus link admits $C_n = \frac{1}{n+1} \binom{2n}{n}$ embedded fillings that are smoothly isotopic but pairwise not (exact) Lagrangian isotopic.

• [Botany]

Q: For fixed (Λ, f) , **how many** options for a fixed topology and number of immersion points?

Related results:

- [Ekholm-Honda-Kálmán '16, Pan '17, Shende-Treumann-Williams-Zaslow '19]: Max tb(2, n)-torus link admits $C_n = \frac{1}{n+1} \binom{2n}{n}$ embedded fillings that are smoothly isotopic but pairwise not (exact) Lagrangian isotopic.
- [Casals-Gao '20]: "Most" max to positive torus knots admit infinitely many embedded Lagrangian fillings that are smoothly isotopic but not Hamiltonian isotopic.

• [Botany]

Q: For fixed (Λ, f) , **how many** options for a fixed topology and number of immersion points?

Related results:

isotopic.

- [Ekholm-Honda-Kálmán '16, Pan '17, Shende-Treumann-Williams-Zaslow '19]: Max tb(2, n)-torus link admits $C_n = \frac{1}{n+1} \binom{2n}{n}$ embedded fillings that are smoothly isotopic but pairwise not (exact) Lagrangian
- [Casals-Gao '20]: "Most" max to positive torus knots admit infinitely many embedded Lagrangian fillings that are smoothly isotopic but not Hamiltonian isotopic.

Q: For fixed (Λ, f) , count number of fillings with fixed topology and double points?

Thank you!