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PLAN:
- Background (the motivating question and related works)
- Setting
- Results (or, applications of the main tool)

- The main tool: Barricades.
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“Definition”: For a € H.(M), the spectral invariant c(H; «) is the
smallest action of a representative of a in CF(H).
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“Definition”: For a € H.(M), the spectral invariant c(H; «) is the
smallest action of a representative of a in CF(H).

Polterovich, Seyfaddini, Ishikawa, Humiliére-Le Roux-Seyfaddini
Theorem (HLS, "Max-formula”) ‘ o
Suppose F and G are supported in disjoint incompressible Liouville

domains on a symplectically aspherical manifold. Then,

c(F 4+ G; [M]) = max{c(F; [M]), c(G; [M])}.

Remark: By Poincaré duality for spectral invariants:

c(F+ G; [pt]) = min{c(F; [pt]), c(G; [pt])}
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- (M,w) is symplectically aspherical.

- The Hamiltonians are supported in disjoint embeddings of
"nice” star-shaped domains.
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- (M,w) is symplectically aspherical.

- The Hamiltonians are supported in disjoint embeddings of
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More generally, consider domains with contact-type,

incompressible boundaries. Call these CIB domains.
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Theorem 1:
Let (M,w) and (N, Q) be symplectically aspherical manifolds and

assume that V. ¢ Mis a CIB domain, embedded into N, ¢ : V < N,
such that the image is again a CIB domain. For every F supported in V,

cu(F; M) = cn(«F; [ND),
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Theorem 1:
Let (M,w) and (N, Q) be symplectically aspherical manifolds and

assume that V. ¢ Mis a CIB domain, embedded into N, ¢ : V < N,
such that the image is again a CIB domain. For every F supported in V,

cu(F; M]) = en(vFi IND,  cm(F: [pt]) = cn(¥F: [p1])-

Remark: . - _
The asphericity and incompressibility assumptions are necessary.
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Definition: o ‘ ‘ o
For a non degenerate Hamiltonian F, consider homotopies of Hamiltonians H

and a.c.s. J such that H_ = F, and denote by M(H,]) is the set of solutions
of Floer equation with respect to (H, /). Then,

Cans(F) = su min  Ar(u(— .
ans(F) P F(U(=00))



Theorem 2:
Let F and G be Hamiltonians supported in disjoint CIB domains, then:
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Theorem (HLS):
On surfaces (other than S?) and for autonomous Hamiltonians, every action

selector satisfying the min-formula coincides with c(-; [pt]).
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The main tool: Barricades

Theorem 0: .
Suppose Fis supported in a CIB domain V. Then, there exists a

perturbation f of F, and an almost complex structure J, such that for
every solution u of the Floer equation with respect to (f,)):

1. If u starts in V\ N(dV), then im(u) C V\ N(9V).

2. IfuendsinV, thenim(u) C V.
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The main tool: Barricades
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Under the decomposition CF(f) = Car(av) © Cve © Cargavys
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the differential takes a diagonal block form: _X,
Olnnpyy 0 9dlv
Oy = 0 * %
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Thank you!







