Floer Theory of Disjointly Supported Hamiltonians

Shira Tanny

Joint with Yaniv Ganor

PLAN:

- · Background (the motivating question and related works)
- Setting
- · Results (or, applications of the main tool)
- · The main tool: Barricades.

"Definition": For $\alpha \in H_*(M)$, the spectral invariant $c(H; \alpha)$ is the smallest action of a representative of α in CF(H).

"Definition": For $\alpha \in H_*(M)$, the spectral invariant $c(H; \alpha)$ is the smallest action of a representative of α in CF(H).

Polterovich, Seyfaddini, Ishikawa, Humilière-Le Roux-Seyfaddini

"Definition": For $\alpha \in H_*(M)$, the spectral invariant $c(H; \alpha)$ is the smallest action of a representative of α in CF(H).

Polterovich, Seyfaddini, Ishikawa, Humilière-Le Roux-Seyfaddini

Theorem (HLS, "Max-formula")Suppose F and G are supported in disjoint incompressible Liouville domains on a symplectically aspherical manifold. Then,

$$c(F + G; [M]) = \max\{c(F; [M]), c(G; [M])\}.$$

"Definition": For $\alpha \in H_*(M)$, the spectral invariant $c(H; \alpha)$ is the smallest action of a representative of α in CF(H).

Polterovich, Seyfaddini, Ishikawa, Humilière-Le Roux-Seyfaddini

Theorem (HLS, "Max-formula")Suppose F and G are supported in disjoint incompressible Liouville domains on a symplectically aspherical manifold. Then,

$$c(F + G; [M]) = \max\{c(F; [M]), c(G; [M])\}.$$

Remark: By Poincaré duality for spectral invariants:

$$c(F + G; [pt]) = \min\{c(F; [pt]), c(G; [pt])\}$$

Setting

Assume that:

- (M, ω) is symplectically aspherical.
- The Hamiltonians are supported in disjoint embeddings of "nice" star-shaped domains.

Setting

Assume that:

- (M, ω) is symplectically aspherical.
- The Hamiltonians are supported in disjoint embeddings of "nice" star-shaped domains.

More generally, consider domains with contact-type, incompressible boundaries. Call these CIB domains.

/ı

Theorem 1:

Let (M,ω) and (N,Ω) be symplectically aspherical manifolds and assume that $V\subset M$ is a CIB domain, embedded into $N,\psi:V\hookrightarrow N$, such that the image is again a CIB domain. For every F supported in V,

$$c_M(F; [M]) = c_N(\psi_* F; [N]),$$

Theorem 1:

Let (M,ω) and (N,Ω) be symplectically aspherical manifolds and assume that $V\subset M$ is a CIB domain, embedded into $N,\psi:V\hookrightarrow N$, such that the image is again a CIB domain. For every F supported in V,

$$c_M(F; [M]) = c_N(\psi_* F; [N]), \qquad c_M(F; [pt]) = c_N(\psi_* F; [pt]).$$

Theorem 1:

Let (M,ω) and (N,Ω) be symplectically aspherical manifolds and assume that $V\subset M$ is a CIB domain, embedded into $N,\psi:V\hookrightarrow N$, such that the image is again a CIB domain. For every F supported in V,

$$c_M(F; [M]) = c_N(\psi_* F; [N]), \qquad c_M(F; [pt]) = c_N(\psi_* F; [pt]).$$

Remark:

The asphericity and incompressibility assumptions are necessary.

Theorem 2:

Let F and G be Hamiltonians supported in disjoint CIB domains, then:

Theorem 2:

Let *F* and *G* be Hamiltonians supported in disjoint CIB domains, then:

1. $c(F + G; \alpha) \le \max\{c(F; \alpha), c(G; \alpha)\}\$, for every $\alpha \in H_*(M)$.

Theorem 2:

Let F and G be Hamiltonians supported in disjoint CIB domains, then:

- 1. $c(F + G; \alpha) \leq \max\{c(F; \alpha), c(G; \alpha)\}$, for every $\alpha \in H_*(M)$.
- 2. $\beta(F+G) \ge \max\{\beta(F), \beta(G)\}\$, where β is the boundary depth.

Theorem 2:

Let F and G be Hamiltonians supported in disjoint CIB domains, then:

- 1. $c(F + G; \alpha) \leq \max\{c(F; \alpha), c(G; \alpha)\}\$, for every $\alpha \in H_*(M)$.
- 2. $\beta(F+G) \ge \max\{\beta(F), \beta(G)\}\$, where β is the boundary depth.
- 3. $c_{AHS}(F+G) \leq \min\{c_{AHS}(F), c_{AHS}(G)\}\$, where c_{AHS} is an action selector defined recently by Abbondandolo, Haug and Schlenk.

Theorem 2:

Let *F* and *G* be Hamiltonians supported in disjoint CIB domains, then:

- 1. $c(F + G; \alpha) \leq \max\{c(F; \alpha), c(G; \alpha)\}\$, for every $\alpha \in H_*(M)$.
- 2. $\beta(F+G) \ge \max\{\beta(F), \beta(G)\}\$, where β is the boundary depth.
- 3. $c_{AHS}(F+G) \leq \min\{c_{AHS}(F), c_{AHS}(G)\}\$, where c_{AHS} is an action selector defined recently by Abbondandolo, Haug and Schlenk.

Definition:

For a non degenerate Hamiltonian F, consider homotopies of Hamiltonians H and a.c.s. J such that $H_- = F$, and denote by $\mathcal{M}(H,J)$ is the set of solutions of Floer equation with respect to (H,J). Then,

$$c_{AHS}(F) = \sup_{(H,J)} \min_{u \in \mathcal{M}(H,J)} \mathcal{A}_F(u(-\infty)).$$

S

Theorem 2:

Let F and G be Hamiltonians supported in disjoint CIB domains, then:

- 1. $c(F + G; \alpha) \leq \max\{c(F; \alpha), c(G; \alpha)\}\$, for every $\alpha \in H_*(M)$.
- 2. $\beta(F+G) \ge \max\{\beta(F), \beta(G)\}\$, where β is the boundary depth.
- 3. $c_{AHS}(F+G) \leq \min\{c_{AHS}(F), c_{AHS}(G)\}\$, where c_{AHS} is an action selector defined recently by Abbondandolo, Haug and Schlenk.

Theorem (HLS):

On surfaces (other than S^2) and for autonomous Hamiltonians, every action selector satisfying the min-formula coincides with $c(\cdot; [pt])$.

For
$$f:$$
 (1) u starts in V , away from ∂V

$$\Rightarrow u \in V \setminus W(\partial V)$$

(2) u ends in $V \Rightarrow ucV$.

Theorem 0:

Suppose F is supported in a CIB domain V. Then, there exists a perturbation f of F, and an almost complex structure J, such that for every solution u of the Floer equation with respect to (f, J):

- 1. If u starts in $V \setminus \mathcal{N}(\partial V)$, then $im(u) \subset V \setminus \mathcal{N}(\partial V)$.
- 2. If u ends in V, then $im(u) \subset V$.

Theorem 0:

Suppose F is supported in a CIB domain V. Then, there exists a perturbation f of F, and an almost complex structure J, such that for every solution u of the Floer equation with respect to (f, J):

- 1. If u starts in $V \setminus \mathcal{N}(\partial V)$, then $im(u) \subset V \setminus \mathcal{N}(\partial V)$.
- 2. If u ends in V, then $im(u) \subset V$.

Under the decomposition $CF(f) = C_{V \setminus \mathcal{N}(\partial V)} \oplus C_{V^c} \oplus C_{\mathcal{N}(\partial V)}$,

the differential takes a diagonal block form:

$$\partial_{f,J} = \begin{pmatrix} \partial|_{V \setminus \mathcal{N}(\partial V)} & 0 & \partial|_{V} \\ 0 & * & * \\ 0 & 0 & \partial|_{V} \end{pmatrix}$$
counts traj c \(\sqrt{}

A word about the proof

Thank you!

