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What is this lecture about?

Quantum classical correspondence: Quantum mechanics
contains classical in the limit ~→ 0.

Not precise! (Groenewold- Van Hove)

quantum footprints of symplectic geometry/Hamiltonian
dynamics in phase space.

quantum errors governed by Riemannian geometry
(cf. Klauder)

Thesis: Optimal quantizations correspond to compatible almost
complex structures on (M, ω).
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Deformation quantization

Star product: Associative (non-commutative) deformation of
(C∞(M), f · g)

f ∗ g = fg + ~c1(f , g) + ~2c2(f , g) + . . . ,

~-formal parameter, ck(f , g) - bi-differential operators vanishing on
constants

Bracket correspondence: f ∗ g − g ∗ f = i~{f , g}+O(~2)

F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, D. Sternheimer,
1977
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Geometric quantization and friends

Math. model of fin. volume quantum mechanics
H - finite dimensional Hilbert space over C

L(H) - Hermitian operators on H
S- density operators ρ ∈ L(H), ρ ≥ 0, Trace(ρ) = 1.
~-Planck constant.

Table: Quantum-Classical Correspondence

CLASSICAL QUANTUM

Symplectic mfd (M, ω) C-Hilbert space H
OBSERVABLES f ∈ C∞(M) A ∈ L(H)

STATES Probability measures on M Density ops ρ ∈ S
BRACKET Poisson bracket {f , g} Commutator i

~ [A,B]
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Berezin-Toeplitz quantization

(M, ω) - closed symplectic, dimM = 2d .

H~- family of Hilbert spaces of
dimH~ := n~ ∼ (2π~)−d , ~ = 1/k , k →∞.

T~ : C∞(M)→ L(H~)- linear

Main features:

(positivity) f ≥ 0 ⇒ T~(f ) ≥ 0, T~(1) = 1l;

(quasi-multiplicativity) There exists a bi-differential operator
c : C∞(M)× C∞(M)→ C∞(M) such that
T~(f )T~(g) = T~ (fg + ~c(f , g)) +O(~2)

(reversibility) B~ := (n~)−1T ∗~T~ : C∞(M)→ C∞(M)
satisfies B~(f ) = f +O(~).

(bracket correspondence)
[T~(f ),T~(g)] = i~T~({f , g}) +O(~2)
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Remarks

Extra axioms: (not discussed):

uniform norm ↔ operator norm,
mean value ↔ (normalized) trace.
remainders depend on N derivatives of f , g .

Positivity: yields T~(f ) =
∫
M fdW~ where W~- Positive Operator

Valued Measure (later)

Quasi-multiplicativity: In known examples, exists a star-product
s.t. T~(f )T~(g) = T~(f ∗ g).
Here T~ extended to C∞(M,C)→ L(H)⊗ C = End(H).

Reversibility: B~ := (n~)−1T ∗~T~ - Berezin transform ,
composition of dequantization and quantization.
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Unsharpness cocycle

There exists a bi-differential operator
c : C∞(M)× C∞(M)→ C∞(M) such that

T~(f )T~(g) = T~ (fg + ~c(f , g)) +O(~2)

Associativity ⇒ c - Hochschild cocycle:
f1 c(f2, f3)− c(f1f2, f3) + c(f1, f2f3)− c(f1, f2) f3 = 0
for all f1, f2, f3 ∈ C∞(M)

Put c−(f , g) := c(f ,g)−c(g ,f )
2 and c+(f , g) := c(f ,g)+c(g ,f )

2

Bracket correspondence ⇒ c−(f , g) = i
2{f , g}

c+ - symmetric unsharpness cocycle

Theorem

Bi-differential operator c+ is of order (1, 1).
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Unsharpness tensor

Theorem

Bi-differential operator c+ is of order (1, 1).

Corollary

There exists a bilinear symmetric form G on TM:
c+(f , g) =: −1

2G (sgrad f , sgrad g)
where sgrad f , sgrad g Hamiltonian vector fields of
f , g ∈ C∞(M,R)

Leonid Polterovich, Tel Aviv University Geometry of quantum uncertainty



Unsharpness tensor

Theorem

Bi-differential operator c+ is of order (1, 1).

Corollary

There exists a bilinear symmetric form G on TM:
c+(f , g) =: −1

2G (sgrad f , sgrad g)
where sgrad f , sgrad g Hamiltonian vector fields of
f , g ∈ C∞(M,R)

Leonid Polterovich, Tel Aviv University Geometry of quantum uncertainty



Examples-1

1. Kähler quantizaton Boutet de Monvel - Guillemin, 1981;
Bordemann, Meinrenken and Schlichenmaier, 1994

(M, ω, J)- closed Kähler manifold, quantizable:
[ω]/(2π) ∈ H2(M,Z)
L- a holomorphic Hermitian line bundle over M
Curvature of Chern connection = iω.

H~ := H0(M, L⊗k) ⊂ V~ := L2(M, L⊗k).
Π~ : V~ → H~ – the orthogonal projection.
The Toeplitz operator: T~(f )(s) := Π~(fs), f ∈ C∞(M), s ∈ H~.

Unsharpness tensor: G (ξ, η) = ω(ξ, Jη) (Xu)
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Examples-2

2. Almost - Kähler quantizaton Guillemin; Borthwick - Uribe;
Schiffman - Zelditch; Ma - Marinescu; Charles; Ioos - Lu - Ma -
Marinescu

(M, ω, J) , GJ(ξ, η) = ω(ξ, Jη)-Riemannian metric, [ω]-
quantizable: [ω]/(2π) ∈ H2(M,Z)

Modified construction: L - similar, Hk - spanned by eigenfunct.
with “small” eigenvalues of Bochner Laplacian on Lk .
Unsharpness tensor: G = GJ (Ioos,Lu,Ma,Marinescu)

3. Diffusion (M, ω, J) - Kähler or almost-Kähler, T~-
quantization in Examples 1 or 2, ∆- (positive) Laplace-Beltrami.

Smearing by heat flow: T
(t)
~ (f ) := T~(e−t~∆f ), t > 0.

Unsharpness tensor: G (t) := (1 + 4t)GJ
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Main Theorem

(M, ω) - closed symplectic manifold

T~-Berezin-Toeplitz quantization.

Theorem

(I) Unsharpness tensor G is a Riemannian metric of the form
GJ + ρ, where J is an ω-compatible almost complex structure,
ρ is a non-negative symmetric bilinear form.

(II) Vol(M,G ) ≥ Vol(M, ω), with equality ⇔ G = GJ , ρ = 0.

(III) Assume (M, ω) is quantizable. Then every Riemannian metric
as in (I) arises from some Berezin-Toeplitz quantization.
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Remarks

Decomposition G = GJ + ρ, ρ ≥ 0 in general not unique. But
there exists unique G -orthogonal ω-compatible almost complex
structure J: G (Jξ, Jη) = G (ξ, η).

In (III), J is not assumed to be G -orthogonal

Proof of (III): almost Kähler quantization followed by diffusion.

Proof of (I): unsharpness (noise) of quantum measurements.
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POVMs

H - complex Hilbert space (finite dimensional)

L(H) - Hermitian operators (quantum observables)

S(H) ⊂ L(H) - trace 1 positive operators (states)

Ω- “good” topological space (closed manifold), C - Borel σ-algebra.

Positive Operator Valued Measure (POVM) W on (Ω, C)

W : C → L(H)

W (X ) ≥ 0 for all X ∈ C,

countably additive,

W (Ω) = 1l.
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POVMs-2

Fact: Chiribella, D’Ariano, Schlingemann
There exists

Borel probability measure α on Ω,

measurable F : Ω→ S(H):

dW (s) = nF (s)dα(s), n = dimCH

F (s)- coherent states

Integration:
∫

: L1(Ω, α)→ L(H), f 7→
∫
fdW .

Example 1. Berezin-Toeplitz quantization is given by sequence
L(H~)-valued POVMS on M:

T~(f ) =

∫
fdW~
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Sub-example: Kähler coherent states

H~ - holomorphic sections of Lk , k = 1/~.

Hyperplane Ez ⊂ H~, Ez := {s ∈ H~ : s(z) = 0}.

Kodaira embedding M → P(H∗~ ), z 7→ Ez

Pz,~– orthogonal projector of H~ to E⊥z coherent state projector

There exists Rawnsley function R~ ∈ C∞(M):

T~(f ) =

∫
M
f (x)R~(x)Px ,~dVol(x)
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Quantum measurement

W - L(H)-valued POVM on Ω.

Interpretation: W - pointer (measuring device). In state ρ,
probability of finding the value of measurement in X ⊂ Ω is
µρ(X ) := trW (X )ρ

Example: observable F =
∑
λjPj - spec. decomposition.

P = (P1, . . . ,Pk)- projector valued measure on {1, . . . , k}.
Observable takes values λj with probability tr(Pjρ).

Unbiased approximate measurement: f : Ω→ R defines a
random variable on Ω with resp. to µρ

Unbiased: Exp(W , f , ρ) = Exp(F , ρ) for observable F =
∫
fdW

Approximate: Probability distributions differ!

Var(W , f , ρ) = Var(F , ρ) + tr (∆W (f )) ρ

∆W (f ) ≥ 0 - Ozawa noise operator, measures unsharpness
Vanishes for projector valued POVMs
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Quantum measurement

W - L(H)-valued POVM on Ω.
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Uncertainty jump

Heisenberg uncertainty:

Var(F , ρ)1/2 · Var(G , ρ)1/2 ≥ 1
2 · |Exp([F ,G ], ρ)|

For joint approximate measurements, F =
∫
fdW , g =

∫
gdW

Var(W , f , ρ)1/2 · Var(W , g , ρ)1/2 ≥ 1 · |Exp([F ,G ], ρ)|
(Ishikawa, 1991)

Coefficient jumps! Based on noise inequality:

(tr(∆W (f )ρ)1/2 (tr(∆W (g)ρ)1/2 ≥ 1
2 |Exp([F ,G ], ρ)|
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Quantization as measurement

T~(f ) =
∫
M fdW~ - Berezin-Toeplitz quantization.

∆~-noise operator of W~

∆~(f ) = T~(f 2)− T~(f )2 = ~
2T~

(
|sgradf |2G

)
+O(~2)

where G is the unsharpness metric.

dW~ = n~Fx ,~dα~, where Fx ,~-coherent state.

Exp(∆~(f ),Fx ,~) =
~
2
|sgradf (x)|2G +O(~2)

Hence unsharpness

Decomposition: G = GJ + ρ, ρ ≥ 0, follows from noise inequality.

The least unsharpness principle:
Vol(M,G ) ≥ Vol(M, ω) , minimizers ↔ compatible metrics
(cf. Gerhenstaber, 2007)
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Classification of quantizations

Star products: Change of variables A : f 7→ f +
∑

m≥1 ~mam(f )
am : C∞(M)→ C∞(M)-differential operator.

Locally (in charts) star-products equivalent, globally classified by
H2(M,R)[[~]] (De Wilde - Lecompte,1983; Fedosov; Deligne;
Nest-Tsygan; Gutt-Rawnsley)

Berezin-Toeplitz quantizations: Largely open.
Fix Hilbert spaces Hk , k →∞, ~ = 1/k

Quantizations S~,T~ : C∞(M)→ L(H~) are m-equivalent
(m ∈ N) if there exists unitaries U~ : H~ → H~ such that

S~(f ) = U~T~(f )U∗~ +O(~m)

Observation: Unsharpness metric is an invariant of 2-equivalence.
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Case study: 2-sphere

Assume Hk is the space of irrep of SU(2) of dimension k + 1.

Example: Spherical metric G of total area 2π. Standard Kähler
quantization plus diffusion has unsharpness metric tG , t ≥ 1.

Theorem

Any two SU(2)-equivariant quantizations with the same
unsharpness metric coincide up to O(~2).

Tool: Representation theory.

Open problem: What happens in general (non-equivariant) case?
Are there invariants of 2-equivalence beyond unsharpness metric?

Theorem (IN PROGRESS)

All known quantizations of S2 with dimHk = k are 1-equivalent.

Tool: Developing approximate representations for Lie algebras.
(for groups - Grove-Karcher-Ruh; Kazhdan; Lubotzky et al.)
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Reversibility revisited

(reversibility) B~ := (n~)−1T ∗~T~ : C∞(M)→ C∞(M) satisfies
B~(f ) = f +O(~).

B~- Berezin transform , composition of dequantization and
quantization.

Enhanced axiom: B~(f ) = f + ~Df +O(~2), D - differential
operator.

Theorem

D = −2a, where a is a symmetric operator with
c+(f , g) = a(fg)− f a(g)− g a(f ).

Example: For almost complex quantization, D = −∆/2, where
∆- Laplace-Beltrami.
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Markov chain

Berezin transform - Markov operator

Quantization+Dequantization=Markov Chain on M

Dirac δz → Coherent state proj. Pz,~ → “Gaussian”
centered at z concentrated in ball of radius ∼

√
~.
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Spectral gap of Berezin transform

Spectrum: 1 ≥ γ1 ≥ γ2 ≥ · · · ≥ γk ≥ 0 (infinite multiplicity)

Theorem (Ioos-Kaminker-P.-Shmoish, 2018)

For Berezin-Toeplitz quantization of Kähler manifolds

1− γ1 =
~
2
λ1 + O(~2)

where λ1 - first eigenvalue of Laplace-Beltrami operator.

Upper bound – Karabegov-Schlichenmaier, 2001.

Lower bound: cf. semiclassical random walk on the phase space
(point x jumps uniformly in the ball B(x , t), t ∼

√
~ small

parameter). Spectral properties - Lebeau-Michel.

Related to Donaldson’s numerical Kähler geometry.

Related to noise of quantum measurements
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Spectral gap of Berezin transform

Spectrum: 1 ≥ γ1 ≥ γ2 ≥ · · · ≥ γk ≥ 0 (infinite multiplicity)

Theorem (Ioos-Kaminker-P.-Shmoish, 2018)

For Berezin-Toeplitz quantization of Kähler manifolds

1− γ1 =
~
2
λ1 + O(~2)

where λ1 - first eigenvalue of Laplace-Beltrami operator.

Upper bound – Karabegov-Schlichenmaier, 2001.

Lower bound: cf. semiclassical random walk on the phase space
(point x jumps uniformly in the ball B(x , t), t ∼

√
~ small

parameter). Spectral properties - Lebeau-Michel.

Related to Donaldson’s numerical Kähler geometry.

Related to noise of quantum measurements
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The End
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