Geometry of quantum uncertainty

Leonid Polterovich, Tel Aviv

Zoominar, April, 2020

with Louis loos and David Kazhdan

Leonid Polterovich, Tel Aviv University Geometry of quantum uncertainty

・ロト ・回ト ・ヨト ・ヨト

э

Not precise! (Groenewold- Van Hove)

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Not precise! (Groenewold- Van Hove)

• **quantum footprints** of symplectic geometry/Hamiltonian dynamics in phase space.

Not precise! (Groenewold- Van Hove)

- **quantum footprints** of symplectic geometry/Hamiltonian dynamics in phase space.
- quantum errors governed by Riemannian geometry (cf. Klauder)

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

Not precise! (Groenewold- Van Hove)

- **quantum footprints** of symplectic geometry/Hamiltonian dynamics in phase space.
- quantum errors governed by Riemannian geometry (cf. Klauder)

Thesis: Optimal quantizations correspond to compatible almost complex structures on (M, ω) .

Star product: Associative (non-commutative) deformation of $(C^{\infty}(M), f \cdot g)$

 $f * g = fg + \hbar c_1(f,g) + \hbar^2 c_2(f,g) + \dots,$

 \hbar -formal parameter, $c_k(f,g)$ - bi-differential operators vanishing on constants

Star product: Associative (non-commutative) deformation of $(C^{\infty}(M), f \cdot g)$

 $f*g = fg + \hbar c_1(f,g) + \hbar^2 c_2(f,g) + \ldots$,

 \hbar -formal parameter, $c_k(f,g)$ - bi-differential operators vanishing on constants

Bracket correspondence: $f * g - g * f = i\hbar\{f, g\} + O(\hbar^2)$

イロト 不得 トイヨト イヨト 三日

Star product: Associative (non-commutative) deformation of $(C^{\infty}(M), f \cdot g)$

 $f * g = fg + \hbar c_1(f,g) + \hbar^2 c_2(f,g) + \ldots$

 \hbar -formal parameter, $c_k(f,g)$ - bi-differential operators vanishing on constants

Bracket correspondence: $f * g - g * f = i\hbar\{f, g\} + O(\hbar^2)$

F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, D. Sternheimer, 1977

イロト イポト イヨト イヨト 三日

Math. model of fin. volume quantum mechanics

H - finite dimensional Hilbert space over $\mathbb C$

ヘロト 人間 とくほ とくほ とう

э

Math. model of fin. volume quantum mechanics

H - finite dimensional Hilbert space over \mathbb{C} $\mathcal{L}(H)$ - Hermitian operators on *H*

ヘロト 人間 とくほ とくほ とう

Math. model of fin. volume quantum mechanics

H - finite dimensional Hilbert space over \mathbb{C} $\mathcal{L}(H)$ - Hermitian operators on HS- density operators $\rho \in \mathcal{L}(H)$, $\rho \ge 0$, $Trace(\rho) = 1$.

・ 戸 ト ・ ヨ ト ・ ヨ ト

Math. model of fin. volume quantum mechanics

H - finite dimensional Hilbert space over \mathbb{C} $\mathcal{L}(H)$ - Hermitian operators on HS- density operators $\rho \in \mathcal{L}(H)$, $\rho \geq 0$, $Trace(\rho) = 1$. \hbar -Planck constant.

・ 同 ト ・ ヨ ト ・ ヨ ト

Math. model of fin. volume quantum mechanics

H - finite dimensional Hilbert space over \mathbb{C} $\mathcal{L}(H)$ - Hermitian operators on HS- density operators $\rho \in \mathcal{L}(H)$, $\rho \geq 0$, $Trace(\rho) = 1$. \hbar -Planck constant.

Table: Quantum-Classical Correspondence

	CLASSICAL	QUANTUM
	Symplectic mfd (M, ω)	\mathbb{C} -Hilbert space H
OBSERVABLES	$f\in C^\infty(M)$	$A\in\mathcal{L}(H)$
STATES	Probability measures on M	Density ops $ ho\in\mathcal{S}$
BRACKET	Poisson bracket $\{f, g\}$	Commutator $\frac{i}{\hbar}[A,B]$

 (M, ω) - closed symplectic, dim M = 2d.

ヘロト ヘ団ト ヘヨト ヘヨト

э

 (M, ω) - closed symplectic, dim M = 2d. H_{\hbar} - family of Hilbert spaces of dim $H_{\hbar} := n_{\hbar} \sim (2\pi\hbar)^{-d}$, $\hbar = 1/k$, $k \to \infty$.

・ 同 ト ・ ヨ ト ・ ヨ ト

 (M, ω) - closed symplectic, dim M = 2d. H_{\hbar} - family of Hilbert spaces of dim $H_{\hbar} := n_{\hbar} \sim (2\pi\hbar)^{-d}$, $\hbar = 1/k$, $k \to \infty$. $T_{\hbar} : C^{\infty}(M) \to \mathcal{L}(H_{\hbar})$ - linear

イロト イヨト イヨト

 (M, ω) - closed symplectic, dim M = 2d. H_{\hbar} - family of Hilbert spaces of dim $H_{\hbar} := n_{\hbar} \sim (2\pi\hbar)^{-d}$, $\hbar = 1/k$, $k \to \infty$. $T_{\hbar} : C^{\infty}(M) \to \mathcal{L}(H_{\hbar})$ - linear

Main features:

• (positivity) $f \ge 0 \Rightarrow T_{\hbar}(f) \ge 0$, $T_{\hbar}(1) = 1$;

 (M, ω) - closed symplectic, dim M = 2d. H_{\hbar} - family of Hilbert spaces of dim $H_{\hbar} := n_{\hbar} \sim (2\pi\hbar)^{-d}$, $\hbar = 1/k$, $k \to \infty$. $T_{\hbar} : C^{\infty}(M) \to \mathcal{L}(H_{\hbar})$ - linear

Main features:

- (positivity) $f \ge 0 \Rightarrow T_{\hbar}(f) \ge 0$, $T_{\hbar}(1) = 1$;
- (quasi-multiplicativity) There exists a bi-differential operator $c: C^{\infty}(M) \times C^{\infty}(M) \rightarrow C^{\infty}(M)$ such that $T_{\hbar}(f)T_{\hbar}(g) = T_{\hbar}(fg + \hbar c(f,g)) + O(\hbar^2)$

イロト 不得 トイヨト イヨト 二日

 (M, ω) - closed symplectic, dim M = 2d. H_{\hbar} - family of Hilbert spaces of dim $H_{\hbar} := n_{\hbar} \sim (2\pi\hbar)^{-d}$, $\hbar = 1/k$, $k \to \infty$. $T_{\hbar} : C^{\infty}(M) \to \mathcal{L}(H_{\hbar})$ - linear

Main features:

- (positivity) $f \ge 0 \Rightarrow T_{\hbar}(f) \ge 0, \ T_{\hbar}(1) = 1;$
- (quasi-multiplicativity) There exists a bi-differential operator $c: C^{\infty}(M) \times C^{\infty}(M) \rightarrow C^{\infty}(M)$ such that $T_{\hbar}(f)T_{\hbar}(g) = T_{\hbar}(fg + \hbar c(f,g)) + O(\hbar^2)$
- (reversibility) $\mathcal{B}_{\hbar} := (n_{\hbar})^{-1} T^*_{\hbar} T_{\hbar} : C^{\infty}(M) \to C^{\infty}(M)$ satisfies $\mathcal{B}_{\hbar}(f) = f + \mathcal{O}(\hbar)$.

イロト 不得 トイヨト イヨト 三日

 (M, ω) - closed symplectic, dim M = 2d. H_{\hbar} - family of Hilbert spaces of dim $H_{\hbar} := n_{\hbar} \sim (2\pi\hbar)^{-d}$, $\hbar = 1/k$, $k \to \infty$. $T_{\hbar} : C^{\infty}(M) \to \mathcal{L}(H_{\hbar})$ - linear

Main features:

- (positivity) $f \ge 0 \Rightarrow T_{\hbar}(f) \ge 0, \ T_{\hbar}(1) = 1;$
- (quasi-multiplicativity) There exists a bi-differential operator $c: C^{\infty}(M) \times C^{\infty}(M) \rightarrow C^{\infty}(M)$ such that $T_{\hbar}(f)T_{\hbar}(g) = T_{\hbar}(fg + \hbar c(f,g)) + O(\hbar^2)$
- (reversibility) $\mathcal{B}_{\hbar} := (n_{\hbar})^{-1} T^*_{\hbar} T_{\hbar} : C^{\infty}(M) \to C^{\infty}(M)$ satisfies $\mathcal{B}_{\hbar}(f) = f + \mathcal{O}(\hbar)$.
- (bracket correspondence) $[T_{\hbar}(f), T_{\hbar}(g)] = i\hbar T_{\hbar}(\{f, g\}) + O(\hbar^2)$

イロト イポト イヨト イヨト 三日

Extra axioms: (not discussed):

ヘロア 人間ア 人間ア 人間ア

Extra axioms: (not discussed): uniform norm \leftrightarrow operator norm,

・ロト ・回ト ・ヨト ・ヨト

э

Extra axioms: (not discussed): uniform norm \leftrightarrow operator norm, mean value \leftrightarrow (normalized) trace.

▲御▶ ▲臣▶ ▲臣▶

▲御▶ ▲屋▶ ▲屋▶

Positivity: yields $T_{\hbar}(f) = \int_{M} f dW_{\hbar}$ where W_{\hbar} - Positive Operator Valued Measure (later)

イロト イボト イヨト イヨト

Positivity: yields $T_{\hbar}(f) = \int_{M} f dW_{\hbar}$ where W_{\hbar} -Positive Operator Valued Measure (later)

Quasi-multiplicativity: In known examples, exists a star-product s.t. $T_{\hbar}(f)T_{\hbar}(g) = T_{\hbar}(f * g)$.

Positivity: yields $T_{\hbar}(f) = \int_{M} f dW_{\hbar}$ where W_{\hbar} -Positive Operator Valued Measure (later)

Quasi-multiplicativity: In known examples, exists a star-product s.t. $T_{\hbar}(f)T_{\hbar}(g) = T_{\hbar}(f * g)$. Here T_{\hbar} extended to $C^{\infty}(M, \mathbb{C}) \rightarrow \mathcal{L}(H) \otimes \mathbb{C} = \text{End}(H)$.

Positivity: yields $T_{\hbar}(f) = \int_{M} f dW_{\hbar}$ where W_{\hbar} -Positive Operator Valued Measure (later)

Quasi-multiplicativity: In known examples, exists a star-product s.t. $T_{\hbar}(f)T_{\hbar}(g) = T_{\hbar}(f * g)$. Here T_{\hbar} extended to $C^{\infty}(M, \mathbb{C}) \rightarrow \mathcal{L}(H) \otimes \mathbb{C} = \text{End}(H)$. **Reversibility:** $\mathcal{B}_{\hbar} := (n_{\hbar})^{-1}T_{\hbar}^{*}T_{\hbar}$ - Berezin transform,

composition of dequantization and quantization.

イロト 不得 トイヨト イヨト 二日

There exists a bi-differential operator $c: C^{\infty}(M) \times C^{\infty}(M) \to C^{\infty}(M)$ such that

$$T_{\hbar}(f)T_{\hbar}(g) = T_{\hbar}(fg + \hbar c(f,g)) + \mathcal{O}(\hbar^2)$$

Leonid Polterovich, Tel Aviv University Geometry of quantum uncertainty

ヘロト 人間 とくほ とくほ とう

э

There exists a bi-differential operator $c: C^{\infty}(M) \times C^{\infty}(M) \to C^{\infty}(M)$ such that

$$T_{\hbar}(f)T_{\hbar}(g) = T_{\hbar}(fg + \hbar c(f,g)) + \mathcal{O}(\hbar^2)$$

Associativity $\Rightarrow c$ - Hochschild cocycle: $f_1 c(f_2, f_3) - c(f_1 f_2, f_3) + c(f_1, f_2 f_3) - c(f_1, f_2) f_3 = 0$ for all $f_1, f_2, f_3 \in C^{\infty}(M)$

・ 同 ト ・ ヨ ト ・ ヨ ト

There exists a bi-differential operator $c: C^{\infty}(M) \times C^{\infty}(M) \to C^{\infty}(M)$ such that

$$T_{\hbar}(f)T_{\hbar}(g) = T_{\hbar}(fg + \hbar c(f,g)) + \mathcal{O}(\hbar^2)$$

Associativity $\Rightarrow c$ - Hochschild cocycle: $f_1 c(f_2, f_3) - c(f_1 f_2, f_3) + c(f_1, f_2 f_3) - c(f_1, f_2) f_3 = 0$ for all $f_1, f_2, f_3 \in C^{\infty}(M)$ Put $c_-(f, g) := \frac{c(f,g) - c(g,f)}{2}$ and $c_+(f,g) := \frac{c(f,g) + c(g,f)}{2}$

イロト イヨト イヨト

There exists a bi-differential operator $c: C^{\infty}(M) \times C^{\infty}(M) \to C^{\infty}(M)$ such that

$$T_{\hbar}(f)T_{\hbar}(g) = T_{\hbar}(fg + \hbar c(f,g)) + \mathcal{O}(\hbar^2)$$

Associativity $\Rightarrow c$ - Hochschild cocycle: $f_1 c(f_2, f_3) - c(f_1 f_2, f_3) + c(f_1, f_2 f_3) - c(f_1, f_2) f_3 = 0$ for all $f_1, f_2, f_3 \in C^{\infty}(M)$ Put $c_-(f, g) := \frac{c(f,g) - c(g,f)}{2}$ and $c_+(f,g) := \frac{c(f,g) + c(g,f)}{2}$ Bracket correspondence $\Rightarrow c_-(f,g) = \frac{i}{2} \{f,g\}$

There exists a bi-differential operator $c: C^{\infty}(M) \times C^{\infty}(M) \to C^{\infty}(M)$ such that

$$T_{\hbar}(f)T_{\hbar}(g) = T_{\hbar}(fg + \hbar c(f,g)) + \mathcal{O}(\hbar^2)$$

Associativity $\Rightarrow c$ - Hochschild cocycle: $f_1 c(f_2, f_3) - c(f_1 f_2, f_3) + c(f_1, f_2 f_3) - c(f_1, f_2) f_3 = 0$ for all $f_1, f_2, f_3 \in C^{\infty}(M)$ Put $c_-(f, g) := \frac{c(f,g) - c(g,f)}{2}$ and $c_+(f,g) := \frac{c(f,g) + c(g,f)}{2}$ Bracket correspondence $\Rightarrow c_-(f,g) = \frac{i}{2} \{f,g\}$

c₊ - symmetric unsharpness cocycle

イロト イボト イヨト イヨト

There exists a bi-differential operator $c: C^{\infty}(M) \times C^{\infty}(M) \to C^{\infty}(M)$ such that

$$T_{\hbar}(f)T_{\hbar}(g) = T_{\hbar}(fg + \hbar c(f,g)) + \mathcal{O}(\hbar^2)$$

Associativity $\Rightarrow c$ - Hochschild cocycle: $f_1 c(f_2, f_3) - c(f_1 f_2, f_3) + c(f_1, f_2 f_3) - c(f_1, f_2) f_3 = 0$ for all $f_1, f_2, f_3 \in C^{\infty}(M)$ Put $c_-(f, g) := \frac{c(f,g)-c(g,f)}{2}$ and $c_+(f,g) := \frac{c(f,g)+c(g,f)}{2}$ Bracket correspondence $\Rightarrow c_-(f,g) = \frac{i}{2} \{f,g\}$

c₊ - symmetric unsharpness cocycle

Theorem

Bi-differential operator c_+ is of order (1, 1).

Leonid Polterovich, Tel Aviv University

Geometry of quantum uncertainty

Theorem

Bi-differential operator c_+ is of order (1, 1).

Leonid Polterovich, Tel Aviv University Geometry of quantum uncertainty

イロト イポト イヨト イヨト

э

Theorem

Bi-differential operator c_+ is of order (1, 1).

Corollary

There exists a bilinear symmetric form G on TM: $c_+(f,g) =: -\frac{1}{2}G(sgrad f, sgrad g)$ where sgrad f, sgrad g Hamiltonian vector fields of $f, g \in C^{\infty}(M, \mathbb{R})$

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

1. Kähler quantizaton Boutet de Monvel - Guillemin, 1981; Bordemann, Meinrenken and Schlichenmaier, 1994

э

1. Kähler quantizaton Boutet de Monvel - Guillemin, 1981; Bordemann, Meinrenken and Schlichenmaier, 1994 (M, ω, J) - closed Kähler manifold, quantizable: $[\omega]/(2\pi) \in H^2(M, \mathbb{Z})$

1. Kähler quantizaton Boutet de Monvel - Guillemin, 1981; Bordemann, Meinrenken and Schlichenmaier, 1994 (M, ω, J) - closed Kähler manifold, quantizable: $[\omega]/(2\pi) \in H^2(M, \mathbb{Z})$ *L*- a holomorphic Hermitian line bundle over *M*

Curvature of Chern connection $= i\omega$.

・ 同 ト ・ ヨ ト ・ ヨ ト

1. Kähler quantizaton Boutet de Monvel - Guillemin, 1981; Bordemann, Meinrenken and Schlichenmaier, 1994 (M, ω, J) - closed Kähler manifold, quantizable: $[\omega]/(2\pi) \in H^2(M, \mathbb{Z})$

L- a holomorphic Hermitian line bundle over *M* Curvature of Chern connection $= i\omega$.

$$H_{\hbar} := H^0(M, L^{\otimes k}) \subset V_{\hbar} := L_2(M, L^{\otimes k}).$$

・ 同 ト ・ ヨ ト ・ ヨ ト

1. Kähler quantizaton Boutet de Monvel - Guillemin, 1981; Bordemann, Meinrenken and Schlichenmaier, 1994 (M, ω, J) - closed Kähler manifold, quantizable: $[\omega]/(2\pi) \in H^2(M, \mathbb{Z})$

L- a holomorphic Hermitian line bundle over *M* Curvature of Chern connection $= i\omega$.

$$\begin{split} & H_{\hbar} := H^0(M, L^{\otimes k}) \subset V_{\hbar} := L_2(M, L^{\otimes k}). \\ & \Pi_{\hbar} : V_{\hbar} \to H_{\hbar} - \text{the orthogonal projection.} \end{split}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

1. Kähler quantizaton Boutet de Monvel - Guillemin, 1981; Bordemann, Meinrenken and Schlichenmaier, 1994 (M, ω, J) - closed Kähler manifold, quantizable: $[\omega]/(2\pi) \in H^2(M, \mathbb{Z})$

L- a holomorphic Hermitian line bundle over *M* Curvature of Chern connection $= i\omega$.

$$\begin{aligned} H_{\hbar} &:= H^{0}(M, L^{\otimes k}) \subset V_{\hbar} := L_{2}(M, L^{\otimes k}). \\ \Pi_{\hbar} &: V_{\hbar} \to H_{\hbar} - \text{the orthogonal projection.} \\ \text{The Toeplitz operator:} \ T_{\hbar}(f)(s) &:= \Pi_{\hbar}(fs), \ f \in C^{\infty}(M), \ s \in H_{\hbar}. \end{aligned}$$

伺 ト イヨ ト イヨト

1. Kähler quantizaton Boutet de Monvel - Guillemin, 1981; Bordemann, Meinrenken and Schlichenmaier, 1994 (M, ω, J) - closed Kähler manifold, quantizable: $[\omega]/(2\pi) \in H^2(M, \mathbb{Z})$

L- a holomorphic Hermitian line bundle over *M* Curvature of Chern connection $= i\omega$.

$$\begin{array}{l} H_{\hbar} := H^{0}(M, L^{\otimes k}) \subset V_{\hbar} := L_{2}(M, L^{\otimes k}).\\ \Pi_{\hbar} : V_{\hbar} \to H_{\hbar} - \text{the orthogonal projection.}\\ \hline \text{The Toeplitz operator: } T_{\hbar}(f)(s) := \Pi_{\hbar}(fs), \ f \in C^{\infty}(M), \ s \in H_{\hbar}. \end{array}$$

Unsharpness tensor: $G(\xi, \eta) = \omega(\xi, J\eta) (Xu)_{-}$

Leonid Polterovich, Tel Aviv University

Geometry of quantum uncertainty

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

 (M, ω, J) , $G_J(\xi, \eta) = \omega(\xi, J\eta)$ -Riemannian metric, $[\omega]$ -quantizable: $[\omega]/(2\pi) \in H^2(M, \mathbb{Z})$

・ 戸 ト ・ ヨ ト ・ ヨ ト

 (M,ω,J) , $G_J(\xi,\eta)=\omega(\xi,J\eta)\text{-Riemannian metric, }[\omega]\text{-quantizable: }[\omega]/(2\pi)\in H^2(M,\mathbb{Z})$

Modified construction: L - similar, H_k - spanned by eigenfunct. with "small" eigenvalues of Bochner Laplacian on L^k .

イロト イヨト イヨト

 (M,ω,J) , $G_J(\xi,\eta)=\omega(\xi,J\eta)\text{-Riemannian metric, }[\omega]\text{-quantizable: }[\omega]/(2\pi)\in H^2(M,\mathbb{Z})$

Modified construction: L - similar, H_k - spanned by eigenfunct. with "small" eigenvalues of Bochner Laplacian on L^k . **Unsharpness tensor:** $G = G_J$ (loos,Lu,Ma,Marinescu)

イロト イヨト イヨト

 (M,ω,J) , $G_J(\xi,\eta)=\omega(\xi,J\eta)\text{-Riemannian metric, }[\omega]\text{-quantizable: }[\omega]/(2\pi)\in H^2(M,\mathbb{Z})$

Modified construction: L - similar, H_k - spanned by eigenfunct. with "small" eigenvalues of Bochner Laplacian on L^k . **Unsharpness tensor:** $G = G_J$ (loos,Lu,Ma,Marinescu)

3. Diffusion (M, ω, J) - Kähler or almost-Kähler, T_{\hbar} quantization in Examples 1 or 2, Δ - (positive) Laplace-Beltrami.

 (M,ω,J) , $G_J(\xi,\eta)=\omega(\xi,J\eta)\text{-Riemannian metric, }[\omega]\text{-quantizable: }[\omega]/(2\pi)\in H^2(M,\mathbb{Z})$

Modified construction: L - similar, H_k - spanned by eigenfunct. with "small" eigenvalues of Bochner Laplacian on L^k . **Unsharpness tensor:** $G = G_J$ (loos,Lu,Ma,Marinescu)

3. Diffusion (M, ω, J) - Kähler or almost-Kähler, T_{\hbar^-} quantization in Examples 1 or 2, Δ - (positive) Laplace-Beltrami.

Smearing by heat flow: $T_{\hbar}^{(t)}(f) := T_{\hbar}(e^{-t\hbar\Delta}f), t > 0.$

 (M,ω,J) , $G_J(\xi,\eta)=\omega(\xi,J\eta)\text{-Riemannian metric, }[\omega]\text{-quantizable: }[\omega]/(2\pi)\in H^2(M,\mathbb{Z})$

Modified construction: *L* - similar, H_k - spanned by eigenfunct. with "small" eigenvalues of Bochner Laplacian on L^k . **Unsharpness tensor:** $G = G_J$ (loos,Lu,Ma,Marinescu)

3. Diffusion (M, ω, J) - Kähler or almost-Kähler, T_{\hbar^-} quantization in Examples 1 or 2, Δ - (positive) Laplace-Beltrami.

Smearing by heat flow: $T_{\hbar}^{(t)}(f) := T_{\hbar}(e^{-t\hbar\Delta}f), t > 0.$ Unsharpness tensor: $G^{(t)} := (1+4t) G_J$

 (M, ω) - closed symplectic manifold

・ロン ・白ン ・ヨン・ヨン

æ

・ロト ・四ト ・ヨト ・ヨト

Theorem

 Unsharpness tensor G is a Riemannian metric of the form G_J + ρ, where J is an ω-compatible almost complex structure, ρ is a non-negative symmetric bilinear form.

< 回 > < 回 > < 回 >

Theorem

 Unsharpness tensor G is a Riemannian metric of the form G_J + ρ, where J is an ω-compatible almost complex structure, ρ is a non-negative symmetric bilinear form.
 Vol(M, G) ≥ Vol(M, ω), with equality ⇔ G = G₁, ρ = 0.

・ 戸 ト ・ ヨ ト ・ ヨ ト

Theorem

 Unsharpness tensor G is a Riemannian metric of the form G_J + ρ, where J is an ω-compatible almost complex structure, ρ is a non-negative symmetric bilinear form.

(II) $\operatorname{Vol}(M, G) \geq \operatorname{Vol}(M, \omega)$, with equality $\Leftrightarrow G = G_J$, $\rho = 0$.

(III) Assume (M, ω) is quantizable. Then every Riemannian metric as in (1) arises from some Berezin-Toeplitz quantization.

・ロト ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・ ・

In (III), J is not assumed to be G-orthogonal

In (III), J is not assumed to be G-orthogonal

Proof of (III): almost Kähler quantization followed by diffusion.

In (III), J is not assumed to be G-orthogonal
Proof of (III): almost Kähler quantization followed by diffusion.
Proof of (I): unsharpness (noise) of quantum measurements.

H - complex Hilbert space (finite dimensional)

ヘロト ヘロト ヘヨト ヘヨト

э

- H complex Hilbert space (finite dimensional)
- $\mathcal{L}(H)$ Hermitian operators (quantum observables)

ヘロト ヘ団ト ヘヨト ヘヨト

э

POVMs

H - complex Hilbert space (finite dimensional) $\mathcal{L}(H)$ - Hermitian operators (quantum observables) $\mathcal{S}(H) \subset \mathcal{L}(H)$ - trace 1 positive operators (states)

イロト イヨト イヨト

-

POVMs

- H complex Hilbert space (finite dimensional)
- $\mathcal{L}(H)$ Hermitian operators (quantum observables)
- $\mathcal{S}(H) \subset \mathcal{L}(H)$ trace 1 positive operators (states)
- $\Omega\text{-}$ "good" topological space (closed manifold), $\mathcal C$ Borel $\sigma\text{-algebra}.$

- H complex Hilbert space (finite dimensional)
- $\mathcal{L}(H)$ Hermitian operators (quantum observables)
- $\mathcal{S}(H) \subset \mathcal{L}(H)$ trace 1 positive operators (states)
- Ω "good" topological space (closed manifold), C Borel σ -algebra.
- **Positive Operator Valued Measure (POVM)** W on (Ω, C)

$$W\colon \mathcal{C}
ightarrow \mathcal{L}(H)$$

- $W(X) \ge 0$ for all $X \in \mathcal{C}$,
- countably additive,
- $W(\Omega) = \mathbb{1}$.

- Borel probability measure α on Ω ,
- measurable $F : \Omega \to \mathcal{S}(H)$:

 $dW(s) = nF(s)d\alpha(s), \ n = \dim_{\mathbb{C}} H$

イロト イヨト イヨト

э

- Borel probability measure α on Ω ,
- measurable $F : \Omega \rightarrow \mathcal{S}(H)$:

$$dW(s) = nF(s)d\alpha(s), \ n = \dim_{\mathbb{C}} H$$

F(s)- coherent states

- Borel probability measure α on Ω ,
- measurable $F : \Omega \rightarrow \mathcal{S}(H)$:

$$dW(s) = nF(s)d\alpha(s), \ n = \dim_{\mathbb{C}} H$$

F(s)- coherent states

Integration: $\int : L_1(\Omega, \alpha) \to \mathcal{L}(H), f \mapsto \int f dW.$

イロト イボト イヨト イヨト

- Borel probability measure α on Ω ,
- measurable $F : \Omega \rightarrow \mathcal{S}(H)$:

$$dW(s) = nF(s)d\alpha(s), \ n = \dim_{\mathbb{C}} H$$

F(s)- coherent states

Integration: $\int : L_1(\Omega, \alpha) \to \mathcal{L}(H), f \mapsto \int f dW.$

Example 1. Berezin-Toeplitz quantization is given by sequence $\mathcal{L}(H_{\hbar})$ -valued POVMS on *M*:

$$T_{\hbar}(f) = \int f dW_{\hbar}$$

Sub-example: Kähler coherent states

 H_{\hbar} - holomorphic sections of L^k , $k = 1/\hbar$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

3

Sub-example: Kähler coherent states

 H_{\hbar} - holomorphic sections of L^k , $k = 1/\hbar$.

Hyperplane $E_z \subset H_{\hbar}$, $E_z := \{s \in H_{\hbar} : s(z) = 0\}$.

Sub-example: Kähler coherent states

 H_{\hbar} - holomorphic sections of L^k , $k = 1/\hbar$. Hyperplane $E_z \subset H_{\hbar}$, $E_z := \{s \in H_{\hbar} : s(z) = 0\}$. Kodaira embedding $M \to \mathbb{P}(H_{\hbar}^*)$, $z \mapsto E_z$

Sub-example: Kähler coherent states

 H_{\hbar} - holomorphic sections of L^k , $k = 1/\hbar$. Hyperplane $E_z \subset H_{\hbar}$, $E_z := \{s \in H_{\hbar} : s(z) = 0\}$. Kodaira embedding $M \to \mathbb{P}(H_{\hbar}^*)$, $z \mapsto E_z$

 $P_{z,\hbar}$ - orthogonal projector of H_{\hbar} to E_z^{\perp} coherent state projector

Sub-example: Kähler coherent states

 H_{\hbar} - holomorphic sections of L^k , $k = 1/\hbar$. Hyperplane $E_z \subset H_{\hbar}$, $E_z := \{s \in H_{\hbar} : s(z) = 0\}$. Kodaira embedding $M \to \mathbb{P}(H_{\hbar}^*)$, $z \mapsto E_z$

 $P_{z,\hbar}$ - orthogonal projector of H_{\hbar} to E_z^{\perp} coherent state projector

There exists Rawnsley function $R_{\hbar} \in C^{\infty}(M)$:

$$T_{\hbar}(f) = \int_{M} f(x) R_{\hbar}(x) P_{x,\hbar} d\operatorname{Vol}(x)$$

W- $\mathcal{L}(H)$ -valued POVM on Ω .

ヘロア 人間ア 人間ア 人間ア

æ

W- $\mathcal{L}(H)$ -valued POVM on Ω .

Interpretation: W - pointer (measuring device). In state ρ , probability of finding the value of measurement in $X \subset \Omega$ is $\mu_{\rho}(X) := \operatorname{tr} W(X)\rho$

ヘロト 人間 とくほ とくほ とう

W- $\mathcal{L}(H)$ -valued POVM on Ω .

Interpretation: W - pointer (measuring device). In state ρ , probability of finding the value of measurement in $X \subset \Omega$ is $\mu_{\rho}(X) := \operatorname{tr} W(X)\rho$

Example: observable $F = \sum \lambda_j P_j$ - spec. decomposition. $P = (P_1, \dots, P_k)$ - projector valued measure on $\{1, \dots, k\}$. Observable takes values λ_j with probability tr $(P_j \rho)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

W- $\mathcal{L}(H)$ -valued POVM on Ω .

Interpretation: W - pointer (measuring device). In state ρ , probability of finding the value of measurement in $X \subset \Omega$ is $\mu_{\rho}(X) := \operatorname{tr} W(X)\rho$

Example: observable $F = \sum \lambda_j P_{j}$ - spec. decomposition. $P = (P_1, \dots, P_k)$ - projector valued measure on $\{1, \dots, k\}$. Observable takes values λ_j with probability tr $(P_j \rho)$.

Unbiased approximate measurement: $f : \Omega \to \mathbb{R}$ defines a random variable on Ω with resp. to μ_{ρ}

W- $\mathcal{L}(H)$ -valued POVM on Ω .

Interpretation: W - pointer (measuring device). In state ρ , probability of finding the value of measurement in $X \subset \Omega$ is $\mu_{\rho}(X) := \operatorname{tr} W(X)\rho$

Example: observable $F = \sum \lambda_j P_{j}$ - spec. decomposition. $P = (P_1, \dots, P_k)$ - projector valued measure on $\{1, \dots, k\}$. Observable takes values λ_j with probability tr $(P_j \rho)$.

Unbiased approximate measurement: $f : \Omega \to \mathbb{R}$ defines a random variable on Ω with resp. to μ_{ρ}

Unbiased: $Exp(W, f, \rho) = Exp(F, \rho)$ for observable $F = \int f dW$

イロト イポト イヨト イヨト 三日

W- $\mathcal{L}(H)$ -valued POVM on Ω .

Interpretation: W - pointer (measuring device). In state ρ , probability of finding the value of measurement in $X \subset \Omega$ is $\mu_{\rho}(X) := \operatorname{tr} W(X)\rho$

Example: observable $F = \sum \lambda_j P_{j}$ - spec. decomposition. $P = (P_1, \dots, P_k)$ - projector valued measure on $\{1, \dots, k\}$. Observable takes values λ_j with probability tr $(P_j \rho)$.

Unbiased approximate measurement: $f : \Omega \to \mathbb{R}$ defines a random variable on Ω with resp. to μ_{ρ}

Unbiased: $Exp(W, f, \rho) = Exp(F, \rho)$ for observable $F = \int f dW$

Approximate: Probability distributions differ!

$$Var(W, f, \rho) = Var(F, \rho) + tr(\Delta_W(f))\rho$$

イロト 不得 トイヨト イヨト 三日

 $\Delta_W(f) \ge 0$ - Ozawa noise operator, measures unsharpness

W- $\mathcal{L}(H)$ -valued POVM on Ω .

Interpretation: W - pointer (measuring device). In state ρ , probability of finding the value of measurement in $X \subset \Omega$ is $\mu_{\rho}(X) := \operatorname{tr} W(X)\rho$

Example: observable $F = \sum \lambda_j P_j$ - spec. decomposition. $P = (P_1, \dots, P_k)$ - projector valued measure on $\{1, \dots, k\}$. Observable takes values λ_j with probability tr $(P_j \rho)$.

Unbiased approximate measurement: $f : \Omega \to \mathbb{R}$ defines a random variable on Ω with resp. to μ_{ρ}

Unbiased: $Exp(W, f, \rho) = Exp(F, \rho)$ for observable $F = \int f dW$

Approximate: Probability distributions differ!

$$Var(W, f, \rho) = Var(F, \rho) + tr(\Delta_W(f))\rho$$

 $\Delta_W(f) \ge 0$ - Ozawa noise operator, measures unsharpness Vanishes for projector valued POVMs

Leonid Polterovich, Tel Aviv University Geometry of quantum uncertainty

Heisenberg uncertainty:

 $Var(F, \rho)^{1/2} \cdot Var(G, \rho)^{1/2} \geq \frac{1}{2} \cdot |Exp([F, G], \rho)|$

イロト イポト イヨト イヨト 三日

Heisenberg uncertainty:

 $Var(F,\rho)^{1/2} \cdot Var(G,\rho)^{1/2} \geq \frac{1}{2} \cdot |Exp([F,G],\rho)|$

For joint approximate measurements, $F = \int f dW$, $g = \int g dW$

 $Var(W, f, \rho)^{1/2} \cdot Var(W, g, \rho)^{1/2} \ge 1 \cdot |Exp([F, G], \rho)|$ (Ishikawa, 1991)

▲□▶▲□▶▲□▶▲□▶ □ のQで

Heisenberg uncertainty:

 $Var(F,\rho)^{1/2} \cdot Var(G,\rho)^{1/2} \geq \frac{1}{2} \cdot |Exp([F,G],\rho)|$

For joint approximate measurements, $F = \int f dW$, $g = \int g dW$ $Var(W, f, \rho)^{1/2} \cdot Var(W, g, \rho)^{1/2} \ge 1 \cdot |Exp([F, G], \rho)|$

(Ishikawa, 1991)

Coefficient jumps! Based on noise inequality:

 $(\operatorname{tr}(\Delta_W(f)\rho)^{1/2}(\operatorname{tr}(\Delta_W(g)\rho)^{1/2} \ge \frac{1}{2}|\operatorname{Exp}([F,G],\rho)|$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シののや

 $T_{\hbar}(f) = \int_{\mathcal{M}} f dW_{\hbar}$ - Berezin-Toeplitz quantization.

Leonid Polterovich, Tel Aviv University Geometry of quantum uncertainty

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト つへで

Quantization as measurement

 $\mathcal{T}_{\hbar}(f) = \int_{\mathcal{M}} \mathit{fdW}_{\hbar}$ - Berezin-Toeplitz quantization.

 $\Delta_\hbar\text{-noise}$ operator of W_\hbar

$$T_{\hbar}(f) = \int_{\mathcal{M}} f dW_{\hbar}$$
 - Berezin-Toeplitz quantization.
 Δ_{\hbar} -noise operator of W_{\hbar}
 $\Delta_{\hbar}(f) = T_{\hbar}(f^2) - T_{\hbar}(f)^2 = \frac{\hbar}{2}T_{\hbar} \left(|\text{sgrad} f|_G^2\right) + \mathcal{O}(\hbar^2)$
where G is the unsharpness metric.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$$T_{\hbar}(f) = \int_{M} f dW_{\hbar}$$
 - Berezin-Toeplitz quantization.
 Δ_{\hbar} -noise operator of W_{\hbar}
 $\Delta_{\hbar}(f) = T_{\hbar}(f^{2}) - T_{\hbar}(f)^{2} = \frac{\hbar}{2}T_{\hbar}\left(|\text{sgrad}f|_{G}^{2}\right) + \mathcal{O}(\hbar^{2})$
where G is the unsharpness metric.

$$\mathit{Exp}(\Delta_{\hbar}(f), \mathit{F}_{x,\hbar}) = rac{\hbar}{2} |\mathsf{sgrad} f(x)|_{\mathit{G}}^2 + \mathcal{O}(\hbar^2)$$

. .

(日) (四) (E) (E) (E) (E)

$$T_{\hbar}(f) = \int_{M} f dW_{\hbar}$$
 - Berezin-Toeplitz quantization.
 Δ_{\hbar} -noise operator of W_{\hbar}
 $\Delta_{\hbar}(f) = T_{\hbar}(f^{2}) - T_{\hbar}(f)^{2} = \frac{\hbar}{2}T_{\hbar}\left(|\text{sgrad}f|_{G}^{2}\right) + \mathcal{O}(\hbar^{2})$
where G is the unsharpness metric.

$$\mathit{Exp}(\Delta_{\hbar}(f), \mathit{F}_{x,\hbar}) = rac{\hbar}{2} |\mathsf{sgrad} f(x)|_{\mathit{G}}^2 + \mathcal{O}(\hbar^2)$$

. .

▲御▶ ▲注▶ ▲注▶

э

Hence unsharpness

$$T_{\hbar}(f) = \int_{M} f dW_{\hbar}$$
 - Berezin-Toeplitz quantization.
 Δ_{\hbar} -noise operator of W_{\hbar}
 $\Delta_{\hbar}(f) = T_{\hbar}(f^{2}) - T_{\hbar}(f)^{2} = \frac{\hbar}{2}T_{\hbar}\left(|\text{sgrad}f|_{G}^{2}\right) + \mathcal{O}(\hbar^{2})$
where G is the unsharpness metric.

$$\mathit{Exp}(\Delta_{\hbar}(f), \mathit{F}_{x,\hbar}) = rac{\hbar}{2} |\mathsf{sgrad} f(x)|_{\mathit{G}}^2 + \mathcal{O}(\hbar^2)$$

Hence unsharpness

Decomposition: $G = G_J + \rho$, $\rho \ge 0$, follows from noise inequality.

イロト イヨト イヨト イヨト 三日

$$T_{\hbar}(f) = \int_{M} f dW_{\hbar}$$
 - Berezin-Toeplitz quantization.
 Δ_{\hbar} -noise operator of W_{\hbar}
 $\Delta_{\hbar}(f) = T_{\hbar}(f^{2}) - T_{\hbar}(f)^{2} = \frac{\hbar}{2}T_{\hbar}\left(|\text{sgrad}f|_{G}^{2}\right) + \mathcal{O}(\hbar^{2})^{2}$
where G is the unsharpness metric.

$$\mathit{Exp}(\Delta_{\hbar}(f), \mathit{F}_{x,\hbar}) = rac{\hbar}{2} |\mathsf{sgrad} f(x)|_{\mathcal{G}}^2 + \mathcal{O}(\hbar^2)$$

Hence unsharpness

Decomposition: $G = G_J + \rho$, $\rho \ge 0$, follows from noise inequality.

The least unsharpness principle: $Vol(M, G) \ge Vol(M, \omega)$, minimizers \leftrightarrow compatible metrics (cf. Gerhenstaber, 2007)

ヘロト 人間 とくほ とくほ とう

3

Locally (in charts) star-products equivalent, globally classified by $H^2(M, \mathbb{R})[[\hbar]]$ (De Wilde - Lecompte,1983; Fedosov; Deligne; Nest-Tsygan; Gutt-Rawnsley)

イロト イヨト イヨト

Locally (in charts) star-products equivalent, globally classified by $H^2(M, \mathbb{R})[[\hbar]]$ (De Wilde - Lecompte,1983; Fedosov; Deligne; Nest-Tsygan; Gutt-Rawnsley)

Berezin-Toeplitz quantizations: Largely open.

Locally (in charts) star-products equivalent, globally classified by $H^2(M, \mathbb{R})[[\hbar]]$ (De Wilde - Lecompte,1983; Fedosov; Deligne; Nest-Tsygan; Gutt-Rawnsley)

Berezin-Toeplitz quantizations: Largely open. Fix Hilbert spaces H_k , $k \to \infty$, $\hbar = 1/k$

Locally (in charts) star-products equivalent, globally classified by $H^2(M, \mathbb{R})[[\hbar]]$ (De Wilde - Lecompte,1983; Fedosov; Deligne; Nest-Tsygan; Gutt-Rawnsley)

Berezin-Toeplitz quantizations: Largely open. Fix Hilbert spaces H_k , $k \to \infty$, $\hbar = 1/k$

Quantizations S_{\hbar} , T_{\hbar} : $C^{\infty}(M) \rightarrow \mathcal{L}(H_{\hbar})$ are *m*-equivalent $(m \in \mathbb{N})$ if there exists unitaries $U_{\hbar} : H_{\hbar} \rightarrow H_{\hbar}$ such that

$$S_{\hbar}(f) = U_{\hbar}T_{\hbar}(f)U_{\hbar}^* + \mathcal{O}(\hbar^m)$$

Locally (in charts) star-products equivalent, globally classified by $H^2(M, \mathbb{R})[[\hbar]]$ (De Wilde - Lecompte,1983; Fedosov; Deligne; Nest-Tsygan; Gutt-Rawnsley)

Berezin-Toeplitz quantizations: Largely open. Fix Hilbert spaces H_k , $k \to \infty$, $\hbar = 1/k$

Quantizations S_{\hbar} , T_{\hbar} : $C^{\infty}(M) \rightarrow \mathcal{L}(H_{\hbar})$ are *m*-equivalent $(m \in \mathbb{N})$ if there exists unitaries $U_{\hbar} : H_{\hbar} \rightarrow H_{\hbar}$ such that

$$S_{\hbar}(f) = U_{\hbar}T_{\hbar}(f)U_{\hbar}^* + \mathcal{O}(\hbar^m)$$

Observation: Unsharpness metric is an invariant of 2-equivalence.

Assume H_k is the space of irrep of SU(2) of dimension k + 1.

・ロト ・ 四ト ・ ヨト ・ ヨト

э

Assume H_k is the space of irrep of SU(2) of dimension k + 1. **Example:** Spherical metric G of total area 2π . Standard Kähler quantization plus diffusion has unsharpness metric tG, $t \ge 1$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Assume H_k is the space of irrep of SU(2) of dimension k + 1.

Example: Spherical metric G of total area 2π . Standard Kähler quantization plus diffusion has unsharpness metric tG, $t \ge 1$.

Theorem

Any two SU(2)-equivariant quantizations with the same unsharpness metric coincide up to $O(\hbar^2)$.

Assume H_k is the space of irrep of SU(2) of dimension k + 1.

Example: Spherical metric G of total area 2π . Standard Kähler quantization plus diffusion has unsharpness metric tG, $t \ge 1$.

Theorem

Any two SU(2)-equivariant quantizations with the same unsharpness metric coincide up to $O(\hbar^2)$.

Tool: Representation theory.

Assume H_k is the space of irrep of SU(2) of dimension k + 1.

Example: Spherical metric G of total area 2π . Standard Kähler quantization plus diffusion has unsharpness metric tG, $t \ge 1$.

Theorem

Any two SU(2)-equivariant quantizations with the same unsharpness metric coincide up to $\mathcal{O}(\hbar^2)$.

Tool: Representation theory.

Open problem: What happens in general (non-equivariant) case? Are there invariants of 2-equivalence beyond unsharpness metric?

イロト イヨト イヨト イヨト

Assume H_k is the space of irrep of SU(2) of dimension k + 1.

Example: Spherical metric G of total area 2π . Standard Kähler quantization plus diffusion has unsharpness metric tG, $t \ge 1$.

Theorem

Any two SU(2)-equivariant quantizations with the same unsharpness metric coincide up to $\mathcal{O}(\hbar^2)$.

Tool: Representation theory.

Open problem: What happens in general (non-equivariant) case? Are there invariants of 2-equivalence beyond unsharpness metric?

Theorem (IN PROGRESS)

All known quantizations of S^2 with dim $H_k = k$ are 1-equivalent.

Assume H_k is the space of irrep of SU(2) of dimension k + 1.

Example: Spherical metric G of total area 2π . Standard Kähler quantization plus diffusion has unsharpness metric tG, $t \ge 1$.

Theorem

Any two SU(2)-equivariant quantizations with the same unsharpness metric coincide up to $\mathcal{O}(\hbar^2)$.

Tool: Representation theory.

Open problem: What happens in general (non-equivariant) case? Are there invariants of 2-equivalence beyond unsharpness metric?

Theorem (IN PROGRESS)

All known quantizations of S^2 with dim $H_k = k$ are 1-equivalent.

Tool: Developing **approximate representations** for Lie algebras. (for groups - Grove-Karcher-Ruh; Kazhdan; Lubotzky et al.)

Leonid Polterovich, Tel Aviv University

Geometry of quantum uncertainty

Reversibility revisited

(reversibility) $\mathcal{B}_{\hbar} := (n_{\hbar})^{-1} T_{\hbar}^* T_{\hbar} : C^{\infty}(M) \to C^{\infty}(M)$ satisfies $\mathcal{B}_{\hbar}(f) = f + \mathcal{O}(\hbar).$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● ● ● ● ●

Reversibility revisited

(reversibility) $\mathcal{B}_{\hbar} := (n_{\hbar})^{-1} T_{\hbar}^* T_{\hbar} : C^{\infty}(M) \to C^{\infty}(M)$ satisfies $\mathcal{B}_{\hbar}(f) = f + \mathcal{O}(\hbar)$. \mathcal{B}_{\hbar} - Berezin transform, composition of dequantization and quantization.

イロト イポト イヨト イヨト 三日

(reversibility) $\mathcal{B}_{\hbar} := (n_{\hbar})^{-1} T_{\hbar}^* T_{\hbar} : C^{\infty}(M) \to C^{\infty}(M)$ satisfies $\mathcal{B}_{\hbar}(f) = f + \mathcal{O}(\hbar)$. \mathcal{B}_{\hbar} - Berezin transform, composition of dequantization and quantization.

Enhanced axiom: $\mathcal{B}_{\hbar}(f) = f + \hbar Df + \mathcal{O}(\hbar^2)$, *D* - differential operator.

イロト イポト イヨト イヨト 三日

(reversibility) $\mathcal{B}_{\hbar} := (n_{\hbar})^{-1} T_{\hbar}^* T_{\hbar} : C^{\infty}(M) \to C^{\infty}(M)$ satisfies $\mathcal{B}_{\hbar}(f) = f + \mathcal{O}(\hbar)$. \mathcal{B}_{\hbar} - Berezin transform, composition of dequantization and quantization.

Enhanced axiom: $\mathcal{B}_{\hbar}(f) = f + \hbar Df + \mathcal{O}(\hbar^2)$, *D* - differential operator.

Theorem

D = -2a, where a is a symmetric operator with $c_+(f,g) = a(fg) - f a(g) - g a(f)$.

(reversibility) $\mathcal{B}_{\hbar} := (n_{\hbar})^{-1} T_{\hbar}^* T_{\hbar} : C^{\infty}(M) \to C^{\infty}(M)$ satisfies $\mathcal{B}_{\hbar}(f) = f + \mathcal{O}(\hbar)$. \mathcal{B}_{\hbar} - Berezin transform, composition of dequantization and quantization.

Enhanced axiom: $\mathcal{B}_{\hbar}(f) = f + \hbar Df + \mathcal{O}(\hbar^2)$, *D* - differential operator.

Theorem

D = -2a, where a is a symmetric operator with $c_+(f,g) = a(fg) - f a(g) - g a(f)$.

Example: For almost complex quantization, $D = -\Delta/2$, where Δ - Laplace-Beltrami.

Quantization+Dequantization=Markov Chain on M

Quantization+Dequantization=Markov Chain on M

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

э

Quantization+Dequantization=Markov Chain on M

Dirac $\delta_z \rightarrow$ Coherent state proj. $P_{z,\hbar} \rightarrow$ "Gaussian" centered at *z* concentrated in ball of radius $\sim \sqrt{\hbar}$.

Spectrum: $1 \ge \gamma_1 \ge \gamma_2 \ge \cdots \ge \gamma_k \ge 0$ (infinite multiplicity)

Spectrum: $1 \ge \gamma_1 \ge \gamma_2 \ge \cdots \ge \gamma_k \ge 0$ (infinite multiplicity)

Theorem (loos-Kaminker-P.-Shmoish, 2018)

For Berezin-Toeplitz quantization of Kähler manifolds

$$1-\gamma_1=rac{\hbar}{2}\lambda_1+O(\hbar^2)$$

where λ_1 - first eigenvalue of Laplace-Beltrami operator.

Spectrum: $1 \ge \gamma_1 \ge \gamma_2 \ge \cdots \ge \gamma_k \ge 0$ (infinite multiplicity)

Theorem (loos-Kaminker-P.-Shmoish, 2018)

For Berezin-Toeplitz quantization of Kähler manifolds

$$1-\gamma_1=rac{\hbar}{2}\lambda_1+O(\hbar^2)$$

where λ_1 - first eigenvalue of Laplace-Beltrami operator.

Upper bound – Karabegov-Schlichenmaier, 2001.

Spectrum: $1 \ge \gamma_1 \ge \gamma_2 \ge \cdots \ge \gamma_k \ge 0$ (infinite multiplicity)

Theorem (loos-Kaminker-P.-Shmoish, 2018)

For Berezin-Toeplitz quantization of Kähler manifolds

$$1-\gamma_1=rac{\hbar}{2}\lambda_1+O(\hbar^2)$$

where λ_1 - first eigenvalue of Laplace-Beltrami operator.

Upper bound – Karabegov-Schlichenmaier, 2001.

Lower bound: cf. semiclassical random walk on the phase space (point x jumps uniformly in the ball B(x, t), $t \sim \sqrt{\hbar}$ small parameter). Spectral properties - Lebeau-Michel.

Spectrum: $1 \ge \gamma_1 \ge \gamma_2 \ge \cdots \ge \gamma_k \ge 0$ (infinite multiplicity)

Theorem (loos-Kaminker-P.-Shmoish, 2018)

For Berezin-Toeplitz quantization of Kähler manifolds

$$1-\gamma_1=rac{\hbar}{2}\lambda_1+O(\hbar^2)$$

where λ_1 - first eigenvalue of Laplace-Beltrami operator.

Upper bound – Karabegov-Schlichenmaier, 2001.

Lower bound: cf. semiclassical random walk on the phase space (point x jumps uniformly in the ball B(x, t), $t \sim \sqrt{\hbar}$ small parameter). Spectral properties - Lebeau-Michel.

Related to Donaldson's numerical Kähler geometry.

Spectrum: $1 \ge \gamma_1 \ge \gamma_2 \ge \cdots \ge \gamma_k \ge 0$ (infinite multiplicity)

Theorem (loos-Kaminker-P.-Shmoish, 2018)

For Berezin-Toeplitz quantization of Kähler manifolds

$$1-\gamma_1=rac{\hbar}{2}\lambda_1+O(\hbar^2)$$

where λ_1 - first eigenvalue of Laplace-Beltrami operator.

Upper bound – Karabegov-Schlichenmaier, 2001.

Lower bound: cf. semiclassical random walk on the phase space (point x jumps uniformly in the ball B(x, t), $t \sim \sqrt{\hbar}$ small parameter). Spectral properties - Lebeau-Michel.

Related to Donaldson's numerical Kähler geometry.

Related to noise of quantum measurements

THANK YOU!

Leonid Polterovich, Tel Aviv University Geometry of quantum uncertainty

<ロト < 同ト < 巨ト < 巨ト