Geometry of quantum uncertainty

Leonid Polterovich, Tel Aviv

Zoominar, April, 2020
with Louis loos and David Kazhdan

What is this lecture about?

Quantum classical correspondence: Quantum mechanics contains classical in the limit $\hbar \rightarrow 0$.

What is this lecture about?

Quantum classical correspondence: Quantum mechanics contains classical in the limit $\hbar \rightarrow 0$.

Not precise! (Groenewold- Van Hove)

What is this lecture about?

Quantum classical correspondence: Quantum mechanics contains classical in the limit $\hbar \rightarrow 0$.

Not precise! (Groenewold- Van Hove)

- quantum footprints of symplectic geometry/Hamiltonian dynamics in phase space.

What is this lecture about?

Quantum classical correspondence: Quantum mechanics contains classical in the limit $\hbar \rightarrow 0$.

Not precise! (Groenewold- Van Hove)

- quantum footprints of symplectic geometry/Hamiltonian dynamics in phase space.
- quantum errors governed by Riemannian geometry (cf. Klauder)

What is this lecture about?

Quantum classical correspondence: Quantum mechanics contains classical in the limit $\hbar \rightarrow 0$.

Not precise! (Groenewold- Van Hove)

- quantum footprints of symplectic geometry/Hamiltonian dynamics in phase space.
- quantum errors governed by Riemannian geometry (cf. Klauder)

Thesis: Optimal quantizations correspond to compatible almost complex structures on (M, ω).

Deformation quantization

Star product: Associative (non-commutative) deformation of $\left(C^{\infty}(M), f \cdot g\right)$
$f * g=f g+\hbar c_{1}(f, g)+\hbar^{2} c_{2}(f, g)+\ldots$,
\hbar-formal parameter, $c_{k}(f, g)$-bi-differential operators vanishing on constants

Deformation quantization

Star product: Associative (non-commutative) deformation of $\left(C^{\infty}(M), f \cdot g\right)$
$f * g=f g+\hbar c_{1}(f, g)+\hbar^{2} c_{2}(f, g)+\ldots$,
\hbar-formal parameter, $c_{k}(f, g)$-bi-differential operators vanishing on constants

Bracket correspondence: $f * g-g * f=i \hbar\{f, g\}+\mathcal{O}\left(\hbar^{2}\right)$

Deformation quantization

Star product: Associative (non-commutative) deformation of $\left(C^{\infty}(M), f \cdot g\right)$
$f * g=f g+\hbar c_{1}(f, g)+\hbar^{2} c_{2}(f, g)+\ldots$,
\hbar-formal parameter, $c_{k}(f, g)$-bi-differential operators vanishing on constants
Bracket correspondence: $f * g-g * f=i \hbar\{f, g\}+\mathcal{O}\left(\hbar^{2}\right)$
F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, D. Sternheimer, 1977

Geometric quantization and friends

Math. model of fin. volume quantum mechanics H - finite dimensional Hilbert space over \mathbb{C}

Geometric quantization and friends

Math. model of fin. volume quantum mechanics
H - finite dimensional Hilbert space over \mathbb{C}
$\mathcal{L}(H)$ - Hermitian operators on H

Geometric quantization and friends

Math. model of fin. volume quantum mechanics H - finite dimensional Hilbert space over \mathbb{C}
$\mathcal{L}(H)$ - Hermitian operators on H
\mathcal{S} - density operators $\rho \in \mathcal{L}(H), \rho \geq 0, \operatorname{Trace}(\rho)=1$.

Geometric quantization and friends

Math. model of fin. volume quantum mechanics H - finite dimensional Hilbert space over \mathbb{C}
$\mathcal{L}(H)$ - Hermitian operators on H
\mathcal{S} - density operators $\rho \in \mathcal{L}(H), \rho \geq 0, \operatorname{Trace}(\rho)=1$.
\hbar-Planck constant.

Geometric quantization and friends

Math. model of fin. volume quantum mechanics H - finite dimensional Hilbert space over \mathbb{C}
$\mathcal{L}(H)$ - Hermitian operators on H
\mathcal{S} - density operators $\rho \in \mathcal{L}(H), \rho \geq 0, \operatorname{Trace}(\rho)=1$.
\hbar-Planck constant.

Table: Quantum-Classical Correspondence

	CLASSICAL	QUANTUM
	Symplectic $\operatorname{mfd}(M, \omega)$	\mathbb{C}-Hilbert space H
OBSERVABLES	$f \in C^{\infty}(M)$	$A \in \mathcal{L}(H)$
STATES	Probability measures on M	Density ops $\rho \in \mathcal{S}$
BRACKET	Poisson bracket $\{f, g\}$	Commutator $\frac{i}{\hbar}[A, B]$

Berezin-Toeplitz quantization

(M, ω) - closed symplectic, $\operatorname{dim} M=2 d$.

Berezin-Toeplitz quantization

(M, ω) - closed symplectic, $\operatorname{dim} M=2 d$.
$H_{\hbar^{-}}$family of Hilbert spaces of $\operatorname{dim} H_{\hbar}:=n_{\hbar} \sim(2 \pi \hbar)^{-d}, \hbar=1 / k, k \rightarrow \infty$.

Berezin-Toeplitz quantization

(M, ω) - closed symplectic, $\operatorname{dim} M=2 d$.
$H_{\hbar^{-}}$family of Hilbert spaces of $\operatorname{dim} H_{\hbar}:=n_{\hbar} \sim(2 \pi \hbar)^{-d}, \hbar=1 / k, k \rightarrow \infty$.
$T_{\hbar}: C^{\infty}(M) \rightarrow \mathcal{L}\left(H_{\hbar}\right)$ - linear

Berezin-Toeplitz quantization

(M, ω) - closed symplectic, $\operatorname{dim} M=2 d$.
$H_{\hbar^{-}}$family of Hilbert spaces of $\operatorname{dim} H_{\hbar}:=n_{\hbar} \sim(2 \pi \hbar)^{-d}, \hbar=1 / k, k \rightarrow \infty$.
$T_{\hbar}: C^{\infty}(M) \rightarrow \mathcal{L}\left(H_{\hbar}\right)$ - linear
Main features:

- (positivity) $f \geq 0 \Rightarrow T_{\hbar}(f) \geq 0, T_{\hbar}(1)=\mathbb{1} ;$

Berezin-Toeplitz quantization

(M, ω) - closed symplectic, $\operatorname{dim} M=2 d$.
$H_{\hbar^{-}}$family of Hilbert spaces of $\operatorname{dim} H_{\hbar}:=n_{\hbar} \sim(2 \pi \hbar)^{-d}, \hbar=1 / k, k \rightarrow \infty$.
$T_{\hbar}: C^{\infty}(M) \rightarrow \mathcal{L}\left(H_{\hbar}\right)$ - linear

Main features:

- (positivity) $f \geq 0 \Rightarrow T_{\hbar}(f) \geq 0, T_{\hbar}(1)=\mathbb{1}$;
- (quasi-multiplicativity) There exists a bi-differential operator $c: C^{\infty}(M) \times C^{\infty}(M) \rightarrow C^{\infty}(M)$ such that $T_{\hbar}(f) T_{\hbar}(g)=T_{\hbar}(f g+\hbar c(f, g))+\mathcal{O}\left(\hbar^{2}\right)$

Berezin-Toeplitz quantization

(M, ω) - closed symplectic, $\operatorname{dim} M=2 d$.
$H_{\hbar^{-}}$family of Hilbert spaces of $\operatorname{dim} H_{\hbar}:=n_{\hbar} \sim(2 \pi \hbar)^{-d}, \hbar=1 / k, k \rightarrow \infty$.
$T_{\hbar}: C^{\infty}(M) \rightarrow \mathcal{L}\left(H_{\hbar}\right)$ - linear

Main features:

- (positivity) $f \geq 0 \Rightarrow T_{\hbar}(f) \geq 0, T_{\hbar}(1)=\mathbb{1}$;
- (quasi-multiplicativity) There exists a bi-differential operator $c: C^{\infty}(M) \times C^{\infty}(M) \rightarrow C^{\infty}(M)$ such that $T_{\hbar}(f) T_{\hbar}(g)=T_{\hbar}(f g+\hbar c(f, g))+\mathcal{O}\left(\hbar^{2}\right)$
- (reversibility) $\mathcal{B}_{\hbar}:=\left(n_{\hbar}\right)^{-1} T_{\hbar}^{*} T_{\hbar}: C^{\infty}(M) \rightarrow C^{\infty}(M)$ satisfies $\mathcal{B}_{\hbar}(f)=f+\mathcal{O}(\hbar)$.

Berezin-Toeplitz quantization

(M, ω) - closed symplectic, $\operatorname{dim} M=2 d$.
$H_{\hbar^{-}}$family of Hilbert spaces of $\operatorname{dim} H_{\hbar}:=n_{\hbar} \sim(2 \pi \hbar)^{-d}, \hbar=1 / k, k \rightarrow \infty$.
$T_{\hbar}: C^{\infty}(M) \rightarrow \mathcal{L}\left(H_{\hbar}\right)$ - linear

Main features:

- (positivity) $f \geq 0 \Rightarrow T_{\hbar}(f) \geq 0, T_{\hbar}(1)=\mathbb{1}$;
- (quasi-multiplicativity) There exists a bi-differential operator $c: C^{\infty}(M) \times C^{\infty}(M) \rightarrow C^{\infty}(M)$ such that $T_{\hbar}(f) T_{\hbar}(g)=T_{\hbar}(f g+\hbar c(f, g))+\mathcal{O}\left(\hbar^{2}\right)$
- (reversibility) $\mathcal{B}_{\hbar}:=\left(n_{\hbar}\right)^{-1} T_{\hbar}^{*} T_{\hbar}: C^{\infty}(M) \rightarrow C^{\infty}(M)$ satisfies $\mathcal{B}_{\hbar}(f)=f+\mathcal{O}(\hbar)$.
- (bracket correspondence)
$\left[T_{\hbar}(f), T_{\hbar}(g)\right]=i \hbar T_{\hbar}(\{f, g\})+\mathcal{O}\left(\hbar^{2}\right)$

Extra axioms: (not discussed):

Extra axioms: (not discussed):

uniform norm \leftrightarrow operator norm,

Remarks

Extra axioms: (not discussed):
uniform norm \leftrightarrow operator norm,
mean value \leftrightarrow (normalized) trace.

Remarks

Extra axioms: (not discussed):
 uniform norm \leftrightarrow operator norm, mean value \leftrightarrow (normalized) trace. remainders depend on N derivatives of f, g.

Remarks

Extra axioms: (not discussed):
uniform norm \leftrightarrow operator norm, mean value \leftrightarrow (normalized) trace.
remainders depend on N derivatives of f, g.
Positivity: yields $T_{\hbar}(f)=\int_{M} f d W_{\hbar}$ where $W_{\hbar^{-}}$Positive Operator Valued Measure (later)

Remarks

Extra axioms: (not discussed):
uniform norm \leftrightarrow operator norm, mean value \leftrightarrow (normalized) trace.
remainders depend on N derivatives of f, g.
Positivity: yields $T_{\hbar}(f)=\int_{M} f d W_{\hbar}$ where $W_{\hbar^{-}}$Positive Operator Valued Measure (later)

Quasi-multiplicativity: In known examples, exists a star-product s.t. $T_{\hbar}(f) T_{\hbar}(g)=T_{\hbar}(f * g)$.

Remarks

Extra axioms: (not discussed):
uniform norm \leftrightarrow operator norm, mean value \leftrightarrow (normalized) trace.
remainders depend on N derivatives of f, g.
Positivity: yields $T_{\hbar}(f)=\int_{M} f d W_{\hbar}$ where $W_{\hbar^{-}}$Positive Operator Valued Measure (later)

Quasi-multiplicativity: In known examples, exists a star-product s.t. $T_{\hbar}(f) T_{\hbar}(g)=T_{\hbar}(f * g)$. Here T_{\hbar} extended to $C^{\infty}(M, \mathbb{C}) \rightarrow \mathcal{L}(H) \otimes \mathbb{C}=\operatorname{End}(H)$.

Remarks

Extra axioms: (not discussed):
uniform norm \leftrightarrow operator norm,
mean value \leftrightarrow (normalized) trace.
remainders depend on N derivatives of f, g.
Positivity: yields $T_{\hbar}(f)=\int_{M} f d W_{\hbar}$ where $W_{\hbar^{-}}$Positive Operator Valued Measure (later)

Quasi-multiplicativity: In known examples, exists a star-product s.t. $T_{\hbar}(f) T_{\hbar}(g)=T_{\hbar}(f * g)$. Here T_{\hbar} extended to $C^{\infty}(M, \mathbb{C}) \rightarrow \mathcal{L}(H) \otimes \mathbb{C}=\operatorname{End}(H)$.
Reversibility: $\mathcal{B}_{\hbar}:=\left(n_{\hbar}\right)^{-1} T_{\hbar}^{*} T_{\hbar}$ - Berezin transform, composition of dequantization and quantization.

Unsharpness cocycle

There exists a bi-differential operator
$c: C^{\infty}(M) \times C^{\infty}(M) \rightarrow C^{\infty}(M)$ such that

$$
T_{\hbar}(f) T_{\hbar}(g)=T_{\hbar}(f g+\hbar c(f, g))+\mathcal{O}\left(\hbar^{2}\right)
$$

Unsharpness cocycle

There exists a bi-differential operator
$c: C^{\infty}(M) \times C^{\infty}(M) \rightarrow C^{\infty}(M)$ such that

$$
T_{\hbar}(f) T_{\hbar}(g)=T_{\hbar}(f g+\hbar c(f, g))+\mathcal{O}\left(\hbar^{2}\right)
$$

Associativity $\Rightarrow c$ - Hochschild cocycle:
$f_{1} c\left(f_{2}, f_{3}\right)-c\left(f_{1} f_{2}, f_{3}\right)+c\left(f_{1}, f_{2} f_{3}\right)-c\left(f_{1}, f_{2}\right) f_{3}=0$
for all $f_{1}, f_{2}, f_{3} \in C^{\infty}(M)$

Unsharpness cocycle

There exists a bi-differential operator
$c: C^{\infty}(M) \times C^{\infty}(M) \rightarrow C^{\infty}(M)$ such that

$$
T_{\hbar}(f) T_{\hbar}(g)=T_{\hbar}(f g+\hbar c(f, g))+\mathcal{O}\left(\hbar^{2}\right)
$$

Associativity $\Rightarrow c$ - Hochschild cocycle:
$f_{1} c\left(f_{2}, f_{3}\right)-c\left(f_{1} f_{2}, f_{3}\right)+c\left(f_{1}, f_{2} f_{3}\right)-c\left(f_{1}, f_{2}\right) f_{3}=0$
for all $f_{1}, f_{2}, f_{3} \in C^{\infty}(M)$
Put $c_{-}(f, g):=\frac{c(f, g)-c(g, f)}{2} \quad$ and $\quad c_{+}(f, g):=\frac{c(f, g)+c(g, f)}{2}$

Unsharpness cocycle

There exists a bi-differential operator
$c: C^{\infty}(M) \times C^{\infty}(M) \rightarrow C^{\infty}(M)$ such that

$$
T_{\hbar}(f) T_{\hbar}(g)=T_{\hbar}(f g+\hbar c(f, g))+\mathcal{O}\left(\hbar^{2}\right)
$$

Associativity $\Rightarrow c$ - Hochschild cocycle:
$f_{1} c\left(f_{2}, f_{3}\right)-c\left(f_{1} f_{2}, f_{3}\right)+c\left(f_{1}, f_{2} f_{3}\right)-c\left(f_{1}, f_{2}\right) f_{3}=0$
for all $f_{1}, f_{2}, f_{3} \in C^{\infty}(M)$
Put $c_{-}(f, g):=\frac{c(f, g)-c(g, f)}{2} \quad$ and $\quad c_{+}(f, g):=\frac{c(f, g)+c(g, f)}{2}$
Bracket correspondence $\Rightarrow c_{-}(f, g)=\frac{i}{2}\{f, g\}$

Unsharpness cocycle

There exists a bi-differential operator
$c: C^{\infty}(M) \times C^{\infty}(M) \rightarrow C^{\infty}(M)$ such that

$$
T_{\hbar}(f) T_{\hbar}(g)=T_{\hbar}(f g+\hbar c(f, g))+\mathcal{O}\left(\hbar^{2}\right)
$$

Associativity $\Rightarrow c$ - Hochschild cocycle:
$f_{1} c\left(f_{2}, f_{3}\right)-c\left(f_{1} f_{2}, f_{3}\right)+c\left(f_{1}, f_{2} f_{3}\right)-c\left(f_{1}, f_{2}\right) f_{3}=0$
for all $f_{1}, f_{2}, f_{3} \in C^{\infty}(M)$
Put $c_{-}(f, g):=\frac{c(f, g)-c(g, f)}{2} \quad$ and $\quad c_{+}(f, g):=\frac{c(f, g)+c(g, f)}{2}$
Bracket correspondence $\Rightarrow c_{-}(f, g)=\frac{i}{2}\{f, g\}$
c_{+}- symmetric unsharpness cocycle

Unsharpness cocycle

There exists a bi-differential operator $c: C^{\infty}(M) \times C^{\infty}(M) \rightarrow C^{\infty}(M)$ such that

$$
T_{\hbar}(f) T_{\hbar}(g)=T_{\hbar}(f g+\hbar c(f, g))+\mathcal{O}\left(\hbar^{2}\right)
$$

Associativity $\Rightarrow c$ - Hochschild cocycle:
$f_{1} c\left(f_{2}, f_{3}\right)-c\left(f_{1} f_{2}, f_{3}\right)+c\left(f_{1}, f_{2} f_{3}\right)-c\left(f_{1}, f_{2}\right) f_{3}=0$
for all $f_{1}, f_{2}, f_{3} \in C^{\infty}(M)$
Put $c_{-}(f, g):=\frac{c(f, g)-c(g, f)}{2} \quad$ and $\quad c_{+}(f, g):=\frac{c(f, g)+c(g, f)}{2}$
Bracket correspondence $\Rightarrow c_{-}(f, g)=\frac{i}{2}\{f, g\}$
c_{+}- symmetric unsharpness cocycle

Theorem

Bi-differential operator c_{+}is of order $(1,1)$.

Unsharpness tensor

Theorem
 Bi-differential operator c_{+}is of order $(1,1)$.

Unsharpness tensor

Theorem

Bi-differential operator c_{+}is of order $(1,1)$.

Corollary

There exists a bilinear symmetric form G on TM:
$c_{+}(f, g)=:-\frac{1}{2} G($ sgrad f, sgrad $g)$
where sgrad f, sgrad g Hamiltonian vector fields of
$f, g \in C^{\infty}(M, \mathbb{R})$

Examples-1

1. Kähler quantizaton Boutet de Monvel - Guillemin, 1981;

Bordemann, Meinrenken and Schlichenmaier, 1994

Examples-1

1. Kähler quantizaton Boutet de Monvel - Guillemin, 1981;

Bordemann, Meinrenken and Schlichenmaier, 1994 (M, ω, J) - closed Kähler manifold, quantizable: $[\omega] /(2 \pi) \in H^{2}(M, \mathbb{Z})$

Examples-1

1. Kähler quantizaton Boutet de Monvel - Guillemin, 1981;

Bordemann, Meinrenken and Schlichenmaier, 1994 (M, ω, J) - closed Kähler manifold, quantizable: $[\omega] /(2 \pi) \in H^{2}(M, \mathbb{Z})$
$L-$ a holomorphic Hermitian line bundle over M
Curvature of Chern connection $=i \omega$.

Examples-1

1. Kähler quantizaton Boutet de Monvel - Guillemin, 1981;

Bordemann, Meinrenken and Schlichenmaier, 1994 (M, ω, J) - closed Kähler manifold, quantizable: $[\omega] /(2 \pi) \in H^{2}(M, \mathbb{Z})$
$L-$ a holomorphic Hermitian line bundle over M
Curvature of Chern connection $=i \omega$.

$$
H_{\hbar}:=H^{0}\left(M, L^{\otimes k}\right) \subset V_{\hbar}:=L_{2}\left(M, L^{\otimes k}\right) .
$$

Examples-1

1. Kähler quantizaton Boutet de Monvel - Guillemin, 1981;

Bordemann, Meinrenken and Schlichenmaier, 1994 (M, ω, J) - closed Kähler manifold, quantizable: $[\omega] /(2 \pi) \in H^{2}(M, \mathbb{Z})$
L - a holomorphic Hermitian line bundle over M
Curvature of Chern connection $=i \omega$.
$H_{\hbar}:=H^{0}\left(M, L^{\otimes k}\right) \subset V_{\hbar}:=L_{2}\left(M, L^{\otimes k}\right)$.
$\Pi_{\hbar}: V_{\hbar} \rightarrow H_{\hbar}$ - the orthogonal projection.

Examples-1

1. Kähler quantizaton Boutet de Monvel - Guillemin, 1981;

Bordemann, Meinrenken and Schlichenmaier, 1994
(M, ω, J) - closed Kähler manifold, quantizable:
$[\omega] /(2 \pi) \in H^{2}(M, \mathbb{Z})$
$L-$ a holomorphic Hermitian line bundle over M
Curvature of Chern connection $=i \omega$.
$H_{\hbar}:=H^{0}\left(M, L^{\otimes k}\right) \subset V_{\hbar}:=L_{2}\left(M, L^{\otimes k}\right)$.
$\Pi_{\hbar}: V_{\hbar} \rightarrow H_{\hbar}$ - the orthogonal projection.
The Toeplitz operator: $T_{\hbar}(f)(s):=\Pi_{\hbar}\left(f_{s}\right), f \in C^{\infty}(M), s \in H_{\hbar}$.

Examples-1

1. Kähler quantizaton Boutet de Monvel - Guillemin, 1981;

Bordemann, Meinrenken and Schlichenmaier, 1994
(M, ω, J) - closed Kähler manifold, quantizable:
$[\omega] /(2 \pi) \in H^{2}(M, \mathbb{Z})$
$L-$ a holomorphic Hermitian line bundle over M
Curvature of Chern connection $=i \omega$.
$H_{\hbar}:=H^{0}\left(M, L^{\otimes k}\right) \subset V_{\hbar}:=L_{2}\left(M, L^{\otimes k}\right)$.
$\Pi_{\hbar}: V_{\hbar} \rightarrow H_{\hbar}$ - the orthogonal projection.
The Toeplitz operator: $T_{\hbar}(f)(s):=\Pi_{\hbar}\left(f_{s}\right), f \in C^{\infty}(M), s \in H_{\hbar}$.

Unsharpness tensor: $G(\xi, \eta)=\omega(\xi, J \eta)(X u)$

Examples-2

2. Almost - Kähler quantizaton Guillemin; Borthwick - Uribe; Schiffman - Zelditch; Ma - Marinescu; Charles; loos - Lu - Ma Marinescu

Examples-2

2. Almost - Kähler quantizaton Guillemin; Borthwick - Uribe; Schiffman - Zelditch; Ma - Marinescu; Charles; loos - Lu - Ma Marinescu
$(M, \omega, J), G_{J}(\xi, \eta)=\omega(\xi, J \eta)$-Riemannian metric, $[\omega]$ quantizable: $[\omega] /(2 \pi) \in H^{2}(M, \mathbb{Z})$

Examples-2

2. Almost - Kähler quantizaton Guillemin; Borthwick - Uribe; Schiffman - Zelditch; Ma - Marinescu; Charles; loos - Lu - Ma Marinescu
$(M, \omega, J), G_{J}(\xi, \eta)=\omega(\xi, J \eta)$-Riemannian metric, $[\omega]$ quantizable: $[\omega] /(2 \pi) \in H^{2}(M, \mathbb{Z})$

Modified construction: L - similar, H_{k} - spanned by eigenfunct. with "small" eigenvalues of Bochner Laplacian on L^{k}.

Examples-2

2. Almost - Kähler quantizaton Guillemin; Borthwick - Uribe; Schiffman - Zelditch; Ma - Marinescu; Charles; loos - Lu - Ma Marinescu
$(M, \omega, J), G_{J}(\xi, \eta)=\omega(\xi, J \eta)$-Riemannian metric, $[\omega]$ quantizable: $[\omega] /(2 \pi) \in H^{2}(M, \mathbb{Z})$

Modified construction: L - similar, H_{k} - spanned by eigenfunct. with "small" eigenvalues of Bochner Laplacian on L^{k}. Unsharpness tensor: $G=G_{J}$ (loos,Lu,Ma,Marinescu)

Examples-2

2. Almost - Kähler quantizaton Guillemin; Borthwick - Uribe; Schiffman - Zelditch; Ma - Marinescu; Charles; loos - Lu - Ma Marinescu
$(M, \omega, J), G_{J}(\xi, \eta)=\omega(\xi, J \eta)$-Riemannian metric, $[\omega]$ quantizable: $[\omega] /(2 \pi) \in H^{2}(M, \mathbb{Z})$

Modified construction: L - similar, H_{k} - spanned by eigenfunct. with "small" eigenvalues of Bochner Laplacian on L^{k}. Unsharpness tensor: $G=G_{J}$ (loos,Lu,Ma,Marinescu)
3. Diffusion (M, ω, J) - Kähler or almost-Kähler, $T_{\hbar^{-}}$ quantization in Examples 1 or 2, Δ - (positive) Laplace-Beltrami.

Examples-2

2. Almost - Kähler quantizaton Guillemin; Borthwick - Uribe; Schiffman - Zelditch; Ma - Marinescu; Charles; loos - Lu - Ma Marinescu
$(M, \omega, J), G_{J}(\xi, \eta)=\omega(\xi, J \eta)$-Riemannian metric, $[\omega]$ quantizable: $[\omega] /(2 \pi) \in H^{2}(M, \mathbb{Z})$

Modified construction: L - similar, H_{k} - spanned by eigenfunct. with "small" eigenvalues of Bochner Laplacian on L^{k}. Unsharpness tensor: $G=G_{J}$ (loos,Lu,Ma,Marinescu) 3. Diffusion (M, ω, J) - Kähler or almost-Kähler, $T_{\hbar^{-}}$ quantization in Examples 1 or 2, Δ - (positive) Laplace-Beltrami.
Smearing by heat flow: $T_{\hbar}^{(t)}(f):=T_{\hbar}\left(e^{-t \hbar \Delta} f\right), t>0$.

Examples-2

2. Almost - Kähler quantizaton Guillemin; Borthwick - Uribe; Schiffman - Zelditch; Ma - Marinescu; Charles; loos - Lu - Ma Marinescu
$(M, \omega, J), G_{J}(\xi, \eta)=\omega(\xi, J \eta)$-Riemannian metric, $[\omega]$ quantizable: $[\omega] /(2 \pi) \in H^{2}(M, \mathbb{Z})$

Modified construction: L - similar, H_{k} - spanned by eigenfunct. with "small" eigenvalues of Bochner Laplacian on L^{k}. Unsharpness tensor: $G=G_{J}$ (loos,Lu,Ma,Marinescu) 3. Diffusion (M, ω, J) - Kähler or almost-Kähler, $T_{\hbar^{-}}$ quantization in Examples 1 or 2, Δ - (positive) Laplace-Beltrami.
Smearing by heat flow: $T_{\hbar}^{(t)}(f):=T_{\hbar}\left(e^{-t \hbar \Delta} f\right), t>0$. Unsharpness tensor: $G^{(t)}:=(1+4 t) G_{J}$

Main Theorem

(M, ω) - closed symplectic manifold

Main Theorem

(M, ω) - closed symplectic manifold T_{\hbar}-Berezin-Toeplitz quantization.

Main Theorem

(M, ω) - closed symplectic manifold
T_{\hbar}-Berezin-Toeplitz quantization.

Theorem

(I) Unsharpness tensor G is a Riemannian metric of the form $G_{J}+\rho$, where J is an ω-compatible almost complex structure, ρ is a non-negative symmetric bilinear form.

Main Theorem

(M, ω) - closed symplectic manifold
T_{\hbar}-Berezin-Toeplitz quantization.

Theorem

(I) Unsharpness tensor G is a Riemannian metric of the form $G_{J}+\rho$, where J is an ω-compatible almost complex structure, ρ is a non-negative symmetric bilinear form.
(II) $\operatorname{Vol}(M, G) \geq \operatorname{Vol}(M, \omega)$, with equality $\Leftrightarrow G=G_{J}, \rho=0$.

Main Theorem

(M, ω) - closed symplectic manifold
T_{\hbar}-Berezin-Toeplitz quantization.

Theorem

(I) Unsharpness tensor G is a Riemannian metric of the form $G_{J}+\rho$, where J is an ω-compatible almost complex structure, ρ is a non-negative symmetric bilinear form.
(II) $\operatorname{Vol}(M, G) \geq \operatorname{Vol}(M, \omega)$, with equality $\Leftrightarrow G=G_{J}, \rho=0$.
(III) Assume (M, ω) is quantizable. Then every Riemannian metric as in (I) arises from some Berezin-Toeplitz quantization.

Remarks

Decomposition $G=G_{J}+\rho, \rho \geq 0$ in general not unique. But there exists unique G-orthogonal ω-compatible almost complex structure $J: G(J \xi, J \eta)=G(\xi, \eta)$.

Remarks

Decomposition $G=G_{J}+\rho, \rho \geq 0$ in general not unique. But there exists unique G-orthogonal ω-compatible almost complex structure $J: G(J \xi, J \eta)=G(\xi, \eta)$.
In (III), J is not assumed to be G-orthogonal

Remarks

Decomposition $G=G_{J}+\rho, \rho \geq 0$ in general not unique. But there exists unique G-orthogonal ω-compatible almost complex structure $J: G(J \xi, J \eta)=G(\xi, \eta)$.

In (III), J is not assumed to be G-orthogonal
Proof of (III): almost Kähler quantization followed by diffusion.

Remarks

Decomposition $G=G_{J}+\rho, \rho \geq 0$ in general not unique. But there exists unique G-orthogonal ω-compatible almost complex structure $J: G(J \xi, J \eta)=G(\xi, \eta)$.

In (III), J is not assumed to be G-orthogonal
Proof of (III): almost Kähler quantization followed by diffusion.
Proof of (I): unsharpness (noise) of quantum measurements.

POVMs

H - complex Hilbert space (finite dimensional)

POVMs

H - complex Hilbert space (finite dimensional)
$\mathcal{L}(H)$ - Hermitian operators (quantum observables)

POVMs

H - complex Hilbert space (finite dimensional)
$\mathcal{L}(H)$ - Hermitian operators (quantum observables)
$\mathcal{S}(H) \subset \mathcal{L}(H)$ - trace 1 positive operators (states)

POVMs

H - complex Hilbert space (finite dimensional)
$\mathcal{L}(H)$ - Hermitian operators (quantum observables)
$\mathcal{S}(H) \subset \mathcal{L}(H)$ - trace 1 positive operators (states)
Ω - "good" topological space (closed manifold), \mathcal{C} - Borel σ-algebra.

POVMs

H - complex Hilbert space (finite dimensional)
$\mathcal{L}(H)$ - Hermitian operators (quantum observables)
$\mathcal{S}(H) \subset \mathcal{L}(H)$ - trace 1 positive operators (states)
Ω - "good" topological space (closed manifold), \mathcal{C} - Borel σ-algebra.
Positive Operator Valued Measure (POVM) W on (Ω, \mathcal{C})
$W: \mathcal{C} \rightarrow \mathcal{L}(H)$

- $W(X) \geq 0$ for all $X \in \mathcal{C}$,
- countably additive,
- $W(\Omega)=\mathbb{1}$.

POVMs-2

Fact: Chiribella, D'Ariano, Schlingemann
There exists

- Borel probability measure α on Ω,
- measurable $F: \Omega \rightarrow \mathcal{S}(H)$:
$d W(s)=n F(s) d \alpha(s), n=\operatorname{dim}_{\mathbb{C}} H$

POVMs-2

Fact: Chiribella, D'Ariano, Schlingemann
There exists

- Borel probability measure α on Ω,
- measurable $F: \Omega \rightarrow \mathcal{S}(H)$:
$d W(s)=n F(s) d \alpha(s), n=\operatorname{dim}_{\mathbb{C}} H$
$F(s)-$ coherent states

POVMs-2

Fact: Chiribella, D'Ariano, Schlingemann
There exists

- Borel probability measure α on Ω,
- measurable $F: \Omega \rightarrow \mathcal{S}(H)$:
$d W(s)=n F(s) d \alpha(s), n=\operatorname{dim}_{\mathbb{C}} H$
$F(s)-$ coherent states
Integration: $\int: L_{1}(\Omega, \alpha) \rightarrow \mathcal{L}(H), f \mapsto \int f d W$.

POVMs-2

Fact: Chiribella, D'Ariano, Schlingemann
There exists

- Borel probability measure α on Ω,
- measurable $F: \Omega \rightarrow \mathcal{S}(H)$:
$d W(s)=n F(s) d \alpha(s), n=\operatorname{dim}_{\mathbb{C}} H$
$F(s)$ - coherent states
Integration: $\int: L_{1}(\Omega, \alpha) \rightarrow \mathcal{L}(H), f \mapsto \int f d W$.
Example 1. Berezin-Toeplitz quantization is given by sequence $\mathcal{L}\left(H_{\hbar}\right)$-valued POVMS on M :

$$
T_{\hbar}(f)=\int f d W_{\hbar}
$$

Sub-example: Kähler coherent states

H_{\hbar} - holomorphic sections of $L^{k}, k=1 / \hbar$.

Sub-example: Kähler coherent states

H_{\hbar} - holomorphic sections of $L^{k}, k=1 / \hbar$.
Hyperplane $E_{z} \subset H_{\hbar}, E_{z}:=\left\{s \in H_{\hbar}: s(z)=0\right\}$.

Sub-example: Kähler coherent states

H_{\hbar} - holomorphic sections of $L^{k}, k=1 / \hbar$.
Hyperplane $E_{z} \subset H_{\hbar}, E_{z}:=\left\{s \in H_{\hbar}: s(z)=0\right\}$.
Kodaira embedding $M \rightarrow \mathbb{P}\left(H_{\hbar}^{*}\right), z \mapsto E_{z}$

Sub-example: Kähler coherent states

H_{\hbar} - holomorphic sections of $L^{k}, k=1 / \hbar$.
Hyperplane $E_{z} \subset H_{\hbar}, E_{z}:=\left\{s \in H_{\hbar}: s(z)=0\right\}$.
Kodaira embedding $M \rightarrow \mathbb{P}\left(H_{\hbar}^{*}\right), z \mapsto E_{z}$
$P_{z, \hbar^{-}}$orthogonal projector of H_{\hbar} to E_{z}^{\perp} coherent state projector

Sub-example: Kähler coherent states

H_{\hbar} - holomorphic sections of $L^{k}, k=1 / \hbar$.
Hyperplane $E_{z} \subset H_{\hbar}, E_{z}:=\left\{s \in H_{\hbar}: s(z)=0\right\}$.
Kodaira embedding $M \rightarrow \mathbb{P}\left(H_{\hbar}^{*}\right)$, $z \mapsto E_{z}$
$P_{z, \hbar^{-}}$orthogonal projector of H_{\hbar} to E_{z}^{\perp} coherent state projector

There exists Rawnsley function $R_{\hbar} \in C^{\infty}(M)$:

$$
T_{\hbar}(f)=\int_{M} f(x) R_{\hbar}(x) P_{x, \hbar} d \operatorname{Vol}(x)
$$

Quantum measurement

W - $\mathcal{L}(H)$-valued POVM on Ω.

Quantum measurement

W - $\mathcal{L}(H)$-valued POVM on Ω.
Interpretation: W - pointer (measuring device). In state ρ, probability of finding the value of measurement in $X \subset \Omega$ is $\mu_{\rho}(X):=\operatorname{tr} W(X) \rho$

Quantum measurement

W - $\mathcal{L}(H)$-valued POVM on Ω.
Interpretation: W - pointer (measuring device). In state ρ, probability of finding the value of measurement in $X \subset \Omega$ is $\mu_{\rho}(X):=\operatorname{tr} W(X) \rho$
Example: observable $F=\sum \lambda_{j} P_{j-}$ spec. decomposition. $P=\left(P_{1}, \ldots, P_{k}\right)$ - projector valued measure on $\{1, \ldots, k\}$. Observable takes values λ_{j} with probability $\operatorname{tr}\left(P_{j} \rho\right)$.

Quantum measurement

W- $\mathcal{L}(H)$-valued POVM on Ω.
Interpretation: W - pointer (measuring device). In state ρ, probability of finding the value of measurement in $X \subset \Omega$ is $\mu_{\rho}(X):=\operatorname{tr} W(X) \rho$
Example: observable $F=\sum \lambda_{j} P_{j-}$ spec. decomposition. $P=\left(P_{1}, \ldots, P_{k}\right)$ - projector valued measure on $\{1, \ldots, k\}$. Observable takes values λ_{j} with probability $\operatorname{tr}\left(P_{j} \rho\right)$.
Unbiased approximate measurement: $f: \Omega \rightarrow \mathbb{R}$ defines a random variable on Ω with resp. to μ_{ρ}

Quantum measurement

W - $\mathcal{L}(H)$-valued POVM on Ω.
Interpretation: W - pointer (measuring device). In state ρ, probability of finding the value of measurement in $X \subset \Omega$ is $\mu_{\rho}(X):=\operatorname{tr} W(X) \rho$
Example: observable $F=\sum \lambda_{j} P_{j-}$ spec. decomposition.
$P=\left(P_{1}, \ldots, P_{k}\right)$ - projector valued measure on $\{1, \ldots, k\}$.
Observable takes values λ_{j} with probability $\operatorname{tr}\left(P_{j} \rho\right)$.
Unbiased approximate measurement: $f: \Omega \rightarrow \mathbb{R}$ defines a random variable on Ω with resp. to μ_{ρ}
Unbiased: $\operatorname{Exp}(W, f, \rho)=\operatorname{Exp}(F, \rho)$ for observable $F=\int f d W$

Quantum measurement

W - $\mathcal{L}(H)$-valued POVM on Ω.
Interpretation: W - pointer (measuring device). In state ρ, probability of finding the value of measurement in $X \subset \Omega$ is $\mu_{\rho}(X):=\operatorname{tr} W(X) \rho$
Example: observable $F=\sum \lambda_{j} P_{j-}$ spec. decomposition. $P=\left(P_{1}, \ldots, P_{k}\right)$ - projector valued measure on $\{1, \ldots, k\}$. Observable takes values λ_{j} with probability $\operatorname{tr}\left(P_{j} \rho\right)$.
Unbiased approximate measurement: $f: \Omega \rightarrow \mathbb{R}$ defines a random variable on Ω with resp. to μ_{ρ}
Unbiased: $\operatorname{Exp}(W, f, \rho)=\operatorname{Exp}(F, \rho)$ for observable $F=\int f d W$
Approximate: Probability distributions differ!

$$
\operatorname{Var}(W, f, \rho)=\operatorname{Var}(F, \rho)+\operatorname{tr}\left(\Delta_{W}(f)\right) \rho
$$

$\Delta_{W}(f) \geq 0$ - Ozawa noise operator, measures unsharpness

Quantum measurement

W - $\mathcal{L}(H)$-valued POVM on Ω.
Interpretation: W - pointer (measuring device). In state ρ, probability of finding the value of measurement in $X \subset \Omega$ is $\mu_{\rho}(X):=\operatorname{tr} W(X) \rho$
Example: observable $F=\sum \lambda_{j} P_{j-}$ spec. decomposition. $P=\left(P_{1}, \ldots, P_{k}\right)$ - projector valued measure on $\{1, \ldots, k\}$. Observable takes values λ_{j} with probability $\operatorname{tr}\left(P_{j} \rho\right)$.
Unbiased approximate measurement: $f: \Omega \rightarrow \mathbb{R}$ defines a random variable on Ω with resp. to μ_{ρ}
Unbiased: $\operatorname{Exp}(W, f, \rho)=\operatorname{Exp}(F, \rho)$ for observable $F=\int f d W$
Approximate: Probability distributions differ!

$$
\operatorname{Var}(W, f, \rho)=\operatorname{Var}(F, \rho)+\operatorname{tr}\left(\Delta_{W}(f)\right) \rho
$$

$\Delta_{W}(f) \geq 0$ - Ozawa noise operator, measures unsharpness
Vanishes for projector valued POVMs

Uncertainty jump

Heisenberg uncertainty:

$\operatorname{Var}(F, \rho)^{1 / 2} \cdot \operatorname{Var}(G, \rho)^{1 / 2} \geq \frac{1}{2} \cdot|\operatorname{Exp}([F, G], \rho)|$

Uncertainty jump

Heisenberg uncertainty:

$\operatorname{Var}(F, \rho)^{1 / 2} \cdot \operatorname{Var}(G, \rho)^{1 / 2} \geq \frac{1}{2} \cdot|\operatorname{Exp}([F, G], \rho)|$
For joint approximate measurements, $F=\int f d W, g=\int g d W$
$\operatorname{Var}(W, f, \rho)^{1 / 2} \cdot \operatorname{Var}(W, g, \rho)^{1 / 2} \geq 1 \cdot|\operatorname{Exp}([F, G], \rho)|$
(Ishikawa, 1991)

Uncertainty jump

Heisenberg uncertainty:

$\operatorname{Var}(F, \rho)^{1 / 2} \cdot \operatorname{Var}(G, \rho)^{1 / 2} \geq \frac{1}{2} \cdot|\operatorname{Exp}([F, G], \rho)|$
For joint approximate measurements, $F=\int f d W, g=\int g d W$
$\operatorname{Var}(W, f, \rho)^{1 / 2} \cdot \operatorname{Var}(W, g, \rho)^{1 / 2} \geq 1 \cdot|\operatorname{Exp}([F, G], \rho)|$
(Ishikawa, 1991)
Coefficient jumps! Based on noise inequality:
$\left(\operatorname{tr}\left(\Delta_{W}(f) \rho\right)^{1 / 2}\left(\operatorname{tr}\left(\Delta_{W}(g) \rho\right)^{1 / 2} \geq \frac{1}{2}|\operatorname{Exp}([F, G], \rho)|\right.\right.$

Quantization as measurement

$T_{\hbar}(f)=\int_{M} f d W_{\hbar}$ - Berezin-Toeplitz quantization.

Quantization as measurement

$T_{\hbar}(f)=\int_{M} f d W_{\hbar}$ - Berezin-Toeplitz quantization.
Δ_{\hbar}-noise operator of W_{\hbar}

Quantization as measurement

$T_{\hbar}(f)=\int_{M} f d W_{\hbar}$ - Berezin-Toeplitz quantization.
Δ_{\hbar}-noise operator of W_{\hbar}
$\Delta_{\hbar}(f)=T_{\hbar}\left(f^{2}\right)-T_{\hbar}(f)^{2}=\frac{\hbar}{2} T_{\hbar}\left(|\operatorname{sgrad} f|_{G}^{2}\right)+\mathcal{O}\left(\hbar^{2}\right)$ where G is the unsharpness metric.

Quantization as measurement

$T_{\hbar}(f)=\int_{M} f d W_{\hbar}$ - Berezin-Toeplitz quantization.
Δ_{\hbar}-noise operator of W_{\hbar}
$\Delta_{\hbar}(f)=T_{\hbar}\left(f^{2}\right)-T_{\hbar}(f)^{2}=\frac{\hbar}{2} T_{\hbar}\left(|\operatorname{sgrad} f|_{G}^{2}\right)+\mathcal{O}\left(\hbar^{2}\right)$ where G is the unsharpness metric.
$d W_{\hbar}=n_{\hbar} F_{x, \hbar} d \alpha_{\hbar}$, where $F_{x, \hbar}$-coherent state.

$$
\operatorname{Exp}\left(\Delta_{\hbar}(f), F_{x, \hbar}\right)=\frac{\hbar}{2}|\operatorname{sgrad} f(x)|_{G}^{2}+\mathcal{O}\left(\hbar^{2}\right)
$$

Quantization as measurement

$T_{\hbar}(f)=\int_{M} f d W_{\hbar}$ - Berezin-Toeplitz quantization.
Δ_{\hbar}-noise operator of W_{\hbar}
$\Delta_{\hbar}(f)=T_{\hbar}\left(f^{2}\right)-T_{\hbar}(f)^{2}=\frac{\hbar}{2} T_{\hbar}\left(|\operatorname{sgrad} f|_{G}^{2}\right)+\mathcal{O}\left(\hbar^{2}\right)$ where G is the unsharpness metric.
$d W_{\hbar}=n_{\hbar} F_{x, \hbar} d \alpha_{\hbar}$, where $F_{x, \hbar}$-coherent state.

$$
\operatorname{Exp}\left(\Delta_{\hbar}(f), F_{x, \hbar}\right)=\frac{\hbar}{2}|\operatorname{sgrad} f(x)|_{G}^{2}+\mathcal{O}\left(\hbar^{2}\right)
$$

Hence unsharpness

Quantization as measurement

$T_{\hbar}(f)=\int_{M} f d W_{\hbar}$ - Berezin-Toeplitz quantization.
Δ_{\hbar}-noise operator of W_{\hbar}
$\Delta_{\hbar}(f)=T_{\hbar}\left(f^{2}\right)-T_{\hbar}(f)^{2}=\frac{\hbar}{2} T_{\hbar}\left(|\operatorname{sgrad} f|_{G}^{2}\right)+\mathcal{O}\left(\hbar^{2}\right)$ where G is the unsharpness metric.
$d W_{\hbar}=n_{\hbar} F_{x, \hbar} d \alpha_{\hbar}$, where $F_{x, \hbar}$-coherent state.

$$
\operatorname{Exp}\left(\Delta_{\hbar}(f), F_{x, \hbar}\right)=\frac{\hbar}{2}|\operatorname{sgrad} f(x)|_{G}^{2}+\mathcal{O}\left(\hbar^{2}\right)
$$

Hence unsharpness
Decomposition: $G=G J+\rho, \rho \geq 0$, follows from noise inequality.

Quantization as measurement

$T_{\hbar}(f)=\int_{M} f d W_{\hbar}$ - Berezin-Toeplitz quantization.
Δ_{\hbar}-noise operator of W_{\hbar}
$\Delta_{\hbar}(f)=T_{\hbar}\left(f^{2}\right)-T_{\hbar}(f)^{2}=\frac{\hbar}{2} T_{\hbar}\left(|\operatorname{sgrad} f|_{G}^{2}\right)+\mathcal{O}\left(\hbar^{2}\right)$ where G is the unsharpness metric.
$d W_{\hbar}=n_{\hbar} F_{x, \hbar} d \alpha_{\hbar}$, where $F_{x, \hbar}$-coherent state.

$$
\operatorname{Exp}\left(\Delta_{\hbar}(f), F_{x, \hbar}\right)=\frac{\hbar}{2}|\operatorname{sgrad} f(x)|_{G}^{2}+\mathcal{O}\left(\hbar^{2}\right)
$$

Hence unsharpness
Decomposition: $G=G J+\rho, \rho \geq 0$, follows from noise inequality.
The least unsharpness principle:
$\operatorname{Vol}(M, G) \geq \operatorname{Vol}(M, \omega)$, minimizers \leftrightarrow compatible metrics
(cf. Gerhenstaber, 2007)

Classification of quantizations

Star products: Change of variables $A: f \mapsto f+\sum_{m \geq 1} \hbar^{m} a_{m}(f)$ $a_{m}: C^{\infty}(M) \rightarrow C^{\infty}(M)$-differential operator.

Classification of quantizations

Star products: Change of variables $A: f \mapsto f+\sum_{m \geq 1} \hbar^{m} a_{m}(f)$ $a_{m}: C^{\infty}(M) \rightarrow C^{\infty}(M)$-differential operator.

Locally (in charts) star-products equivalent, globally classified by $H^{2}(M, \mathbb{R})[[\hbar]]$ (De Wilde - Lecompte,1983; Fedosov; Deligne; Nest-Tsygan; Gutt-Rawnsley)

Classification of quantizations

Star products: Change of variables $A: f \mapsto f+\sum_{m \geq 1} \hbar^{m} a_{m}(f)$ $a_{m}: C^{\infty}(M) \rightarrow C^{\infty}(M)$-differential operator.

Locally (in charts) star-products equivalent, globally classified by $H^{2}(M, \mathbb{R})[[\hbar]]$ (De Wilde - Lecompte,1983; Fedosov; Deligne; Nest-Tsygan; Gutt-Rawnsley)
Berezin-Toeplitz quantizations: Largely open.

Classification of quantizations

Star products: Change of variables $A: f \mapsto f+\sum_{m \geq 1} \hbar^{m} a_{m}(f)$ $a_{m}: C^{\infty}(M) \rightarrow C^{\infty}(M)$-differential operator.

Locally (in charts) star-products equivalent, globally classified by $H^{2}(M, \mathbb{R})[[\hbar]]$ (De Wilde - Lecompte,1983; Fedosov; Deligne;
Nest-Tsygan; Gutt-Rawnsley)
Berezin-Toeplitz quantizations: Largely open.
Fix Hilbert spaces $H_{k}, k \rightarrow \infty, \hbar=1 / k$

Classification of quantizations

Star products: Change of variables $A: f \mapsto f+\sum_{m \geq 1} \hbar^{m} a_{m}(f)$ $a_{m}: C^{\infty}(M) \rightarrow C^{\infty}(M)$-differential operator.

Locally (in charts) star-products equivalent, globally classified by $H^{2}(M, \mathbb{R})[[\hbar]]$ (De Wilde - Lecompte,1983; Fedosov; Deligne;
Nest-Tsygan; Gutt-Rawnsley)
Berezin-Toeplitz quantizations: Largely open.
Fix Hilbert spaces $H_{k}, k \rightarrow \infty, \hbar=1 / k$
Quantizations $S_{\hbar}, T_{\hbar}: C^{\infty}(M) \rightarrow \mathcal{L}\left(H_{\hbar}\right)$ are m-equivalent $(m \in \mathbb{N})$ if there exists unitaries $U_{\hbar}: H_{\hbar} \rightarrow H_{\hbar}$ such that

$$
S_{\hbar}(f)=U_{\hbar} T_{\hbar}(f) U_{\hbar}^{*}+\mathcal{O}\left(\hbar^{m}\right)
$$

Classification of quantizations

Star products: Change of variables $A: f \mapsto f+\sum_{m \geq 1} \hbar^{m} a_{m}(f)$ $a_{m}: C^{\infty}(M) \rightarrow C^{\infty}(M)$-differential operator.

Locally (in charts) star-products equivalent, globally classified by $H^{2}(M, \mathbb{R})[[\hbar]]$ (De Wilde - Lecompte,1983; Fedosov; Deligne;
Nest-Tsygan; Gutt-Rawnsley)
Berezin-Toeplitz quantizations: Largely open.
Fix Hilbert spaces $H_{k}, k \rightarrow \infty, \hbar=1 / k$
Quantizations $S_{\hbar}, T_{\hbar}: C^{\infty}(M) \rightarrow \mathcal{L}\left(H_{\hbar}\right)$ are m-equivalent $(m \in \mathbb{N})$ if there exists unitaries $U_{\hbar}: H_{\hbar} \rightarrow H_{\hbar}$ such that

$$
S_{\hbar}(f)=U_{\hbar} T_{\hbar}(f) U_{\hbar}^{*}+\mathcal{O}\left(\hbar^{m}\right)
$$

Observation: Unsharpness metric is an invariant of 2-equivalence.

Case study: 2-sphere

Assume H_{k} is the space of irrep of $S U(2)$ of dimension $k+1$.

Case study: 2-sphere

Assume H_{k} is the space of irrep of $S U(2)$ of dimension $k+1$.
Example: Spherical metric G of total area 2π. Standard Kähler quantization plus diffusion has unsharpness metric $t G, t \geq 1$.

Case study: 2-sphere

Assume H_{k} is the space of irrep of $S U(2)$ of dimension $k+1$.
Example: Spherical metric G of total area 2π. Standard Kähler quantization plus diffusion has unsharpness metric $t G, t \geq 1$.

Theorem

Any two SU(2)-equivariant quantizations with the same unsharpness metric coincide up to $\mathcal{O}\left(\hbar^{2}\right)$.

Case study: 2-sphere

Assume H_{k} is the space of irrep of $S U(2)$ of dimension $k+1$.
Example: Spherical metric G of total area 2π. Standard Kähler quantization plus diffusion has unsharpness metric $t G, t \geq 1$.

Theorem

Any two SU(2)-equivariant quantizations with the same unsharpness metric coincide up to $\mathcal{O}\left(\hbar^{2}\right)$.

Tool: Representation theory.

Case study: 2-sphere

Assume H_{k} is the space of irrep of $S U(2)$ of dimension $k+1$.
Example: Spherical metric G of total area 2π. Standard Kähler quantization plus diffusion has unsharpness metric $t G, t \geq 1$.

Theorem

Any two SU(2)-equivariant quantizations with the same unsharpness metric coincide up to $\mathcal{O}\left(\hbar^{2}\right)$.

Tool: Representation theory.
Open problem: What happens in general (non-equivariant) case? Are there invariants of 2-equivalence beyond unsharpness metric?

Case study: 2-sphere

Assume H_{k} is the space of irrep of $S U(2)$ of dimension $k+1$.
Example: Spherical metric G of total area 2π. Standard Kähler quantization plus diffusion has unsharpness metric $t G, t \geq 1$.

Theorem

Any two SU(2)-equivariant quantizations with the same unsharpness metric coincide up to $\mathcal{O}\left(\hbar^{2}\right)$.

Tool: Representation theory.
Open problem: What happens in general (non-equivariant) case? Are there invariants of 2 -equivalence beyond unsharpness metric?

Theorem (IN PROGRESS)

All known quantizations of S^{2} with $\operatorname{dim} H_{k}=k$ are 1-equivalent.

Case study: 2-sphere

Assume H_{k} is the space of irrep of $S U(2)$ of dimension $k+1$.
Example: Spherical metric G of total area 2π. Standard Kähler quantization plus diffusion has unsharpness metric $t G, t \geq 1$.

Theorem

Any two SU(2)-equivariant quantizations with the same unsharpness metric coincide up to $\mathcal{O}\left(\hbar^{2}\right)$.

Tool: Representation theory.
Open problem: What happens in general (non-equivariant) case? Are there invariants of 2-equivalence beyond unsharpness metric?

Theorem (IN PROGRESS)

All known quantizations of S^{2} with $\operatorname{dim} H_{k}=k$ are 1-equivalent.
Tool: Developing approximate representations for Lie algebras. (for groups - Grove-Karcher-Ruh; Kazhdan; Lubotzky et al.)

Reversibility revisited

(reversibility) $\mathcal{B}_{\hbar}:=\left(n_{\hbar}\right)^{-1} T_{\hbar}^{*} T_{\hbar}: C^{\infty}(M) \rightarrow C^{\infty}(M)$ satisfies
$\mathcal{B}_{\hbar}(f)=f+\mathcal{O}(\hbar)$.

Reversibility revisited

(reversibility) $\mathcal{B}_{\hbar}:=\left(n_{\hbar}\right)^{-1} T_{\hbar}^{*} T_{\hbar}: C^{\infty}(M) \rightarrow C^{\infty}(M)$ satisfies
$\mathcal{B}_{\hbar}(f)=f+\mathcal{O}(\hbar)$.
$\mathcal{B}_{\hbar^{-}}$Berezin transform, composition of dequantization and quantization.

Reversibility revisited

(reversibility) $\mathcal{B}_{\hbar}:=\left(n_{\hbar}\right)^{-1} T_{\hbar}^{*} T_{\hbar}: C^{\infty}(M) \rightarrow C^{\infty}(M)$ satisfies $\mathcal{B}_{\hbar}(f)=f+\mathcal{O}(\hbar)$.
$\mathcal{B}_{\hbar^{-}}$Berezin transform, composition of dequantization and quantization.

Enhanced axiom: $\mathcal{B}_{\hbar}(f)=f+\hbar D f+\mathcal{O}\left(\hbar^{2}\right), D$ - differential operator.

Reversibility revisited

(reversibility) $\mathcal{B}_{\hbar}:=\left(n_{\hbar}\right)^{-1} T_{\hbar}^{*} T_{\hbar}: C^{\infty}(M) \rightarrow C^{\infty}(M)$ satisfies $\mathcal{B}_{\hbar}(f)=f+\mathcal{O}(\hbar)$.
$\mathcal{B}_{h^{-}}$Berezin transform, composition of dequantization and quantization.

Enhanced axiom: $\mathcal{B}_{\hbar}(f)=f+\hbar D f+\mathcal{O}\left(\hbar^{2}\right), D$ - differential operator.

Theorem

$D=-2 a$, where a is a symmetric operator with
$c_{+}(f, g)=a(f g)-f a(g)-g a(f)$.

Reversibility revisited

(reversibility) $\mathcal{B}_{\hbar}:=\left(n_{\hbar}\right)^{-1} T_{\hbar}^{*} T_{\hbar}: C^{\infty}(M) \rightarrow C^{\infty}(M)$ satisfies $\mathcal{B}_{\hbar}(f)=f+\mathcal{O}(\hbar)$.
$\mathcal{B}_{\hbar^{-}}$Berezin transform, composition of dequantization and quantization.

Enhanced axiom: $\mathcal{B}_{\hbar}(f)=f+\hbar D f+\mathcal{O}\left(\hbar^{2}\right), D$ - differential operator.

Theorem

$D=-2 a$, where a is a symmetric operator with
$c_{+}(f, g)=a(f g)-f a(g)-g a(f)$.
Example: For almost complex quantization, $D=-\Delta / 2$, where Δ - Laplace-Beltrami.

Markov chain

Berezin transform - Markov operator

Markov chain

Berezin transform - Markov operator

Quantization+Dequantization=Markov Chain on M

Markov chain

Berezin transform - Markov operator

Quantization+Dequantization=Markov Chain on M

Markov chain

Berezin transform - Markov operator

Quantization+Dequantization=Markov Chain on M

Dirac $\delta_{z} \rightarrow$ Coherent state proj. $P_{z, \hbar} \rightarrow$ "Gaussian" centered at z concentrated in ball of radius $\sim \sqrt{\hbar}$.

Spectral gap of Berezin transform

Spectrum: $1 \geq \gamma_{1} \geq \gamma_{2} \geq \cdots \geq \gamma_{k} \geq 0$ (infinite multiplicity)

Spectral gap of Berezin transform

Spectrum: $1 \geq \gamma_{1} \geq \gamma_{2} \geq \cdots \geq \gamma_{k} \geq 0$ (infinite multiplicity)
Theorem (loos-Kaminker-P.-Shmoish, 2018)
For Berezin-Toeplitz quantization of Kähler manifolds

$$
1-\gamma_{1}=\frac{\hbar}{2} \lambda_{1}+O\left(\hbar^{2}\right)
$$

where λ_{1} - first eigenvalue of Laplace-Beltrami operator.

Spectral gap of Berezin transform

Spectrum: $1 \geq \gamma_{1} \geq \gamma_{2} \geq \cdots \geq \gamma_{k} \geq 0$ (infinite multiplicity)
Theorem (loos-Kaminker-P.-Shmoish, 2018)
For Berezin-Toeplitz quantization of Kähler manifolds

$$
1-\gamma_{1}=\frac{\hbar}{2} \lambda_{1}+O\left(\hbar^{2}\right)
$$

where λ_{1} - first eigenvalue of Laplace-Beltrami operator.
Upper bound - Karabegov-Schlichenmaier, 2001.

Spectral gap of Berezin transform

Spectrum: $1 \geq \gamma_{1} \geq \gamma_{2} \geq \cdots \geq \gamma_{k} \geq 0$ (infinite multiplicity)

Theorem (loos-Kaminker-P.-Shmoish, 2018)

For Berezin-Toeplitz quantization of Kähler manifolds

$$
1-\gamma_{1}=\frac{\hbar}{2} \lambda_{1}+O\left(\hbar^{2}\right)
$$

where λ_{1} - first eigenvalue of Laplace-Beltrami operator.
Upper bound - Karabegov-Schlichenmaier, 2001.
Lower bound: cf. semiclassical random walk on the phase space (point x jumps uniformly in the ball $B(x, t), t \sim \sqrt{\hbar}$ small parameter). Spectral properties - Lebeau-Michel.

Spectral gap of Berezin transform

Spectrum: $1 \geq \gamma_{1} \geq \gamma_{2} \geq \cdots \geq \gamma_{k} \geq 0$ (infinite multiplicity)

Theorem (loos-Kaminker-P.-Shmoish, 2018)

For Berezin-Toeplitz quantization of Kähler manifolds

$$
1-\gamma_{1}=\frac{\hbar}{2} \lambda_{1}+O\left(\hbar^{2}\right)
$$

where λ_{1} - first eigenvalue of Laplace-Beltrami operator.
Upper bound - Karabegov-Schlichenmaier, 2001.
Lower bound: cf. semiclassical random walk on the phase space (point x jumps uniformly in the ball $B(x, t), t \sim \sqrt{\hbar}$ small parameter). Spectral properties - Lebeau-Michel.

Related to Donaldson's numerical Kähler geometry.

Spectral gap of Berezin transform

Spectrum: $1 \geq \gamma_{1} \geq \gamma_{2} \geq \cdots \geq \gamma_{k} \geq 0$ (infinite multiplicity)

Theorem (loos-Kaminker-P.-Shmoish, 2018)

For Berezin-Toeplitz quantization of Kähler manifolds

$$
1-\gamma_{1}=\frac{\hbar}{2} \lambda_{1}+O\left(\hbar^{2}\right)
$$

where λ_{1} - first eigenvalue of Laplace-Beltrami operator.
Upper bound - Karabegov-Schlichenmaier, 2001.
Lower bound: cf. semiclassical random walk on the phase space (point x jumps uniformly in the ball $B(x, t), t \sim \sqrt{\hbar}$ small parameter). Spectral properties - Lebeau-Michel.

Related to Donaldson's numerical Kähler geometry.
Related to noise of quantum measurements

THANK YOU!

