Reeb orbits that force topological entropy

Abror Pirnapasov

Ruhr-Universität Bochum

June 5, 2020

All this is joint work with Marcelo R.R. Alves, Umberto L. Hryniewicz and Pedro A.S. Salomão

Theorem (Katok)

The positivity of topological entropy for sufficiently smooth flows on a compact oriented 3-manifold is equivalent to the existence of a "horseshoe" as a flow subsystem.

Consequence: the number of hyperbolic periodic orbits of the flow grows exponentially with respect to the period.

(S,g) is a closed Riemannian surface.

Theorem (Dinaburg 71)

If the genus of S greater than 1, then every geodesic flow on S has positive topological entropy.

Theorem (Denvir and MacKay 98.)

If a Riemannian metric g on T^2 has a closed contractible geodesic then the geodesic flow ϕ_g of g has positive topological entropy.

```
(\mathbf{Y},\boldsymbol{\xi}) -closed contact 3-manifold.
```

A transverse link in (Y,ξ) is a link $L \hookrightarrow Y$ that is everywhere transverse to ξ .

Definition

A transverse link L in (Y,ξ) forces topological entropy if every Reeb flow on (Y,ξ) which has L as a set of Reeb orbits has positive topological entropy.

Theorem A (Alves-P. 20)

On every contact 3-manifold there exist transverse knots which force topological entropy.

 T_1S -unit tangent bundle.

There exist λ_g on the T_1S such that geodesic flow of (S,g) is a Reeb flow of λ_g and $\xi_{geo} = ker\lambda_g$ defines a *standard contact structure* on T_1S .

Theorem (Macarini and Schlenk 11, Alves 15)

If the genus of S greater than 1, then every Reeb flow on (T_1S,ξ_{geo}) has positive topological entropy.

Exponential growth of Lagrangian Floer homology

Exponential homotopical growth of cylindrical contact homology

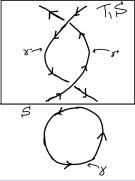
A flat knot

Definition

A flat knot in S is an immersed curve with only transverse self intersections.

Let $\gamma(t): S^1 \to S$ be a parametrised flat knot on (S,g).

We have knots $\gamma_g^+(t) = (\gamma(t), \frac{\dot{\gamma}(t)}{||\dot{\gamma}(t)||_g})$ and $\gamma_g^-(t) = (\gamma(-t), -\frac{\dot{\gamma}(-t)}{||\dot{\gamma}(-t)||_g})$ on T_1S .



Theorem B (Alves, Hryniewicz, Salomão and -P. work in progress) Let γ be a contractible flat knot in the two dimensional torus T^2 . Then the transverse link $\mathscr{L}_{\gamma} = \gamma_g^+ \sqcup \gamma_g^- \in (T^3, \xi_{geo})$ forces topological entropy.

Theorem (Denvir and MacKay 98.)

If a Riemannian metric g on T^2 has a closed contractible geodesic then the geodesic flow ϕ_g of g has positive topological entropy.

Cylindrical contact homology is a Morse-like homology: we count pseudo holomorphic cylinders instead of negative gradient flow lines. (Eliashberg, Givental and Hofer 00)

Cylindrical Contact homology in a homotopy class ρ complement of a link L (CH_L^{ρ}): Here we count cylinders with zero Siefring intersection number with trivial cylinder over the link. (Momin 11, Hryniewicz, Momin, and Salomão 15)

Theorem C (Alves-P. 20)

Let L be a transverse link in (Y,ξ) and λ_0 be a contact form on (Y,ξ) such that

- λ_0 has L as a set of periodic orbits and is hypertight on the complement of L,
- the cylindrical contact homology $CH_L(\lambda_0)$ has exponential homotopical growth.

Then, the transverse link L forces topological entropy. (for all λ)

Definition

Assume that *L* is a collection of Reeb orbits of λ_0 . We say that λ_0 is *hypertight in the complement of L* if

• any disk in Y whose boundary is a component of L must have an interior intersection point with L,

• every Reeb orbit of λ_0 is non-contractible in $Y \setminus L$.

Let $\Omega(Y \setminus L)$ be the set of *free homotopy classes* of loops in $Y \setminus L$.

For every positive real number T we define the set $\Omega_L^T(\lambda_0) \subset \Omega(Y \setminus L)$ such that $\rho \in \Omega_L^T(\lambda_0)$ if (λ_0, L, ρ) satisfies

- PLC condition
- ullet every Reeb orbit of λ_0 in ho has action smaller than T
- $CH_L^{\rho}(\lambda_0) \neq 0.$

Definition

 $CH_L(\lambda_0)$ has **exponential homotopical growth**, if a number $\limsup_{T \to +\infty} \frac{\log \# \Omega_L^T(\lambda_0)}{T}$ is positive.

Fix $\lambda = f \lambda_0$. Assume a > 0 denotes the exponential homotopical growth rate of $CH_L(\lambda_0)$.

Step 1

The exponential homotopical growth rate of Reeb flow of λ in $Y \setminus L$ is at least $\frac{a}{\max f_{\lambda}}$.

Step 2

If the exponential homotopical growth rate of non singular flow in $Y \setminus L$ is $\frac{a}{\max f_{\lambda}}$, then $h_{top}(\phi_{\lambda}) \geq \frac{a}{\max f_{\lambda}}$.

Theorem A (Alves-P. 20)

On every contact 3-manifold there exist transverse knots which force topological entropy.

Theorem (Giroux 00, Colin and Honda 08)

Given a contact 3-manifold (Y,ξ) there exists an open book decomposition of Y supporting (Y,ξ) . Moreover, the open book decomposition can be chosen to have connected binding and pseudo-Anosov monodromy.

Two contact structures supported by diffeomorphic open book decompositions are diffeomorphic.

Theorem D

Let (S,ψ,Ψ) be an open book decomposition that supports (Y,ξ) and satisfies

• ∂S is connected

 ${\, \bullet \,}$ the monodromy of the first return map ψ is pseudo-Anosov map.

Then there exists an open book decomposition (S, ψ', Ψ') diffeomorphic to (S, ψ, Ψ) that also supports (Y, ξ) and whose binding \mathscr{B}' forces topological entropy.

Outline of the Proof of Theorem D

Step 1

Constructing the special contact form λ_0 .

The set $\Omega^T_{\mathscr{B}'}(\lambda_0)$ of free homotopy classes of loops in $Y \setminus \mathscr{B}'$ that

- contain only non-degenerate Reeb orbits with action $\leq T$,
- contain an odd number of Reeb orbits,

satisfies

$$\limsup_{T \to +\infty} \frac{\log \# \Omega^T_{\mathscr{B}'}(\lambda_0)}{T} > 0.$$
(1)

Step 2

Computation of the exponential homotopical growth rate of $CH_{\mathscr{B}'}(\lambda_0)$.

Abror Pirnapasov (RUB)

Reeb orbits that force h_{top}

Thank you for your attention! Any questions?

Definition

Let (Y,ξ) be a contact 3-manifold, L be a transverse link in (Y,ξ) , λ_0 be a contact form on (Y,ξ) and ρ be a non-trivial free homotopy class of loops in $Y \setminus L$. Assume that L is a collection of Reeb orbits of λ_0 and that λ_0 is hypertight in the complement of L. We say that (λ_0, L, ρ) satisfy the "proper link class" condition (PLC) if

- for any connected component x of L, no Reeb orbit γ in ρ can be homotoped to x in $Y \setminus L$, i.e. there is no homotopy $I : [0,1] \times S^1 \to Y$ with $I(0,\cdot) = \gamma$ and $I(1,\cdot) = x$ such that $I([0,1) \times S^1) \subset Y \setminus L$.
- every Reeb orbit of λ_0 belonging to the class ρ is non-degenerate and simply covered.

A set $E \subset M$ is said to be (t, ε) -separated, if for every $x, y \subset E$ with $x \neq y$ there is $t_0 \subset (0,t)$ such that $d(\phi_{t_0}x, \phi_{t_0}y) \geq \varepsilon$. Let $s(t, \varepsilon)$ be the maximal cardinality of an (t, ε) -separated set in M. The **topological entropy** is obtained as

$$h_{top}(T) = \lim_{\varepsilon \to 0} \limsup_{t \to \infty} \frac{\log s(t,\varepsilon)}{t}$$