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Motivation

This talk will concern link Floer homology, an invariant for links in
S3 introduced in 2008, defined in collaboration with Zoltán Szabó.
This is an elaboration on knot Floer homology defined by us, and
independently by Jake Rasmussen in 2003, building on Heegaard
Floer homology.

The goal here is to give an algebraic “bordered” approach to
computing this invariant, building on the bordered Floer homology
of Robert Lipshitz, Dylan Thurston, and me.

In fact, this is a generalization of the bordered knot Floer
homology Szabó and I have been working on recently.



Knots and links

A knot can be represented by a closed curve immersed in the
plane, with crossing data. A link has a similar presentation, as an
ℓ-component closed curve.
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It is a theorem of Seifert that any oriented link ~L can be realized as
the boundary of an embedded, oriented surface in R3, called a
Seifert surface.

The Seifert genus g(~L) is the minimal genus of any Seifert surface
for ~L. When ~L is a knot, the Seifert genus is a fundamental
measure of its complexity.
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Elaboration of the Seifert genus

More generally, if L is an ℓ-component link, H2(R
3, L;Z) ∼= Zℓ.

Each relative homology class ξ ∈ H2(R
3, ~L;Z) can be represented

by a possibly disconnected, embedded surface F ⊂ R3 \ ν(L).
W. P. Thurston gave a very elegant formulation of this. Define the
complexity of a (possibly disconnected) surface F to be

χ(F ) = −χ(F ′),

where F = F ′ ∪ Spheres. The Thurston (semi-)norm of L is the
function

x : H2(R
3, L;Z) → Z,

defined by
x(ξ) = min{χ−(F )

∣

∣F representsξ}.



The Thurson norm

The function x is linear on rays, so it naturally extends to a
function x : H2(R

3, L;Q) → Q; and by continuity to a function
x : H2(R

3, L;R) → R. The unit ball in H1(R
3, L;R) ∼= Rℓ is a

polytope, called the Thurston polytope. Thus, the Thurston
polytope is a polytope in Euclidean space that governs the minimal
genus representatives of homology classes in a link complement.
By Poincaré duality, the vector space H2(R

3, L;R) is dual to
H1(S

3 \ L;R). The dual Thurston polytope is the unit ball in
H1(S

3 \ L;R).
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diagram, one of the four adjacent quadrants (represented by a
dot), subject to the following constraints:

◮ No two dots lie in the same region.

◮ No dot is adjacent to the distinguished edge.
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Kauffman states and the multi-variable Alexander
polynomial

To each Kauffman state, we can associate a monomial in
t1, . . . , tℓ, with local contributions as follows:
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t1, . . . , tℓ, with local contributions as follows:

−s−1/4t−1/4
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The Alexander polynomial of ~L is the polynomial Z[t1, . . . , tℓ]
which is the sum of monomials associated to each Kauffman state.
More invariantly, the Alexander polynomial ∆L can be viewed as
an element

∆L ∈ Z[H1(S
3 \ L;Z)].



Link Floer homology

Link Floer homology is a variant of Lagrangian Floer homology in
the symmetric product of a Riemann surface. For a link with
ℓ-components, this gives a graded vector space over F = Z/2Z
with ℓ+ 1 gradings,

ĤFL(L) =
⊕

d∈Z,h∈H2(R3,L)

ĤFLd(L, h).



Link Floer homology

Link Floer homology is a variant of Lagrangian Floer homology in
the symmetric product of a Riemann surface. For a link with
ℓ-components, this gives a graded vector space over F = Z/2Z
with ℓ+ 1 gradings,

ĤFL(L) =
⊕

d∈Z,h∈H2(R3,L)

ĤFLd(L, h).

Its Euler characteristic is the Alexander polynomial:

∑

d∈Z

(−1)d dim ĤFLd(L, h)[h].



Link Floer homology determines the Thurston norm

THEOREM (O.-Szabó, 2006) The convex hull of all h ∈ H1(R
3 \L)

so that ĤFL∗(L, h) 6= 0 is the sum of the dual Thurston polytope
and a hypercube. Equivalently, for h ∈ H1(S3 \ L;R),
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THEOREM (O.-Szabó, 2006) The convex hull of all h ∈ H1(R
3 \L)

so that ĤFL∗(L, h) 6= 0 is the sum of the dual Thurston polytope
and a hypercube. Equivalently, for h ∈ H1(S3 \ L;R),

x(PD[h]) +
ℓ

∑

i=1

|〈h, µi 〉| = 2 max
{s∈H1(L,R)

∣

∣

ĤFL(L,s) 6=0

〈s, h〉.

◮ This is an analogue of a gauge-theoretic theorem of
Kronheimer and Mrowka.

◮ A very elegant proof of this was given shortly afterward by
András Juhász, using his sutured Floer homology.
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Computational approaches

Link Floer homology is a variant of Lagrangian Floer homology.
Building on earlier work of Sucharit Sarkar, in 2006, Ciprian
Manolescu, Sarkar, and I gave a combinatorial description of link
Floer homology in terms of grid diagrams For a link with n
crossings, ĤFL is presented as the homology of a chain complex
with roughly n! generators. I will outline here the bordered
approach, which is similar in spirit to the algebraic definitions in
Khovanov homology.
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Slicing link diagrams

Type DA bimodule

Algebra

Type D module

Algebra

Type A module

Inspired by Bordered Floer homology, work of Robert Lipshitz,
Dylan Thurston, and me from 2008.



Pairing Theorem

ĤFL(~L) can be computed by a suitable successive tensor product
of bimodules over an algebra.

◮ Analogous to the pairing theorem of Lipshitz, Thurston, and
me for computing Heegaard Floer homology HF(Y ) from
2008.

◮ Generalizes work from 2019, of Szabó and me for knots.



Pairing Theorem

ĤFL(~L) can be computed by a suitable successive tensor product
of bimodules over an algebra.

◮ Analogous to the pairing theorem of Lipshitz, Thurston, and
me for computing Heegaard Floer homology HF(Y ) from
2008.

◮ Generalizes work from 2019, of Szabó and me for knots.

I will now sketch the ingredients that go into the “successive
tensor product”.
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Curved type D modules

Vector space X and a map X → A⊗ X If we think of the
generating set as {xi}

n
i=1, the we obtain a matrix A = (ai ,j)

n
i=1 with

d(xi ) =
∑

i ,j

ai ,j ⊗ xj .
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Vector space X and a map X → A⊗ X If we think of the
generating set as {xi}

n
i=1, the we obtain a matrix A = (ai ,j)

n
i=1 with

d(xi ) =
∑

i ,j

ai ,j ⊗ xj .

Satisfy a structure relation:
∑n

k=1 ai ,k · ak,j = µ0 · δi ,j .
More succinctly:

A · A = µ0 · In×n.

cf. “Matrix factorizations” of Mikhail Khovanov and Lev
Rozansky; “obstruction” from Kenji Fukaya, Kaoru Ono, Hiroshi
Ohta Yong-Geun Oh.
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. . .

. . .
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Tensor product

+ . . .+ +=∂



Our algebra

Algebra element

Relations

Idempotent

U3

R2L4L5



Curvature

The curvature is specified by the matching in the upper diagram.
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The curvature is specified by the matching in the upper diagram.
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U1U3 U2U6 U4U5
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Module associated to the very top

One generator and no differential, in the indicated idempotent.

51 2 3 4 5

dX = 0. Note that

d2X = (U1U2 + U3U4 + U5U6)⊗ X = 0.
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Generators of a marked minimum

Six generator types X0, X1, X2, Y0, Y1, Y2.

−X2

−X0

−X1
0X1,2

+

+

0X0,2

= X0

= X1

= X2



Actions on a marked minimum
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Y0 Y2
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From link projections to Heegaard diagrams
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From link projections to Heegaard diagrams

zw
z

w

For a knot, Heegaard Floer generators correspond to Kauffman
states. (This diagram was considered by us back in 2003.)



Degenerating link diagrams

w
z

w z



Upper Heegaard diagrams

α4
Z7 Z8α3 α5 α6 α7

Z1 Z2 Z3α1 α2

β1

β2

β3

Z4 Z5 Z6
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Upper Heegaard diagrams: differentials

y

α3 α5 α6 α7α4

x

Z1 Z2 Z3α1 α2

β1

β2

β3

Z4 Z5 Z6 Z7 Z8

δ1(x) = R2 ⊗ y + . . . δ1(y) = L2U4 ⊗ x+ . . .
µ0 = U1U3 + U2U4 + U5U7 + U6U8



An example

Consider the upper link diagram:



Corresponding upper Heegaard diagram
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Corresponding upper Heegaard diagram

β

Z1 Z2 Z3 Z4

α2 α3α1

x1 x2 t y1 y2
U4

U3

L2U1

R2

L3

R3U4

U2

U1

L2L3

R3R2



Relations in the algebra

Zi

y1 y2

βi−1 βi

αi+1αi−1 αi

Zi+1

z

αi−1

y

βi

αi

x t

Zi+1Zi

x1 x2



Step 1: Fiber product description of moduli spaces
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Step 4: Prune the curve
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Step 5: Time dilation

u8

e7

e3

u4
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R9 R9

L7U3 L7


