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(I): The Embedding Capacity Function 1

Consider symplectic embeddings of the open ellipsoid
E(L,2) == {(¢1, @) € C* | a(|G* + ) < 1}

into a scaling AX := (X, A\w) of a sympl. 4-manifold (X,w). Define
cx(z) :=inf{\ | E(1,z) sympl. embeds in AX}.

Vol (ZX,w)

Vol E(1,z) = zVol E(1,1) < Vol (X, Aw)) = A?Vol (X,w), and hence

A2 > z/Vol (X,w) if we normalize Vol E(1,1) := 1;

» if X is closed or a convex toric domain, cx(z) = /m for

sufficiently large z.
> (scaling) for A > 1, cx(\z) < Acx(z) because

> CX(Z) > (note: we need

E(1,z) < X = E(1,Az) C AE(1,z) <> AX

Problem: Compute cx(z) when X = Hj, := CP?(1)#CP?(b).



The case b = 0 (the ball, or CP?) 2

For a > 1 define c(z) := cuy(z) = inf{\: E*(1,z) embeds in B*(\)}.

o forz > 8L = (%7)2, c(z) =+/z :

— no obstruction except for volume,

i.e. full fillings 9

et <z« 8% is transitional region

(where 7 = ”2‘/5); 1

e For z < 7 = 6.7 5

there is an infinite staircase T 2 4 : g : rd

with numerics based on the odd placed
Fibonacci numbers F, :=1,1,2,3,5,8,13,21,34,...

. F,
e there are obstructions at the outer corners 2,2 13 /3% 225 1 gnd full
2k+1
2
filli . 22 52 132 Fakss :
illings at the inner corners %, %, &, ..., 72—, ... Because of rescaling, need

2k+1
only check these values of ¢(z) to prove 3 staircase.



Other targets 3.

Many papers deal with other targets, cf. Ellipsoid Day, June 2020. Our refs:
McSch = McDuff-Schlenk (2012) for the ball.

Usher = arXiv:1801.06762 (AGT 2019) Embedding ellipsoids into the irrational
polydisc B(1) x B?(b), b > 1 — Usher found a doubly infinitely family of
staircases Sjn, i.n > 1, each at a different irrational value of b, related by
numerical moves — most impressively by ‘Brahmagupta’ moves (dating
back to 7th century) that relate different solutions of the Diophantine
equation x> — 262 = C — gave us inspiration, and a useful estimate.

C-GHMP = Cristofaro-Gardiner, Holm, Mandini, Pires; arXiv:2004.13062; Staircases
in rational toric manifolds contains this theorem:

Thm [C-GHMP] If Hy, = CP?(1)#CP?(b) has a staircase S, then S must
accumulate at the point z = acc(b) which is the unique solution > 1 of the
equation 3-b 2
- <(1 - bZ
Moreover cp, (acc(b)) = Vi, (acc(b)). In the toric model (moment polytope) of
Xy, 3 — b is the affine length of the boundary, while 1 — b? is twice its area.

—2)2—0—1:0‘



The accumulation curve for H, 4.

The function b~ z = acc(b) (where z> — (% —2)z+1=0), decreases for

0< b<1/3from 7* ~ 6.8 to 3 4 21/2 ~ 5.8 then increases to oo as b — 1.
Y

3.5

25 k./

5.5 6 6.5 7 z
This shows the accumulation point z = acc(b), in a diagram where the
y-coordinate of each point on the red curve records the volume constraint
Vi(acc(b)). The blue point with b =0 is at (7*,7%) and is the accumulation
point for the Fibonacci stairs. The green point with b =1/3 is the
accumulation point for the stairs in H; /3 (discussed in [C-GHMP]) and is the
minimum of the function z — acc(z). The black point at (z,b) = (6,1/5) is
the place where Vj(acc(b)) takes its minimum.




New staircases for H, 5.

We found three new (double) families of staircases — where staircases labelled
£ (= lower) ascend to the accum point, and those labelled u (= upper) descend.

> (Sgn)nzl and (8‘5{")n20
3 noo < Aynoo in (7,00) and b, — 1;

> (SzLﬁn),,>0 and (85,,,)n>1 for b, € [0,1/5) with aj, ., < aj , o in (6,7"]
and b, — 1/5: note SL;L’O is the Fibonacci staircase at b = 0.

> (Si,),-, and (S5,),, for be (1/5,19/61) and a7, .. < 3,/ n o0 i
(35/6,6) and b, — 1/5.

e These staircase families are related by symmetries, e.g. there is a symmetry
operation (the reflection W : z — 6;:25 with fixed point z = 7) that for each n
takes 8}{,, to Sb’,,, and Sj{,, to S[L,n.

e These staircases are 2-periodic, i.e their steps have z-coordinates of the form
[2n+7,{2n+5,2n 4+ 1}*,2n + 4]. We conjecture that all 2-periodic staircases

are images of the staircases Sﬂ,, under some symmetry operation.

for b, € (5/11,1) with accumulation points

e We have found other potential staircases that are 4-, or 6-periodic etc, but
have not yet embarked on the proof that these satisfy all requisite conditions.



Blocked b-intervals 6.

Let x = U, L, or E, and denote by by ,, by , the b-value that supports the
corresponding staircase Sy ,, S, Then we found:

Theorem For x = U, L, or E and each n the set J; of b values between
by ., by, is obstructed, i.e. cy,(acc(b)) > Vi(acc(b)) for all b € Jy.

This figure shows JY (in brown), JY (red), J¥ (purple), and part of JY (blue) mapped
onto the accumulation curve so you can see the corresponding z values. The interval
JY contains the point 2n + 6 and has length converging to 2; thus ‘most’ z > 6 values

are not the limit points of a staircase — such points all lie in the short green intervals.



The general picture 7.

Define: Block := {b € [0,1) | cn,(acc(b)) > Vi(acc(b))} — an open set
Stair := {b € [0,1) | Hp has a staircase}

We know: Stair C Unobstr := [0, 1)\Block. For example, 1/5 is
unobstructed, but we prove it has no staircase.

» Conjecture: [C-GHMP] The only rational points in Stair are 0,1/3.

» Conjecture: The irrational b € Stair are precisely the endpoints of the
components of the open set Block.

» Conjecture: Denote
Block; := acc((1/3,1) N Block) C (3 +2v/2,00)

Block; := acc((0,1/3) N Block) C (3 + 2v/2, )
Then the intervals in Block} are invariant under the reflection

— 204
® : (35/6,00) — (35/6,00), z+> %, ®(6) = 6,
and iterates of the shift Sh” : z — 22=L. (and similarly for Block; ).
There also are symmetries (e.g. W : SY — S!) that interchange Block}

and Block; .



(11):

Key technical points of the proof

v

(1): Relation to blowing up: 3B*(w)<3>AH, = CP*(A\)#CP?(Ab) iff there
is a symplectic form on the blow up Hy#CP? = CP?4#2CP? in the class
dual to AL — AbEy — wE; (where E; is the new exceptional divisor)
(I1): Decomposition into balls Every rational number p/q > 1 has a
rational weight decomposition w(p/q) := (w1, ws, ..., wy) (where
wi =1, wy =1/q) s.t.
E(1,2) S AHy <= Ui B (W) <> A,

(Key result =1 + 1) 3E(1, %)‘;)\Hb iff 3 a symplectic form w on
Xny1 := the N-fold blow up of Hj in class a dual to AL — AbEy — 3, wiE;.
(111): Symplectic cone of Xyy41 (Li-Li +...): Jw : [w] = « iff

» o > 0 (volume constraint) and

> fE a > 0 for all classes E represented by exceptional spheres.
The class E = dL — mEy — 3 ;~1 m;iE; =: (d, m,m) of such a curve satisfies
a(E)=3d—m—-m=1, E-E=d?—m? -y m?=—1
(the Diophantine conditions). E must also transform correctly under Cremona
moves (a geometric condition).



The embedding obstructions g p 9.
E(1,z) < AHp, <= U; B*(wi(2)) <> AH,
— MN(d® - b°) > X wi(2)?, and
Ad —Amb =37, miwi(z) >0 V E

>i>1 miwi(z)
Thus ¢, (z) > == =: pe.s(z), where E = (d, m,m).
An exceptional class E = (d, m,m) is perfect if m = qw(p/q) for some center
point a = p/q. In this case > m;w;(a) is as large as possible (since the two
vectors are parallel) and one gets a particularly nice obstruction for z near a:
z)= ——— ifa<z<a+e— constant
pep(z) = — <
- # if a—e <z < a— line through 0
Td—mb = ene
Proposition: If E is perfect and b = m/d then cy,(a) = pe,b(a).
> if chO(a) = jE,hy (a) we say that ug p is live at a for b = by.
> The way we calculate cp, (z) is to show that some pg p is live at z for that by.
For this we need E to be exceptional, i.e. besides satisfying the (numerical)
Diophantine conditions it must reduce correctly under Cremona moves (which is
hard to check).
(you can also define obstructions and do calculations using ECH — but this is not so
relevant in this context)



Continued fractions and weight expansions

Recall: an except. divisor E = (d, m,m) =dL — mEy — >_ m;E; is
perfect if m = qw(p/q).

Here, the weight expansion qw(p/q) of a fraction s is given by

decomposing a rectangle into squares:
eg Ow(%) =1(9,9,7,2,2,2,1,1)
—~ M~~~

2221,
9 9 7
corresponds to
25 1 1
= =[21,32=24—7=2+—"5 =2+,
9 ]_+3 ; 14 £
+1 7

The entries of the continued fraction are the multiplicities of the weights



Obstructions: Fibonacci numbers and continued fractions 11

Ratios of Fibonacci numbers give rise to very special continued fractions:

The Fibonacci numbers 1,1,2,3,5,8,13,21, ..., , Fi, Fit1, ... have ratios
1238 13
125150 g+ with weight
expansions W(%) =(5,3,2,1,1). - > IL
all entries (except the last) of multiplicity 1 !
sof [11,1,2]_1—1—1+1 . 3
1+2
Fiy .
In general, % =[1,1,1,1,...,2]. I_L
In the limit we get
liMmk— oo F%:l =7= 1*‘[ — the golden ratio.
T is irrational, with |nf|n|te

cont. fract expansion [1;1,1,1,...]

Hence the ratios %ﬁ with cont. fract = [6;1,{5,1}*"*,4] converge to
=[6;1,{5,1}°°]. These are some of the centers of the classes of the

Fibonacci stairs.

Fact: the continued fraction of a number x is eventually periodic exactly if x is

a quadratic irrational (such as 7 = #)



The Fibonacci stairs again 12

3 cea——

17/6

D e
This has steps given by the perfect (exceptional) classes
(dk,O; QkW(Pk/CIk)) :(F2k+3, 0; F2I<+1W(F2k+5/F2k+1)) where
Ex :=w(Fakys/Fax) = [6; 1, {5, 1}, 4],

W(Faks7/Fass) = [6:1,{5,1}1,5,2],

Fi=1F=2F=5F =13,F =34, F11 =89, F13 = 233,...

e.g.233/34 =[6;1,5,1,4] has weight exp. (347°,29,5°° 4,17%)
The inner corners of these stairs lie on the volume constraint. This is a double

staircase — i.e. the steps have one of two possible endings that alternate as you
go up the steps, so that there is an intertwined pair of staircases



(I11): New features in H, = CP?(1)#CP?(b). 13

» An exceptional class B = (d, m; qw(p/q)) is called a center-blocking
class if for b : acc(b) = p/q we have ug p(p/q) > Vb(p/q). (where
we choose b in the same component of [0,1/3) U (1/3,1) as m/d)

> In this case, there can be no staircase for b = acc™!(p/q) and, by
continuity, for all b in an interval Jg. There is a corresponding
blocked z-interval Ig = acc(Jg) consisting of points that are not
accumulation points of staircases for b > 1/3 (resp. < 1/3.)

» In all cases we have investigated, there are staircases accumulating
at the end points of /g. (more details to follow)

» Example: the staircases Sﬁ{n lie at the endpoints of the intervals
given by the blocking classes

By = (n+3,n+2w(2n+6)), n > 0 with centers 6,8, 10, ...

> when the staircases descend they may be almost overshadowed i.e.
sometimes there is a large obstruction that prevents the steps from
reaching the volume curve.



The descending staircase SE 14

This has accumulation point as, = [5; 1,6, {5,1}*°] ~ 5.86 with
beo = 0.28.

e the line is the volume constraint Vol

e the green line is the parametrized accumulation curve

b — (acc(b), Vb(acc(b)) — meeting the orange Vol when b = bo.

e the dark blue line is the max. of all obstructions with degree < 200; it is
given for z < a., by the blocking class B, and for z > a., by the class

E =(3,1;2,1%°). It goes through the accum. point (aco, Vi, (ac))-

e the brown, red and purple curves are graphs of z — ue »__(z) for three
different classes E in the staircase.



Pre-staircases 15

A sequence S = (Ey), ., of perfect classes Ex := (dk, mi; qew(px/qx)) is a
pre-staircase if it has the following properties:
> (Recursion) There is an integer o > 0 such that o + 4 is a perfect square,
and each of the sequences xx := dk, my, pk, g« satisfies the recursion
X1 = (0 + 2)xk — xk—1,k > 0,
> (Relation) there are integers Ry, R1, R» such that
Rody = Rlpk + quk, Yk > 0.
Note: If we only know px, g« we may define di by (Relation) and set
my = 3dk — Pk — k-

Example: SY, has limit pt a, .. = [2n+ 7;{2n +5,2n + 1}*°]; and

(Centers) [2n+7;{2n 4+ 5,2n + 1}*, end,,]

end, =2n+4 or (2n+5,2n+ 2)
(Recursion) Xnk41 = (00 + 2)Xnk — Xnk—1, On = (2n+1)(2n+5)
(Relation) (2n+3)dnk = (n+ 2)pak — (n+ 4)gn,«

This is a “double staircase” because there are two ends. All the new staircases have
this form. Also, they all have the same recursion (coming from {2n +5,2n 4 1}¥) but
have different Relations (coming from the blocking classes).



When is a pre-staircase an actual staircase? 16

A pre-staircase is a (special kind of) sequence § = (Ek)k>0 of perfect

classes Ey := (dk, my; qkw(pk/qk)). The Recursion implies that the
ratios px/qx and my/dk both converge. We write

“/En Pk/ Ak =: aco, Iizn my/dx =: bso.

» Because each class E is obstructive at py/qx for by := my/dy, the
argument in [C-GHMP] implies that acc(boo) = @0o. (For this we only
need the classes Ej to satisfy the Diophantine conditions — they needn’t even be
perfect!)

> If the Ej are perfect, then p, b, is live at pc/qx — and it then
follows from the continuity of cy, as a function of b that b, is
unobstructed. i.e. cy, (ax) = Volp_(ac).

» To have a staircase at b, you need the E4 to be live at b, —
which involves further estimates.



Pre-staircases and blocking classes 17

The following theorem says that coefficients of the blocking class B
determine the relations of its associated pre-staircases.

Theorem: Let B = (d, m; qw(p/q)) have associated blocked z-interval
Is.

(i) If the ascending pre-staircase S; accumulates at the lower end point
ar,00 of Ig then its Relation is

(3m — d)dk = (m — q)px + mqx.

(ii) If the descending pre-staircase S, accumulates at the upper end point
au,00 Of Ig where B = (d, m; qw(p/q)), then its Relation is
(3m — d)dk = mpy + (m — p)qk

Example: Sf,{n has Relation (2n + 3)d, x = (n+ 2)ppx — (1 + 4)gn « and
converges to the upper end of /gy, where BY has
d=n+3m=n+2p=2n+6,g=1.



Summing up: 18

e We found three sets of blocking classes and associated 2-periodic staircases:
> (BY),>0 that blocks b-intervals in (5/11,1) and z-intervals in (6, c0)
> (B5)n>o that blocks b-intervals in [0,1/5) and z-intervals in (6, 7*)
> (BE),>o that blocks b-intervals in (1/5,19/61) and z-int. in (35/6,6).

e We conjecture these are the only 2-periodic staircases with z, b in these
intervals (no idea how to prove that)

e There are more blocking classes (and staircases) blocking b-intervals in
(11/31,5/11) and z-intervals in (35/6,6) that are the image of the family
(BY),>0 under the reflection [6,00) — (35/6, 6] that acts on z coordinates
by z — £2=20 ith fixed point 6. This reflection fixes B§, and interchanges

its two staircases Sf,{o,Sé{O. (not fully proved yet)

e there are further symmetries of the problem connected to the sequence
(1,2, ¥3,...) = (1,6,35,204,1189, ... ) (half the even Pell numbers).



Summing up: Further symmetries 19
Let (yo,y1,Y2,¥3,...) :=(0,1,6,35,204,1189,...)
» This sequence gives the values of y for which the Diophantine equation
x2 —8y? =1 has a solution.
» for all i, b; = acc™*(yi+1/y:) is rational, and
limyii1/yi = 3+ 22 = acc™(1/3)
> the shift Sh* : z — 220 takes the interval h := (35/6,00) to

I = (1189/204, 35/6) and we conjecture it takes BY, S, to blocking
classes/staircases in ks (and also for b > 1/3).

» More generally, Sh* takes I; := (yit2/yit1,¥i/yi—1) to lir2 and we
conjecture that it takes the blocking classes/stairs with z € [; to the
blocking classes/stairs with z € l;;2. (some of this is proved).

NOTE: the symmetries z ¢ act on the continued fraction expansions

—1Z—Yi
of the z-variables p/q in a very understandable way. e.g. z — 9= 25 acts by

[6; k, b2, l5,...] > [6+ k; l2,l3,...]. So, we can see what happens to the
staircase steps. But the action on the (d, m) coordinates of the perfect classes
(d, m; qw(p/q)) is much more mysterious.  In contrast, Usher encoded all his
variables in terms of the solutions to a single Diophantine equation on which the
Brahmagupta moves act.



Summing up: Structure of Block? 20
We define: Block := {b € [0,1) | cu,(acc(b)) > Vi(acc(b))} — an open set
Stair := {b € [0,1) | Hp has a staircase}
and have: Stair C Unobstr := [0, 1)\ Block.

> Above we described families of blocking classes B}, each of which defines
an interval in Block. All seem to have associated staircases.

» But we can prove that almost all the staircase classes are themselves
blocking classes!

» and, whenever we look, we find what seem to be associated staircases
> Therefore Block may be dense in [0, 1).

We will post our first paper on arXiv very soon, and another should follow at
some point.

— Maria Bertozzi, Tara Holm, Emily Maw, Dusa McDuff, Grace Mwakyoma,
Ana Rita Pires, Morgan Weiler



