Embedding Ellipsoids in the one-point blow up of $\mathbb{C}P^2$

Dusa McDuff

Department of Mathematics, Barnard College, Columbia University

report on a joint project with Maria Bertozzi, Tara Holm, Emily Maw, Grace Mwakyoma, Ana Rita Pires, Morgan Weiler

> Montreal Zoominar October 2, 2020

(I): The Embedding Capacity Function

Consider symplectic embeddings of the open ellipsoid

$$\mathsf{E}(1,z) := \left\{ (\zeta_1,\zeta_2) \in \mathbb{C}^2 \ \left| \ \pi(|\zeta_1|^2 + rac{1}{z}|\zeta_2|^2) < 1
ight\}$$

into a scaling $\lambda X := (X, \lambda \omega)$ of a sympl. 4-manifold (X, ω) . Define $c_X(z) := \inf \{ \lambda \mid E(1, z) \text{ sympl. embeds in } \lambda X \}.$

- ► $C_X(Z) \ge \sqrt{\frac{z}{\operatorname{Vol}(X,\omega)}}$ (note: we need $\operatorname{Vol} E(1,z) = z\operatorname{Vol} E(1,1) < \operatorname{Vol}(X,\lambda\omega) = \lambda^2 \operatorname{Vol}(X,\omega)$, and hence $\lambda^2 \ge z/\operatorname{Vol}(X,\omega)$ if we normalize $\operatorname{Vol} E(1,1) := 1$;
- If X is closed or a convex toric domain, c_X(z) = √ ^z/_{Vol(X,ω)} for sufficiently large z.
- (scaling) for $\lambda \ge 1$, $c_X(\lambda z) \le \lambda c_X(z)$ because

$$E(1,z) \stackrel{s}{\hookrightarrow} X \Longrightarrow E(1,\lambda z) \subset \lambda E(1,z) \stackrel{s}{\hookrightarrow} \lambda X$$

Problem: Compute $c_X(z)$ when $X = H_b := \mathbb{C}P^2(1) \# \overline{\mathbb{C}P}^2(b)$.

The case b = 0 (the ball, or $\mathbb{C}P^2$)

For $a \ge 1$ define $c(z) := c_{H_0}(z) = \inf\{\lambda : E^4(1, z) \text{ embeds in } B^4(\lambda)\}.$ • for $z \ge 8\frac{1}{36} = (\frac{17}{6})^2$, $c(z) = \sqrt{z}$ - no obstruction except for volume,

- i.e. full fillings
- $\tau^4 < z < 8\frac{1}{36}$ is transitional region (where $\tau = \frac{1+\sqrt{5}}{2}$); • For $z < \tau^4 \approx 6.7$

there is an infinite staircase

with numerics based on the odd placed

Fibonacci numbers $F_k := 1, 1, 2, 3, 5, 8, 13, 21, 34, \ldots$

• there are obstructions at the outer corners $\frac{2}{1}, \frac{5}{1}, \frac{13}{2}, \frac{34}{5}, \dots, \frac{F_{2k+5}}{F_{2k+1}}, \dots$ and full fillings at the inner corners $\frac{2^2}{1^2}, \frac{5^2}{2^2}, \frac{13^2}{5^2}, \dots, \frac{F_{2k+3}^2}{F_{2k+1}^2}, \dots$ Because of rescaling, need only check these values of c(z) to prove \exists staircase.

2.

Other targets

McSch = McDuff-Schlenk (2012) for the ball.

- Usher = arXiv:1801.06762 (AGT 2019) Embedding ellipsoids into the irrational polydisc $B^2(1) \times B^2(b)$, b > 1 Usher found a doubly infinitely family of staircases $S_{i,n}$, $i.n \ge 1$, each at a different irrational value of b, related by numerical moves most impressively by 'Brahmagupta' moves (dating back to 7th century) that relate different solutions of the Diophantine equation $x^2 2\delta^2 = C$ gave us inspiration, and a useful estimate.
- C-GHMP = Cristofaro-Gardiner, Holm, Mandini, Pires; arXiv:2004.13062; Staircases in rational toric manifolds contains this theorem:

Thm [C-GHMP] If $H_b = \mathbb{C}P^2(1) \# \overline{\mathbb{C}P}^2(b)$ has a staircase S, then S must accumulate at the point $z = \operatorname{acc}(b)$ which is the unique solution > 1 of the equation $z^2 - \left(\frac{(3-b)^2}{1-b^2} - 2\right)z + 1 = 0.$

Moreover $c_{H_b}(\operatorname{acc}(b)) = V_{H_b}(\operatorname{acc}(b))$. In the toric model (moment polytope) of X_b , 3 - b is the affine length of the boundary, while $1 - b^2$ is twice its area.

The accumulation curve for H_b 4.

The function $b \mapsto z = \operatorname{acc}(b)$ (where $z^2 - \left(\frac{(3-b)^2}{1-b^2} - 2\right)z + 1 = 0$), decreases for $0 \le b \le 1/3$ from $\tau^4 \approx 6.8$ to $3 + 2\sqrt{2} \approx 5.8$ then increases to ∞ as $b \to 1$.

This shows the accumulation point $z = \operatorname{acc}(b)$, in a diagram where the y-coordinate of each point on the red curve records the volume constraint $V_b(\operatorname{acc}(b))$. The blue point with b = 0 is at (τ^4, τ^2) and is the accumulation point for the Fibonacci stairs. The green point with b = 1/3 is the accumulation point for the stairs in $H_{1/3}$ (discussed in [C-GHMP]) and is the minimum of the function $z \mapsto \operatorname{acc}(z)$. The black point at (z, b) = (6, 1/5) is the place where $V_b(\operatorname{acc}(b))$ takes its minimum.

New staircases for H_b

We found three new (double) families of staircases — where staircases labelled ℓ (= lower) ascend to the accum point, and those labelled u (= upper) descend.

- ▶ $(\mathcal{S}_{\ell,n}^U)_{n\geq 1}$ and $(\mathcal{S}_{u,n}^U)_{n\geq 0}$ for $b_n \in (5/11, 1)$ with accumulation points $a_{\ell,n,\infty}^U < a_{u,n,\infty}^U$ in $(7, \infty)$ and $b_n \to 1$;
- ▶ $(S_{\ell,n}^L)_{n\geq 0}$ and $(S_{u,n}^L)_{n\geq 1}$ for $b_n \in [0, 1/5)$ with $a_{\ell,n,\infty}^L < a_{u,n,\infty}^L$ in $(6, \tau^4]$ and $b_n \to 1/5$: note $S_{\ell,0}^L$ is the Fibonacci staircase at b = 0.
- ▶ $(\mathcal{S}_{\ell,n}^{E})_{n\geq 1}$ and $(\mathcal{S}_{u,n}^{E})_{n\geq 0}$ for $b \in (1/5, 19/61)$ and $a_{\ell,n,\infty}^{U} < a_{u,n,\infty}^{U}$ in (35/6, 6) and $b_n \rightarrow 1/5$.

• These staircase families are related by symmetries, e.g. there is a symmetry operation (the reflection $\Psi : z \mapsto \frac{6z-35}{z-6}$ with fixed point z = 7) that for each n takes $S_{\ell,n}^U$ to $S_{u,n}^L$, and $S_{u,n}^U$ to $S_{\ell,n}^L$.

• These staircases are 2-periodic, i.e their steps have z-coordinates of the form $[2n+7, \{2n+5, 2n+1\}^k, 2n+4]$. We conjecture that all 2-periodic staircases are images of the staircases $S_{\bullet,n}^U$ under some symmetry operation.

• We have found other potential staircases that are 4-, or 6-periodic etc, but have not yet embarked on the proof that these satisfy all requisite conditions.

Blocked *b*-intervals

Let $\star = U, L$, or *E*, and denote by $b_{\ell,n}^{\star}, b_{u,n}^{\star}$ the *b*-value that supports the corresponding staircase $S_{\ell,n}^{\star}, S_{u,n}^{\star}$. Then we found:

Theorem For $\star = U, L$, or E and each n the set J_n^* of b values between $b_{\ell,n}^*, b_{u,n}^*$ is obstructed, i.e. $c_{H_b}(\operatorname{acc}(b)) > V_b(\operatorname{acc}(b))$ for all $b \in J_n^*$.

This figure shows J_0^U (in brown), J_1^U (red), J_2^U (purple), and part of J_3^U (blue) mapped onto the accumulation curve so you can see the corresponding *z* values. The interval J_n^U contains the point 2n + 6 and has length converging to 2; thus 'most' z > 6 values are not the limit points of a staircase — such points all lie in the short green intervals.

The general picture

We know: Stair \subseteq Unobstr := [0, 1)\Block. For example, 1/5 is unobstructed, but we prove it has no staircase.

- ▶ **Conjecture:** [C-GHMP] The only rational points in *Stair* are 0, 1/3.
- Conjecture: The irrational b ∈ Stair are precisely the endpoints of the components of the open set Block.
- Conjecture: Denote

$$\begin{array}{l} \textit{Block}_z^+ := \operatorname{acc} \big((1/3,1) \cap \textit{Block} \big) \subset (3+2\sqrt{2},\infty) \\ \\ \textit{Block}_z^- := \operatorname{acc} \big((0,1/3) \cap \textit{Block} \big) \subset (3+2\sqrt{2},\infty) \end{array}$$

Then the intervals in $Block_z^+$ are invariant under the reflection

$$\Phi: (35/6,\infty) \to (35/6,\infty), \quad z \mapsto rac{35z-204}{6z-35}, \quad \Phi(6)=6,$$

and iterates of the shift $Sh^2: z \mapsto \frac{35z-1}{6z-1}$. (and similarly for $Block_z^-$). There also are symmetries (e.g. $\Psi: S_{\bullet}^U \to S_{\bullet}^L$) that interchange $Block_z^+$ and $Block_z^-$.

(II): Key technical points of the proof

- (I): Relation to blowing up: ∃B⁴(w) → λH_b = CP²(λ)#CP²(λb) iff there is a symplectic form on the blow up H_b#CP² = CP²#2CP² in the class dual to λL − λbE₀ − wE₁ (where E₁ is the new exceptional divisor)
- (II): Decomposition into balls Every rational number p/q > 1 has a rational weight decomposition $w(p/q) := (w_1, w_2, ..., w_N)$ (where $w_1 = 1, w_N = 1/q$) s.t.

 $E(1, \frac{p}{q}) \stackrel{s}{\hookrightarrow} \lambda H_b \iff \sqcup_i B^4(w_i) \stackrel{s}{\hookrightarrow} \lambda H_b$

- (Key result = I + II) $\exists E(1, \frac{p}{q}) \stackrel{s}{\hookrightarrow} \lambda H_b$ iff \exists a symplectic form ω on $X_{N+1} :=$ the *N*-fold blow up of H_b in class α dual to $\lambda L \lambda b E_0 \sum_i w_i E_i$.
- ► (III): Symplectic cone of X_{N+1} (Li-Li +...): $\exists \omega : [\omega] = \alpha$ iff
 - $\alpha^2 > 0$ (volume constraint) and
 - $\int_{\mathbf{E}} \alpha > 0$ for all classes **E** represented by exceptional spheres.

The class $\mathbf{E} = dL - mE_0 - \sum_{i \ge 1} m_i E_i =: (d, m, \mathbf{m})$ of such a curve satisfies $c_1(\mathbf{E}) = 3d - m - \sum m_i = 1$, $\mathbf{E} \cdot \mathbf{E} = d^2 - m^2 - \sum m_i^2 = -1$. (the Diophantine conditions). \mathbf{E} must also transform correctly under Cremona

(the Diophantine conditions). **E** must also transform correctly under Cremona moves (a geometric condition).

The embedding obstructions $\mu_{E,b}$

$$egin{aligned} & E(1,z) \stackrel{s}{\hookrightarrow} \lambda H_b \iff & \sqcup_i \ B^4(w_i(z)) \stackrel{s}{\hookrightarrow} \lambda H_b \ & \iff & \lambda^2(d^2-b^2) > \sum w_i(z)^2, \ ext{and} \ & \lambda d - \lambda mb - \sum_{i\geq 1} m_i w_i(z) > 0 \ \ \forall \ \ & \mathbf{E}_i \end{aligned}$$

Thus $c_{\mathcal{H}_b}(z) \geq \frac{\sum_{i\geq 1} m_i w_i(z)}{d-mb} =: \mu_{\mathsf{E},b}(z)$, where $\mathsf{E} = (d, m, \mathsf{m})$.

An exceptional class $\mathbf{E} = (d, m, \mathbf{m})$ is perfect if $\mathbf{m} = \mathbf{qw}(\mathbf{p}/\mathbf{q})$ for some center point a = p/q. In this case $\sum m_i w_i(a)$ is as large as possible (since the two vectors are parallel) and one gets a particularly nice obstruction for z near a:

$$\begin{split} \mu_{\mathsf{E},b}(z) &= \frac{p}{d-mb} & \text{if } a \leq z < a + \varepsilon - \text{constant} \\ &= \frac{qz}{d-mb} & \text{if } a - \varepsilon < z \leq a - \text{line through 0} \end{split}$$

Proposition: If **E** is perfect and b = m/d then $c_{H_b}(a) = \mu_{E,b}(a)$.

- if $c_{H_{b_0}}(a) = \mu_{\mathbf{E},b_0}(a)$ we say that $\mu_{\mathbf{E},b}$ is live at a for $b = b_0$.
- The way we calculate c_{H_{b0}}(z) is to show that some μ_{E,b} is live at z for that b₀. For this we need E to be exceptional, i.e. besides satisfying the (numerical) Diophantine conditions it must reduce correctly under Cremona moves (which is hard to check).

(you can also define obstructions and do calculations using ECH – but this is not so relevant in this context)

Continued fractions and weight expansions

Recall: an except. divisor $\mathbf{E} = (d, m, \mathbf{m}) = \mathbf{dL} - \mathbf{mE}_0 - \sum \mathbf{m}_i \mathbf{E}_i$ is perfect if $\mathbf{m} = q\mathbf{w}(p/q)$.

Here, the weight expansion $q\mathbf{w}(p/q)$ of a fraction $\frac{p}{q}$ is given by decomposing a rectangle into squares:

eg 9w $(\frac{25}{9}) = (9,9,7,2,2,2,1,1)$

corresponds to

$$\frac{25}{9} = [2; 1, 3, 2] = \frac{2}{1} + \frac{1}{1 + \frac{1}{3 + \frac{1}{2}}} = \frac{2}{1} + \frac{1}{1 + \frac{2}{7}} = 2 + \frac{7}{9}.$$

The entries of the continued fraction are the multiplicities of the weights

Obstructions: Fibonacci numbers and continued fractions 11

Ratios of Fibonacci numbers give rise to very special continued fractions: The Fibonacci numbers $1, 1, 2, 3, 5, 8, 13, 21, \dots, F_k, F_{k+1}, \dots$ have ratios $\frac{1}{1}, \frac{2}{1}, \frac{3}{2}, \frac{8}{5}, \frac{13}{8}, \dots$ with weight expansions $W(\frac{8}{5}) = (5, 3, 2, 1, 1)$. – 2 all entries (except the last) of multiplicity 1 so $\frac{8}{5} = [1; 1, 1, 2] = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1}}}$. 5 3 In general, $\frac{F_{k+1}}{F_{l}} = [1; 1, 1, 1, \dots, 2].$ In the limit we get $\lim_{k\to\infty} \frac{F_{k+1}}{F_{\cdot}} = \tau = \frac{1+\sqrt{5}}{2}$ – the golden ratio. τ is irrational, with infinite cont. fract expansion $[1; 1, 1, 1, \ldots]$ Hence the ratios $\frac{F_{4k+5}}{F_{4k+1}}$ with cont. fract = [6; 1, {5, 1}^{k-1}, 4] converge to $\tau^4 = [6; 1, \{5, 1\}^{\infty}]$. These are some of the centers of the classes of the Fibonacci stairs.

Fact: the continued fraction of a number x is eventually periodic exactly if x is a quadratic irrational (such as $\tau^4 = \frac{7+3\sqrt{5}}{2}$).

The Fibonacci stairs again

This has steps given by the perfect (exceptional) classes

The inner corners of these stairs lie on the volume constraint. This is a double staircase – i.e. the steps have one of two possible endings that alternate as you go up the steps, so that there is an intertwined pair of staircases

(III): New features in $H_b = \mathbb{C}P^2(1) \# \overline{\mathbb{C}P}^2(b)$.

▶ An exceptional class $\mathbf{B} = (d, m; q\mathbf{w}(p/q))$ is called a center-blocking class if for $b : \operatorname{acc}(b) = p/q$ we have $\mu_{\mathbf{B},b}(p/q) > V_b(p/q)$. (where we choose *b* in the same component of $[0, 1/3) \cup (1/3, 1)$ as m/d)

13

- In this case, there can be no staircase for b = acc⁻¹(p/q) and, by continuity, for all b in an interval J_B. There is a corresponding blocked z-interval I_B = acc(J_B) consisting of points that are not accumulation points of staircases for b > 1/3 (resp. < 1/3.)</p>
- ► In all cases we have investigated, there are staircases accumulating at the end points of *I*_B. (more details to follow)
- ► Example: the staircases S^U_{•,n} lie at the endpoints of the intervals given by the blocking classes

 $\mathbf{B}_{n}^{U} = (n+3, n+2; \mathbf{w}(2n+6)), n \ge 0$ with centers $6, 8, 10, \dots$

when the staircases descend they may be almost overshadowed i.e. sometimes there is a large obstruction that prevents the steps from reaching the volume curve.

The descending staircase $\mathcal{S}_{u,0}^{E}$

This has accumulation point $a_{\infty} = [5; 1, 6, \{5, 1\}^{\infty}] \approx 5.86$ with $b_{\infty} \approx 0.28$.

14

- the orange line is the volume constraint Vol
- the green line is the parametrized accumulation curve
- $b \mapsto (\operatorname{acc}(b), V_b(\operatorname{acc}(b)) \text{meeting the orange } Vol \text{ when } b = b_{\infty}.$
- the dark blue line is the max. of all obstructions with degree ≤ 200; it is given for z < a_∞ by the blocking class B^E₀, and for z > a_∞ by the class E = (3,1;2,1^{×5}). It goes through the accum. point (a_∞, V_{b_∞}(a_∞)).
 the brown, red and purple curves are graphs of z → μ_{E,b_∞}(z) for three different classes E in the staircase.

Pre-staircases

A sequence $S = (\mathbf{E}_k)_{k \ge 0}$ of perfect classes $\mathbf{E}_k := (d_k, m_k; q_k \mathbf{w}(p_k/q_k))$ is a pre-staircase if it has the following properties:

- (Recursion) There is an integer σ ≥ 0 such that σ + 4 is a perfect square, and each of the sequences x_k := d_k, m_k, p_k, q_k satisfies the recursion x_{k+1} = (σ + 2)x_k x_{k-1}, k ≥ 0,
- (Relation) there are integers R_0 , R_1 , R_2 such that $R_0 d_k = R_1 p_k + R_2 q_k$, $\forall k \ge 0$.

Note: If we only know p_k , q_k we may define d_k by (Relation) and set $m_k := 3d_k - p_k - q_k$.

Example: $S_{u,n}^U$ has limit pt $a_{u,n,\infty}^U = [2n+7; \{2n+5, 2n+1\}^\infty]$; and

$$\begin{array}{ll} \text{(Centers)} & [2n+7; \{2n+5, 2n+1\}^k, \mathrm{end}_n] \\ & \mathrm{end}_n = 2n+4 \quad \mathrm{or} \ (2n+5, 2n+2) \\ \text{(Recursion)} & x_{n,k+1} = (\sigma_n+2)x_{n,k} - x_{n,k-1}, \ \sigma_n := (2n+1)(2n+5) \\ \text{(Relation)} & (2n+3)d_{n,k} = (n+2)p_{n,k} - (n+4)q_{n,k} \end{array}$$

This is a "double staircase" because there are two ends. All the new staircases have this form. Also, they all have the same recursion (coming from $\{2n + 5, 2n + 1\}^k$) but have different Relations (coming from the blocking classes).

When is a pre-staircase an actual staircase?

A pre-staircase is a (special kind of) sequence $S = (\mathbf{E}_k)_{k\geq 0}$ of perfect classes $\mathbf{E}_k := (d_k, m_k; q_k \mathbf{w}(p_k/q_k))$. The Recursion implies that the ratios p_k/q_k and m_k/d_k both converge. We write

$$\lim_{k} p_k/q_k =: a_{\infty}, \qquad \lim_{k} m_k/d_k =: b_{\infty}.$$

- ▶ Because each class E_k is obstructive at p_k/q_k for b_k := m_k/d_k, the argument in [C-GHMP] implies that acc(b_∞) = a_∞. (For this we only need the classes E_k to satisfy the Diophantine conditions they needn't even be perfect!)
- If the E_k are perfect, then µ_{E_k,b_k} is live at p_k/q_k − and it then follows from the continuity of c_{H_b} as a function of b that b_∞ is unobstructed. i.e. c_{H_{b∞}}(a_∞) = Vol b_∞(a_∞).
- ► To have a staircase at b_∞ you need the E_k to be live at b_∞ which involves further estimates.

Pre-staircases and blocking classes

The following theorem says that coefficients of the blocking class ${\bf B}$ determine the relations of its associated pre-staircases.

Theorem: Let $\mathbf{B} = (d, m; q\mathbf{w}(p/q))$ have associated blocked *z*-interval $I_{\mathbf{B}}$.

(i) If the ascending pre-staircase S_{ℓ} accumulates at the lower end point $a_{\ell,\infty}$ of $I_{\rm B}$ then its Relation is

$$(3m-d)d_k = (m-q)p_k + mq_k.$$

(ii) If the descending pre-staircase S_u accumulates at the upper end point $a_{u,\infty}$ of $I_{\mathbf{B}}$ where $\mathbf{B} = (d, m; q\mathbf{w}(p/q))$, then its Relation is

$$(3m-d)d_k = mp_k + (m-p)q_k$$

Example: $S_{u,n}^U$ has Relation $(2n+3)d_{n,k} = (n+2)p_{n,k} - (n+4)q_{n,k}$ and converges to the upper end of $I_{\mathbf{B}_n^U}$, where \mathbf{B}_n^U has d = n+3, m = n+2, p = 2n+6, q = 1.

Summing up:

- We found three sets of blocking classes and associated 2-periodic staircases:
 - $(\mathbf{B}_n^U)_{n\geq 0}$ that blocks *b*-intervals in (5/11, 1) and *z*-intervals in (6, ∞)
 - ▶ $(\mathbf{B}_n^L)_{n\geq 0}$ that blocks *b*-intervals in [0, 1/5) and *z*-intervals in (6, τ^4)
 - $(\mathbf{B}_n^{\mathcal{E}})_{n\geq 0}$ that blocks *b*-intervals in (1/5, 19/61) and *z*-int. in (35/6, 6).
- We conjecture these are the only 2-periodic staircases with z, b in these intervals (no idea how to prove that)

• There are more blocking classes (and staircases) blocking *b*-intervals in (11/31, 5/11) and *z*-intervals in (35/6, 6) that are the image of the family $(\mathbf{B}_n^U)_{n\geq 0}$ under the reflection $[6, \infty) \to (35/6, 6]$ that acts on *z* coordinates by $z \mapsto \frac{35z-204}{6z-35}$ with fixed point 6. This reflection fixes \mathbf{B}_0^U , and interchanges its two staircases $\mathcal{S}_{u,0}^U, \mathcal{S}_{\ell,0}^U$. (not fully proved yet)

• there are further symmetries of the problem connected to the sequence $(y_1, y_2, y_3, ...) = (1, 6, 35, 204, 1189, ...)$ (half the even Pell numbers).

Summing up: Further symmetries

Let $(y_0, y_1, y_2, y_3, \dots) := (0, 1, 6, 35, 204, 1189, \dots)$

- ► This sequence gives the values of y for which the Diophantine equation $x^2 8y^2 = 1$ has a solution.
- ► for all *i*, $b_i = \operatorname{acc}^{-1}(y_{i+1}/y_i)$ is rational, and $\lim y_{i+1}/y_i = 3 + 2\sqrt{2} = \operatorname{acc}^{-1}(1/3)$
- ▶ the shift $Sh^2: z \mapsto \frac{35z-6}{6z-1}$ takes the interval $I_1 := (35/6, \infty)$ to $I_3 = (1189/204, 35/6)$ and we conjecture it takes $\mathbf{B}^U_{\bullet}, \mathcal{S}^U_{\bullet, \bullet}$ to blocking classes/staircases in I_3 (and also for b > 1/3).
- More generally, Sh² takes I_i := (y_{i+2}/y_{i+1}, y_i/y_{i-1}) to I_{i+2} and we conjecture that it takes the blocking classes/stairs with z ∈ I_i to the blocking classes/stairs with z ∈ I_{i+2}. (some of this is proved).

NOTE: the symmetries $z \mapsto \frac{y_i z - y_{i+1}}{y_{i-1} z - y_i}$ act on the continued fraction expansions of the z-variables p/q in a very understandable way. e.g. $z \mapsto \frac{6z-35}{z-6}$ acts by $[6; k, \ell_2, \ell_3, \ldots] \mapsto [6 + k; \ell_2, \ell_3, \ldots]$. So, we can see what happens to the staircase steps. But the action on the (d, m) coordinates of the perfect classes (d, m; qw(p/q)) is much more mysterious. In contrast, Usher encoded *all* his variables in terms of the solutions to a single Diophantine equation on which the Brahmagupta moves act.

Summing up: Structure of *Block*?

We define: $Block := \{b \in [0,1) \mid c_{H_b}(\operatorname{acc}(b)) > V_b(\operatorname{acc}(b))\}$ – an open set $Stair := \{b \in [0,1) \mid H_b \text{ has a staircase}\}$

and have: Stair \subseteq Unobstr := $[0, 1) \setminus Block$.

- ► Above we described families of blocking classes B^{*}_n, each of which defines an interval in *Block*. All seem to have associated staircases.
- But we can prove that almost all the staircase classes are themselves blocking classes!
- > and, whenever we look, we find what seem to be associated staircases
- Therefore *Block* may be dense in [0, 1).

We will post our first paper on arXiv very soon, and another should follow at some point.

— Maria Bertozzi, Tara Holm, Emily Maw, Dusa McDuff, Grace Mwakyoma, Ana Rita Pires, Morgan Weiler