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(I): The Embedding Capacity Function 1.

Consider symplectic embeddings of the open ellipsoid

E (1, z) :=
{

(ζ1, ζ2) ∈ C2
∣∣ π(|ζ1|2 + 1

z |ζ2|2) < 1
}

into a scaling λX := (X , λω) of a sympl. 4-manifold (X , ω). Define

cX (z) := inf
{
λ
∣∣ E (1, z) sympl. embeds in λX

}
.

I cX (z) ≥
√

z
Vol (X,ω) (note: we need

VolE(1, z) = zVol E(1, 1) < Vol (X, λω)) = λ2Vol (X, ω), and hence

λ2 ≥ z/Vol (X, ω) if we normalize VolE(1, 1) := 1;

I if X is closed or a convex toric domain, cX (z) =
√

z
Vol (X,ω) for

sufficiently large z .

I (scaling) for λ ≥ 1, cX (λz) ≤ λcX (z) because

E (1, z)
s
↪→ X =⇒ E (1, λz) ⊂ λE (1, z)

s
↪→ λX

Problem: Compute cX (z) when X = Hb := CP2(1)#CP2(b).



The case b = 0 (the ball, or CP2) 2.

For a ≥ 1 define c(z) := cH0 (z) = inf
{
λ : E 4(1, z) embeds in B4(λ)

}
.

• for z ≥ 8 1
36

=
(

17
6

)2
, c(z) =

√
z

– no obstruction except for volume,

i.e. full fillings

• τ 4 < z < 8 1
36

is transitional region

(where τ = 1+
√

5
2

);

• For z < τ 4 ≈ 6.7

there is an infinite staircase

with numerics based on the odd placed

Fibonacci numbers Fk := 1, 1, 2, 3, 5, 8, 13, 21, 34, . . .

• there are obstructions at the outer corners 2
1
, 5

1
, 13

2
, 34

5
, . . . ,

F2k+5

F2k+1
, . . . and full

fillings at the inner corners 22

12 ,
52

22 ,
132

52 , . . . ,
F2

2k+3

F2
2k+1

, . . . Because of rescaling, need

only check these values of c(z) to prove ∃ staircase.



Other targets 3.

Many papers deal with other targets, cf. Ellipsoid Day, June 2020. Our refs:

McSch = McDuff–Schlenk (2012) for the ball.

Usher = arXiv:1801.06762 (AGT 2019) Embedding ellipsoids into the irrational
polydisc B2(1)× B2(b), b > 1 – Usher found a doubly infinitely family of
staircases Si,n, i .n ≥ 1, each at a different irrational value of b, related by
numerical moves — most impressively by ‘Brahmagupta’ moves (dating
back to 7th century) that relate different solutions of the Diophantine
equation x2 − 2δ2 = C – gave us inspiration, and a useful estimate.

C-GHMP = Cristofaro-Gardiner, Holm, Mandini, Pires; arXiv:2004.13062; Staircases
in rational toric manifolds contains this theorem:

Thm [C-GHMP] If Hb = CP2(1)#CP2(b) has a staircase S, then S must
accumulate at the point z = acc(b) which is the unique solution > 1 of the
equation

z2 −
( (3− b)2

1− b2
− 2
)
z + 1 = 0.

Moreover cHb (acc(b)) = VHb (acc(b)). In the toric model (moment polytope) of

Xb, 3− b is the affine length of the boundary, while 1− b2 is twice its area.



The accumulation curve for Hb 4.

The function b 7→ z = acc(b) (where z2−
(

(3−b)2

1−b2 − 2
)
z + 1 = 0), decreases for

0 ≤ b ≤ 1/3 from τ 4 ≈ 6.8 to 3 + 2
√

2 ≈ 5.8 then increases to ∞ as b → 1.
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This shows the accumulation point z = acc(b), in a diagram where the

y -coordinate of each point on the red curve records the volume constraint

Vb(acc(b)). The blue point with b = 0 is at (τ 4, τ 2) and is the accumulation

point for the Fibonacci stairs. The green point with b = 1/3 is the

accumulation point for the stairs in H1/3 (discussed in [C-GHMP]) and is the

minimum of the function z 7→ acc(z). The black point at (z , b) = (6, 1/5) is

the place where Vb(acc(b)) takes its minimum.



New staircases for Hb 5.

We found three new (double) families of staircases — where staircases labelled
` (= lower) ascend to the accum point, and those labelled u (= upper) descend.

I
(
SU
`,n

)
n≥1

and
(
SU
u,n

)
n≥0

for bn ∈ (5/11, 1) with accumulation points

aU`,n,∞ < aUu,n,∞ in (7,∞) and bn → 1;

I
(
SL
`,n

)
n≥0

and
(
SL
u,n

)
n≥1

for bn ∈ [0, 1/5) with aL`,n,∞ < aLu,n,∞ in (6, τ 4]

and bn → 1/5: note SL
`,0 is the Fibonacci staircase at b = 0.

I
(
SE
`,n

)
n≥1

and
(
SE
u,n

)
n≥0

for b ∈ (1/5, 19/61) and aU`,n,∞ < aUu,n,∞ in

(35/6, 6) and bn → 1/5.

• These staircase families are related by symmetries, e.g. there is a symmetry
operation (the reflection Ψ : z 7→ 6z−35

z−6
with fixed point z = 7) that for each n

takes SU
`,n to SL

u,n, and SU
u,n to SL

`,n.
• These staircases are 2-periodic, i.e their steps have z-coordinates of the form
[2n + 7, {2n + 5, 2n + 1}k , 2n + 4]. We conjecture that all 2-periodic staircases
are images of the staircases SU

•,n under some symmetry operation.

• We have found other potential staircases that are 4-, or 6-periodic etc, but

have not yet embarked on the proof that these satisfy all requisite conditions.



Blocked b-intervals 6.

Let ? = U, L, or E , and denote by b?
`,n, b

?
u,n the b-value that supports the

corresponding staircase S?
`,n,S?

u,n. Then we found:

Theorem For ? = U, L, or E and each n the set J?
n of b values between

b?
`,n, b

?
u,n is obstructed, i.e. cHb (acc(b)) > Vb(acc(b)) for all b ∈ J?

n .
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This figure shows JU0 (in brown), JU1 (red), JU2 (purple), and part of JU3 (blue) mapped

onto the accumulation curve so you can see the corresponding z values. The interval

JUn contains the point 2n + 6 and has length converging to 2; thus ‘most’ z > 6 values

are not the limit points of a staircase — such points all lie in the short green intervals.



The general picture 7.

Define: Block :=
{
b ∈ [0, 1)

∣∣ cHb (acc(b)) > Vb(acc(b))
}

– an open set
Stair :=

{
b ∈ [0, 1)

∣∣ Hb has a staircase
}

We know: Stair ( Unobstr := [0, 1)\Block. For example, 1/5 is
unobstructed, but we prove it has no staircase.

I Conjecture: [C-GHMP] The only rational points in Stair are 0, 1/3.

I Conjecture: The irrational b ∈ Stair are precisely the endpoints of the
components of the open set Block.

I Conjecture: Denote

Block+
z := acc

(
(1/3, 1) ∩ Block

)
⊂ (3 + 2

√
2,∞)

Block−z := acc
(
(0, 1/3) ∩ Block

)
⊂ (3 + 2

√
2,∞)

Then the intervals in Block+
z are invariant under the reflection

Φ : (35/6,∞)→ (35/6,∞), z 7→ 35z − 204

6z − 35
, Φ(6) = 6,

and iterates of the shift Sh2 : z 7→ 35z−1
6z−1

. (and similarly for Block−z ).

There also are symmetries (e.g. Ψ : SU
• → SL

•) that interchange Block+
z

and Block−z .



(II): Key technical points of the proof 8.

I (I): Relation to blowing up: ∃B4(w)
s
↪→λHb = CP2(λ)#CP2(λb) iff there

is a symplectic form on the blow up Hb#CP2 = CP2#2CP2 in the class

dual to λL− λbE0 − wE1 (where E1 is the new exceptional divisor)

I (II): Decomposition into balls Every rational number p/q > 1 has a
rational weight decomposition w(p/q) := (w1,w2, . . . ,wN) (where
w1 = 1,wN = 1/q) s.t.

E(1, p
q

)
s
↪→ λHb ⇐⇒ ti B

4(wi )
s
↪→ λHb

I (Key result = I + II) ∃E(1, p
q

)
s
↪→λHb iff ∃ a symplectic form ω on

XN+1 := the N-fold blow up of Hb in class α dual to λL−λbE0−
∑

i wiEi .

I (III): Symplectic cone of XN+1 (Li–Li + . . . ): ∃ω : [ω] = α iff

I α2 > 0 (volume constraint) and
I
∫

E
α > 0 for all classes E represented by exceptional spheres.

The class E = dL−mE0 −
∑

i≥1 miEi =: (d ,m,m) of such a curve satisfies

c1(E) = 3d −m −
∑

mi = 1, E · E = d2 −m2 −
∑

m2
i = −1.

(the Diophantine conditions). E must also transform correctly under Cremona

moves (a geometric condition).



The embedding obstructions µE,b 9.

E(1, z)
s
↪→ λHb ⇐⇒ ti B

4(wi (z))
s
↪→ λHb

⇐⇒ λ2(d2 − b2) >
∑

wi (z)2, and

λd − λmb −
∑

i≥1miwi (z) > 0 ∀ E

Thus cHb (z) ≥
∑

i≥1 miwi (z)

d−mb
=: µE,b(z), where E = (d ,m,m).

An exceptional class E = (d ,m,m) is perfect if m = qw(p/q) for some center
point a = p/q. In this case

∑
miwi (a) is as large as possible (since the two

vectors are parallel) and one gets a particularly nice obstruction for z near a:

µE,b(z) =
p

d −mb
if a ≤ z < a + ε− constant

=
qz

d −mb
if a− ε < z ≤ a− line through 0.

Proposition: If E is perfect and b = m/d then cHb (a) = µE,b(a).
I if cHb0

(a) = µE,b0
(a) we say that µE,b is live at a for b = b0.

I The way we calculate cHb0
(z) is to show that some µE,b is live at z for that b0.

For this we need E to be exceptional, i.e. besides satisfying the (numerical)
Diophantine conditions it must reduce correctly under Cremona moves (which is
hard to check).

(you can also define obstructions and do calculations using ECH – but this is not so

relevant in this context)



Continued fractions and weight expansions 10

Recall: an except. divisor E = (d ,m,m) = dL−mE0 −
∑

miEi is
perfect if m = qw(p/q).

Here, the weight expansion qw(p/q) of a fraction p
q is given by

decomposing a rectangle into squares:
eg 9w( 25

9 ) = ( 9, 9︸︷︷︸, 7, 2, 2, 2︸ ︷︷ ︸, 1, 1︸︷︷︸)
9 9 7

2 122 2
1

corresponds to

25

9
= [2; 1, 3, 2] = 2 +

1

1 + 1
3+ 1

2

= 2 +
1

1 + 2
7

= 2 + 7
9 .

The entries of the continued fraction are the multiplicities of the weights



Obstructions: Fibonacci numbers and continued fractions 11

Ratios of Fibonacci numbers give rise to very special continued fractions:
The Fibonacci numbers 1, 1, 2, 3, 5, 8, 13, 21, . . . ,Fk ,Fk+1, . . . have ratios
1
1
, 2

1
, 3

2
, 8

5
, 13

8
, . . . with weight

expansions W ( 8
5
) = (5, 3, 2, 1, 1). –

all entries (except the last) of multiplicity 1
so 8

5
= [1; 1, 1, 2] = 1 + 1

1+ 1

1+ 1
2

.

In general,
Fk+1

Fk
= [1; 1, 1, 1, . . . , 2].

In the limit we get

limk→∞
Fk+1

Fk
= τ = 1+

√
5

2
– the golden ratio.

τ is irrational, with infinite
cont. fract expansion [1; 1, 1, 1, . . . ]

Hence the ratios
F4k+5

F4k+1
with cont. fract = [6; 1, {5, 1}k−1, 4] converge to

τ 4 = [6; 1, {5, 1}∞]. These are some of the centers of the classes of the
Fibonacci stairs.

Fact: the continued fraction of a number x is eventually periodic exactly if x is

a quadratic irrational (such as τ 4 = 7+3
√

5
2

).



The Fibonacci stairs again 12

This has steps given by the perfect (exceptional) classes(
dk , 0; qkw(pk/qk)

)
=
(
F2k+3, 0;F2k+1w(F2k+5/F2k+1)

)
where

Ek :=w(F4k+5/F4k+1) = [6; 1, {5, 1}k−1, 4],

w(F4k+7/F4k+3) = [6; 1, {5, 1}k−1, 5, 2],

F1 = 1,F3 = 2,F5 = 5,F7 = 13,F9 = 34,F11 = 89,F13 = 233, . . .

e.g . 233/34 = [6; 1, 5, 1, 4] has weight exp.
(
34×6, 29, 5×5, 4, 1×4).

The inner corners of these stairs lie on the volume constraint. This is a double

staircase – i.e. the steps have one of two possible endings that alternate as you

go up the steps, so that there is an intertwined pair of staircases



(III): New features in Hb = CP2(1)#CP2(b). 13

I An exceptional class B =
(
d ,m; qw(p/q)

)
is called a center-blocking

class if for b : acc(b) = p/q we have µB,b(p/q) > Vb(p/q). (where

we choose b in the same component of [0, 1/3) ∪ (1/3, 1) as m/d)

I In this case, there can be no staircase for b = acc−1(p/q) and, by
continuity, for all b in an interval JB. There is a corresponding
blocked z-interval IB = acc(JB) consisting of points that are not
accumulation points of staircases for b > 1/3 (resp. < 1/3.)

I In all cases we have investigated, there are staircases accumulating
at the end points of IB. (more details to follow)

I Example: the staircases SU•,n lie at the endpoints of the intervals
given by the blocking classes

BU
n =

(
n + 3, n + 2; w(2n + 6)

)
, n ≥ 0 with centers 6, 8, 10, . . .

I when the staircases descend they may be almost overshadowed i.e.
sometimes there is a large obstruction that prevents the steps from
reaching the volume curve.



The descending staircase SEu,0 14

This has accumulation point a∞ = [5; 1, 6, {5, 1}∞] ≈ 5.86 with
b∞ ≈ 0.28.

5.86055 5.86056 5.86057 5.86058 5.86059 5.86060

2.51927

2.51927

2.51928

2.51928

2.51928

2.51928

2.51928

• the orange line is the volume constraint Vol
• the green line is the parametrized accumulation curve
b 7→ (acc(b),Vb(acc(b)) – meeting the orange Vol when b = b∞.
• the dark blue line is the max. of all obstructions with degree ≤ 200; it is
given for z < a∞ by the blocking class BE

0 , and for z > a∞ by the class
E = (3, 1; 2, 1×5). It goes through the accum. point (a∞,Vb∞(a∞)).

• the brown, red and purple curves are graphs of z 7→ µE,b∞(z) for three

different classes E in the staircase.



Pre-staircases 15

A sequence S =
(
Ek

)
k≥0

of perfect classes Ek :=
(
dk ,mk ; qkw(pk/qk)

)
is a

pre-staircase if it has the following properties:

I (Recursion) There is an integer σ ≥ 0 such that σ + 4 is a perfect square,
and each of the sequences xk := dk ,mk , pk , qk satisfies the recursion
xk+1 = (σ + 2)xk − xk−1, k ≥ 0,

I (Relation) there are integers R0,R1,R2 such that
R0dk = R1pk + R2qk , ∀k ≥ 0.

Note: If we only know pk , qk we may define dk by (Relation) and set
mk := 3dk − pk − qk .

Example: SU
u,n has limit pt aUu,n,∞ = [2n + 7; {2n + 5, 2n + 1}∞]; and

(Centers) [2n + 7; {2n + 5, 2n + 1}k , endn]
endn = 2n + 4 or (2n + 5, 2n + 2)

(Recursion) xn,k+1 = (σn + 2)xn,k − xn,k−1, σn := (2n + 1)(2n + 5)
(Relation) (2n + 3)dn,k = (n + 2)pn,k − (n + 4)qn,k

This is a “double staircase” because there are two ends. All the new staircases have

this form. Also, they all have the same recursion (coming from {2n + 5, 2n + 1}k ) but

have different Relations (coming from the blocking classes).



When is a pre-staircase an actual staircase? 16

A pre-staircase is a (special kind of) sequence S =
(
Ek

)
k≥0

of perfect

classes Ek :=
(
dk ,mk ; qkw(pk/qk)

)
. The Recursion implies that the

ratios pk/qk and mk/dk both converge. We write

lim
k

pk/qk =: a∞, lim
k

mk/dk =: b∞.

I Because each class Ek is obstructive at pk/qk for bk := mk/dk , the
argument in [C-GHMP] implies that acc(b∞) = a∞. (For this we only

need the classes Ek to satisfy the Diophantine conditions – they needn’t even be

perfect!)

I If the Ek are perfect, then µEk ,bk is live at pk/qk – and it then
follows from the continuity of cHb

as a function of b that b∞ is
unobstructed. i.e. cHb∞

(a∞) = Vol b∞(a∞).

I To have a staircase at b∞ you need the Ek to be live at b∞ —
which involves further estimates.



Pre-staircases and blocking classes 17

The following theorem says that coefficients of the blocking class B
determine the relations of its associated pre-staircases.

Theorem: Let B =
(
d ,m; qw(p/q)

)
have associated blocked z-interval

IB.

(i) If the ascending pre-staircase S` accumulates at the lower end point
a`,∞ of IB then its Relation is

(3m − d)dk = (m − q)pk + mqk .

(ii) If the descending pre-staircase Su accumulates at the upper end point
au,∞ of IB where B =

(
d ,m; qw(p/q)

)
, then its Relation is

(3m − d)dk = mpk + (m − p)qk

Example: SUu,n has Relation (2n + 3)dn,k = (n + 2)pn,k − (n + 4)qn,k and

converges to the upper end of IBU
n

, where BU
n has

d = n + 3,m = n + 2, p = 2n + 6, q = 1 .



Summing up: 18

• We found three sets of blocking classes and associated 2-periodic staircases:

I (BU
n )n≥0 that blocks b-intervals in (5/11, 1) and z-intervals in (6,∞)

I (BL
n)n≥0 that blocks b-intervals in [0, 1/5) and z-intervals in (6, τ 4)

I (BE
n )n≥0 that blocks b-intervals in (1/5, 19/61) and z-int. in (35/6, 6).

• We conjecture these are the only 2-periodic staircases with z , b in these
intervals (no idea how to prove that)

• There are more blocking classes (and staircases) blocking b-intervals in
(11/31, 5/11) and z-intervals in (35/6, 6) that are the image of the family
(BU

n )n≥0 under the reflection [6,∞)→ (35/6, 6] that acts on z coordinates
by z 7→ 35z−204

6z−35
with fixed point 6. This reflection fixes BU

0 , and interchanges

its two staircases SU
u,0,SU

`,0. (not fully proved yet)

• there are further symmetries of the problem connected to the sequence

(y1, y2, y3, . . . ) = (1, 6, 35, 204, 1189, . . . ) (half the even Pell numbers).



Summing up: Further symmetries 19

Let (y0, y1, y2, y3, . . . ) := (0, 1, 6, 35, 204, 1189, . . . )

I This sequence gives the values of y for which the Diophantine equation
x2 − 8y 2 = 1 has a solution.

I for all i , bi = acc−1(yi+1/yi ) is rational, and
lim yi+1/yi = 3 + 2

√
2 = acc−1(1/3)

I the shift Sh2 : z 7→ 35z−6
6z−1

takes the interval I1 := (35/6,∞) to

I3 = (1189/204, 35/6) and we conjecture it takes BU
• ,SU

•,• to blocking
classes/staircases in I3 (and also for b > 1/3).

I More generally, Sh2 takes Ii := (yi+2/yi+1, yi/yi−1) to Ii+2 and we
conjecture that it takes the blocking classes/stairs with z ∈ Ii to the
blocking classes/stairs with z ∈ Ii+2. (some of this is proved).

NOTE: the symmetries z 7→ yi z−yi+1

yi−1z−yi
act on the continued fraction expansions

of the z-variables p/q in a very understandable way. e.g. z 7→ 6z−35
z−6

acts by

[6; k, `2, `3, . . . ] 7→ [6 + k; `2, `3, . . . ]. So, we can see what happens to the

staircase steps. But the action on the (d ,m) coordinates of the perfect classes(
d ,m; qw(p/q)

)
is much more mysterious. In contrast, Usher encoded all his

variables in terms of the solutions to a single Diophantine equation on which the

Brahmagupta moves act.



Summing up: Structure of Block? 20

We define: Block :=
{
b ∈ [0, 1)

∣∣ cHb (acc(b)) > Vb(acc(b))
}

– an open set
Stair :=

{
b ∈ [0, 1)

∣∣ Hb has a staircase
}

and have: Stair ( Unobstr := [0, 1)\Block.
I Above we described families of blocking classes B?

n , each of which defines
an interval in Block. All seem to have associated staircases.

I But we can prove that almost all the staircase classes are themselves
blocking classes!

I and, whenever we look, we find what seem to be associated staircases

I Therefore Block may be dense in [0, 1).

We will post our first paper on arXiv very soon, and another should follow at
some point.

— Maria Bertozzi, Tara Holm, Emily Maw, Dusa McDuff, Grace Mwakyoma,

Ana Rita Pires, Morgan Weiler


