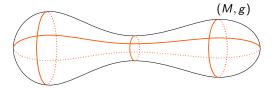
Spectral characterizations of Besse and Zoll Reeb flows

Marco Mazzucchelli (CNRS and École normale supérieure de Lyon)

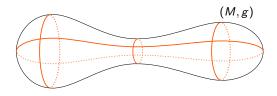
Joint work with:

- Stefan Suhr
- Daniel Cristofaro-Gardiner
- · Viktor Ginzburg, Basak Gurel

The closed geodesics conjectures



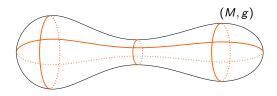
The closed geodesics conjectures



- ▶ Every closed Riemannian manifold (M, g) of $dim(M) \ge 2$ has infinitely many closed geodesics.
- Every closed Finsler manifold (M, F) has at least dim(M) many closed geodesics.

Widely open for $M = S^n$ (except S^2)

The closed geodesics conjectures



- ▶ Every closed Riemannian manifold (M, g) of $dim(M) \ge 2$ has infinitely many closed geodesics.
- Every closed Finsler manifold (M, F) has at least dim(M) many closed geodesics.

Widely open for $M = S^n$ (except S^2)

Subconjecture: Every closed (M,g) or (M,F) with dim(M) > 2 has at least two closed geodesics.

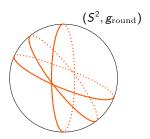
Open for $M = S^n$ (except $1 \le n \le 4$).

▶ A closed Riemannian manifold (M, g) is Zoll if all its geodesics are closed and have the same length ℓ .

- A closed Riemannian manifold (M, g) is Zoll if all its geodesics are closed and have the same length ℓ .
- Prime length spectrum of (M, g): $\sigma_{p}(M, g) = \{ \operatorname{length}(\gamma) \mid \gamma \text{ prime closed geodesic of } (M, g) \}$

- ▶ A closed Riemannian manifold (M, g) is Zoll if all its geodesics are closed and have the same length ℓ .
- Prime length spectrum of (M, g): $\sigma_{p}(M, g) = \{ \operatorname{length}(\gamma) \mid \gamma \text{ prime closed geodesic of } (M, g) \}$

Example:



$$\sigma_{\mathrm{p}}(S^2, g_{\mathrm{round}}) = \{2\pi\}.$$

- A closed Riemannian manifold (M, g) is Zoll if all its geodesics are closed and have the same length ℓ .
- Prime length spectrum of (M, g): $\sigma_{p}(M, g) = \{ \operatorname{length}(\gamma) \mid \gamma \text{ closed geodesic of } (M, g) \}$

Conjecture: If $\sigma_p(M, g) = \{\ell\}$, then (M, g) is Zoll.

Remark: The conjecture implies that every (M, g) admits at least two closed geodesics.

- A closed Riemannian manifold (M, g) is Zoll if all its geodesics are closed and have the same length ℓ .
- Prime length spectrum of (M, g): $\sigma_{p}(M, g) = \{ \operatorname{length}(\gamma) \mid \gamma \text{ closed geodesic of } (M, g) \}$

Conjecture: If $\sigma_p(M, g) = \{\ell\}$, then (M, g) is Zoll.

Remark: The conjecture implies that every (M, g) admits at least two closed geodesics.

Theorem (Mazzucchelli, Suhr, 2017; claimed by Lusternik, 1960s) The conjecture is true for (S^2, g) .

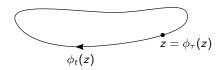
Indeed, slightly more is true: if every simply closed geodesic of (S^2,g) has length ℓ , then every geodesic of (S^2,g) is simply closed and has length ℓ .

 $lackbox{(}Y^{2n+1},\lambda)$ closed contact manifold, $\phi_t:Y o Y$ Reeb flow

 $\begin{array}{c} \blacktriangleright \ \, \big(Y^{2n+1},\lambda\big) \text{ closed contact manifold, } \phi_t:Y\to Y \text{ Reeb flow} \\ \lambda \text{ 1-form on } Y,\,\lambda\wedge d\lambda^n \text{ volume form} \\ R \text{ Reeb vector field on } Y,\,\lambda(R)\equiv 1,\,d\lambda(R,\cdot)\equiv 0 \\ \phi_t \text{ flow of } R \end{array}$

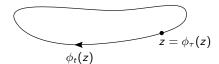
- $\begin{array}{c} \bullet \ \, \big(Y^{2n+1},\lambda\big) \ \text{closed contact manifold,} \ \phi_t:Y\to Y \ \text{Reeb flow} \\ \lambda \ 1\text{-form on} \ Y,\ \lambda\wedge d\lambda^n \ \text{volume form} \\ R \ \text{Reeb vector field on} \ Y,\ \lambda(R)\equiv 1,\ d\lambda(R,\cdot)\equiv 0 \\ \phi_t \ \text{flow of} \ R \end{array}$
- Closed Reeb orbit:

$$\gamma(t) = \phi_t(z)$$
 such that $\gamma(t) = \gamma(t + \tau)$
 $\tau_{\gamma} := \text{minimal period of } \gamma$



- $\begin{array}{c} \blacktriangleright \ \, \big(Y^{2n+1},\lambda\big) \ \text{closed contact manifold,} \ \phi_t:Y\to Y \ \text{Reeb flow} \\ \lambda \ 1\text{-form on} \ Y,\ \lambda\wedge d\lambda^n \ \text{volume form} \\ R \ \text{Reeb vector field on} \ Y,\ \lambda(R)\equiv 1,\ d\lambda(R,\cdot)\equiv 0 \\ \phi_t \ \text{flow of} \ R \end{array}$
- Closed Reeb orbit:

$$\gamma(t) = \phi_t(z)$$
 such that $\gamma(t) = \gamma(t + \tau)$
 $\tau_{\gamma} :=$ minimal period of γ

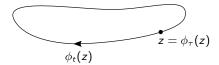


Action spectra:

$$\sigma_{\mathrm{p}}(Y,\lambda) = \{ \tau_{\gamma} \mid \gamma \text{ periodic Reeb orbit} \}$$

- $\begin{array}{c} \bullet \ \, \big(Y^{2n+1},\lambda\big) \ \text{closed contact manifold,} \ \phi_t:Y\to Y \ \text{Reeb flow} \\ \lambda \ 1\text{-form on} \ Y,\ \lambda\wedge d\lambda^n \ \text{volume form} \\ R \ \text{Reeb vector field on} \ Y,\ \lambda(R)\equiv 1,\ d\lambda(R,\cdot)\equiv 0 \\ \phi_t \ \text{flow of} \ R \end{array}$
- Closed Reeb orbit:

$$\gamma(t) = \phi_t(z)$$
 such that $\gamma(t) = \gamma(t + \tau)$
 $\tau_{\gamma} := \text{minimal period of } \gamma$



Action spectra:

$$\begin{split} \sigma_{\mathrm{p}}(Y,\lambda) &= \big\{ \tau_{\gamma} \bigm| \gamma \text{ periodic Reeb orbit} \big\} \\ \sigma(Y,\lambda) &= \big\{ n \, \tau_{\gamma} \bigm| n \in \mathbb{N}, \ \gamma \text{ periodic Reeb orbit} \big\} \end{split}$$

- $lackbox(Y^{2n+1},\lambda)$ closed contact manifold, $\phi_t:Y\to Y$ Reeb flow
- Closed Reeb orbit:

$$\gamma(t) = \phi_t(z)$$
 such that $\gamma(t) = \gamma(t + \tau)$
 $\tau_{\gamma} := \text{minimal period of } \gamma$

Action spectra:

$$\begin{split} \sigma_{\mathrm{p}}(Y,\lambda) &= \big\{ \tau_{\gamma} \bigm| \gamma \text{ periodic Reeb orbit} \big\} \\ \sigma(Y,\lambda) &= \big\{ n \, \tau_{\gamma} \bigm| n \in \mathbb{N}, \ \gamma \text{ periodic Reeb orbit} \big\} \end{split}$$

Example: $Y = S^*M$ unit cotangent bundle of (M, F) or (M, g), λ Liouville form, ϕ_t geodesic flow

 (Y,λ) closed, X Reeb vector field, $\phi_t:Y o Y$ Reeb flow

 (Y,λ) closed, X Reeb vector field, $\phi_t:Y o Y$ Reeb flow

 $ightharpoonup (Y, \lambda)$ is Besse when every Reeb orbit is periodic.

 (Y,λ) closed, X Reeb vector field, $\phi_t:Y o Y$ Reeb flow

 (Y, λ) is Besse when every Reeb orbit is periodic.

Wadsley's thm: If (Y, λ) Besse, then $\phi_{\tau} = id$ for some $\tau > 0$.

 (Y,λ) closed, X Reeb vector field, $\phi_t:Y o Y$ Reeb flow

 $ightharpoonup (Y, \lambda)$ is Besse when every Reeb orbit is periodic.

Wadsley's thm: If (Y, λ) Besse, then $\phi_{\tau} = id$ for some $\tau > 0$.

 (Y, λ) is Zoll when every Reeb orbit is periodic with the same minimal period τ ,

i.e.
$$\phi_{\tau} = \mathrm{id}$$
, $\mathrm{fix}(\phi_t) = \emptyset \ \forall t \in (0, \tau)$.

- (Y, λ) , X Reeb vector field, $\phi_t : Y \to Y$ Reeb flow
 - $ightharpoonup (Y, \lambda)$ is Besse when every Reeb orbit is periodic.
 - $ightharpoonup (Y,\lambda)$ is Zoll when every Reeb orbit is periodic with the same minimal period au

 (Y,λ) , X Reeb vector field, $\phi_t:Y o Y$ Reeb flow

- $ightharpoonup (Y, \lambda)$ is Besse when every Reeb orbit is periodic.
- $ightharpoonup (Y,\lambda)$ is Zoll when every Reeb orbit is periodic with the same minimal period au

Example: ellipsoid

$$Y = E(a, b) = \left\{ (z_1, z_2) \in \mathbb{C}^2 \mid \frac{|z_1|^2}{a} + \frac{|z_1|^2}{b} = \frac{1}{\pi} \right\} \quad a, b > 0$$

$$\lambda = \frac{i}{4} \sum_{j=1,2} (z_j \, d\overline{z}_j - \overline{z}_j \, dz_j)$$

$$\phi_t(z_1, z_2) = (e^{i2\pi t/a} z_1, e^{i2\pi t/b} z_2)$$

 (Y,λ) , X Reeb vector field, $\phi_t:Y o Y$ Reeb flow

- $ightharpoonup (Y, \lambda)$ is Besse when every Reeb orbit is periodic.
- $ightharpoonup (Y,\lambda)$ is Zoll when every Reeb orbit is periodic with the same minimal period au

Example: ellipsoid

$$Y = E(a, b) = \left\{ (z_1, z_2) \in \mathbb{C}^2 \mid \frac{|z_1|^2}{a} + \frac{|z_1|^2}{b} = \frac{1}{\pi} \right\} \quad a, b > 0$$

$$\lambda = \frac{i}{4} \sum_{j=1,2} (z_j \, d\overline{z}_j - \overline{z}_j \, dz_j)$$

$$\phi_t(z_1, z_2) = (e^{i2\pi t/a} z_1, e^{i2\pi t/b} z_2)$$

- ▶ If $b/a \in \mathbb{Q}$ then (Y, λ) is Besse
- ▶ If a = b then (Y, λ) is Zoll

 (Y^3,λ) closed, X Reeb vector field, $\phi_t:Y o Y$ Reeb flow

 (Y^3,λ) closed, X Reeb vector field, $\phi_t:Y\to Y$ Reeb flow Theorem (Cristofaro-Gardiner, Hutchings, 2016) Every (Y^3,λ) has at least two closed Reeb orbits.

 (Y^3,λ) closed, X Reeb vector field, $\phi_t:Y\to Y$ Reeb flow

Theorem (Cristofaro-Gardiner, Hutchings, 2016) Every (Y^3, λ) has at least two closed Reeb orbits.

Theorem (Cristofaro-Gardiner, Mazzucchelli, 2019)

• (Y^3, λ) is Besse if and only if $\sigma(Y, \lambda) \subset r\mathbb{N}$ for some r > 0

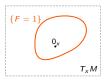
 (Y^3,λ) closed, X Reeb vector field, $\phi_t:Y\to Y$ Reeb flow

Theorem (Cristofaro-Gardiner, Hutchings, 2016) Every (Y^3 , λ) has at least two closed Reeb orbits.

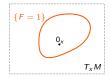
Theorem (Cristofaro-Gardiner, Mazzucchelli, 2019)

- (Y^3, λ) is Besse if and only if $\sigma(Y, \lambda) \subset r\mathbb{N}$ for some r > 0
- (Y^3, λ) is Zoll if and only if $\sigma_p(Y, \lambda) = \{\tau\}$

 (M^2, F) closed Finsler surface

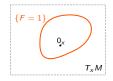


 (M^2, F) closed Finsler surface



Corollary. $\sigma(M^2, F) \subset r\mathbb{Z}$ for some r > 0 if and only if F is Besse and $M = S^2$ or $\mathbb{R}P^2$.

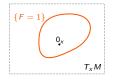
 (M^2, F) closed Finsler surface



Corollary. $\sigma(M^2, F) \subset r\mathbb{Z}$ for some r > 0 if and only if F is Besse and $M = S^2$ or $\mathbb{R}P^2$.

(M,g) closed Riemannian surface.

 (M^2, F) closed Finsler surface



Corollary. $\sigma(M^2, F) \subset r\mathbb{Z}$ for some r > 0 if and only if F is Besse and $M = S^2$ or $\mathbb{R}P^2$.

(M,g) closed Riemannian surface.

Corollary.

- ▶ If M is orientable, then $\sigma(M,g) \subset r\mathbb{Z}$ for some r > 0 if and only if $M = S^2$ and g Zoll.
- ▶ If M is non-orientable, then $\sigma(M,g) \subset r\mathbb{Z}$ for some r > 0 if and only if $M = \mathbb{R}P^2$ and g has constant curvature.

(Hard) open questions

```
(Y^{2n+1},\lambda) closed contact manifold of dimension 2n+1>3 \sigma_{\rm p}(Y,\lambda)= prime action spectrum \sigma(Y,\lambda)= action spectrum
```

- (Weinstein's conjecture) Does (Y, λ) have closed Reeb orbits?
- ▶ If yes, does it have more than one?

(Hard) open questions

```
(Y^{2n+1},\lambda) closed contact manifold of dimension 2n+1>3 \sigma_{\rm p}(Y,\lambda)= prime action spectrum \sigma(Y,\lambda)= action spectrum
```

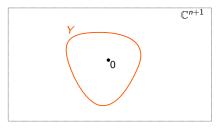
- (Weinstein's conjecture) Does (Y, λ) have closed Reeb orbits?
- If yes, does it have more than one?
- ▶ If yes, does $\sigma_p(Y, \lambda) = \{\tau\}$ implies that (Y, λ) is Zoll?
- ▶ If yes, does $\sigma(Y, \lambda) \subset r\mathbb{N}$ for some r > 0 implies that (Y, λ) is Besse?

 (Y^{2n+1},λ) convex contact sphere

 (Y^{2n+1},λ) convex contact sphere

 $Y\subset \mathbb{C}^{n+1}$ convex hypersurface enclosing 0

$$\lambda = \frac{i}{4} \sum_{j=1}^{n+1} \left(z_j \, d\overline{z}_j + \overline{z}_j \, dz_j \right)$$
 contact form on Y



 (Y^{2n+1},λ) convex contact sphere

 (Y^{2n+1},λ) convex contact sphere

Ekeland-Hofer action selectors $c_k = c_k(Y) \in \sigma(Y, \lambda)$

 (Y^{2n+1},λ) convex contact sphere

Ekeland-Hofer action selectors $c_k = c_k(Y) \in \sigma(Y, \lambda)$

$$\min \sigma(Y,\lambda) = c_1 \le c_2 \le c_3 \le \dots$$

 (Y^{2n+1},λ) convex contact sphere

Ekeland-Hofer action selectors $c_k = c_k(Y) \in \sigma(Y, \lambda)$

$$\min \sigma(Y,\lambda) = c_1 \le c_2 \le c_3 \le \dots$$

Theorem (Ginzburg, Gürel, Mazzucchelli, 2019)

 $ightharpoonup c_k = c_{k+n}$ for some k if and only if (Y, λ) is Besse.

 (Y^{2n+1},λ) convex contact sphere

Ekeland-Hofer action selectors $c_k = c_k(Y) \in \sigma(Y, \lambda)$

$$\min \sigma(Y,\lambda) = c_1 \le c_2 \le c_3 \le \dots$$

Theorem (Ginzburg, Gürel, Mazzucchelli, 2019)

- $ightharpoonup c_k = c_{k+n}$ for some k if and only if (Y, λ) is Besse.
- $c_1 = c_{n+1}$ if and only if (Y, λ) is Zoll.

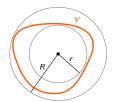
 (Y^{2n+1},λ) convex contact sphere

Ekeland-Hofer action selectors $c_k = c_k(Y) \in \sigma(Y, \lambda)$

$$\min \sigma(Y,\lambda) = c_1 \le c_2 \le c_3 \le \dots$$

Theorem (Ginzburg, Gürel, Mazzucchelli, 2019)

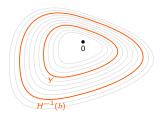
- $ightharpoonup c_k = c_{k+n}$ for some k if and only if (Y, λ) is Besse.
- $c_1 = c_{n+1}$ if and only if (Y, λ) is Zoll.
- Assume Y is δ-pinched for some $\delta \in (1, \sqrt{2}]$. Then $\sigma(Y, \lambda) \cap (c_1, \delta^2 c_1) = \emptyset$ if and only if (Y, λ) is Zoll.



$$\frac{R}{r} < \delta$$

▶ $a \in (1,2)$ $H: \mathbb{C}^{n+1} \to \mathbb{R}$ such that $H|_Y \equiv 1$ and $H(\lambda \cdot) = \lambda^a H$.

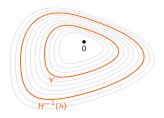
▶ $a \in (1,2)$ $H: \mathbb{C}^{n+1} \to \mathbb{R}$ such that $H|_Y \equiv 1$ and $H(\lambda \cdot) = \lambda^a H$.



 γ $\tau\text{-periodic}$ Reeb orbit on Y

$$\Gamma(t)=h^{1/a}\gamma(\tau t)$$
 Hamiltonian 1-periodic orbit on $H^{-1}(h)$, for some unique $h=h(\tau)$

▶ $a \in (1,2)$ $H: \mathbb{C}^{n+1} \to \mathbb{R}$ such that $H|_Y \equiv 1$ and $H(\lambda \cdot) = \lambda^a H$.

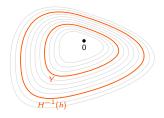


 γ $\tau\text{-periodic}$ Reeb orbit on Y

 $\Gamma(t)=h^{1/a}\gamma(au t)$ Hamiltonian 1-periodic orbit on $H^{-1}(h)$, for some unique h=h(au)

 $ightharpoonup H^*: \mathbb{C}^{n+1} \to \mathbb{R}$ dual function to H

▶ $a \in (1,2)$ $H: \mathbb{C}^{n+1} \to \mathbb{R}$ such that $H|_Y \equiv 1$ and $H(\lambda \cdot) = \lambda^a H$.

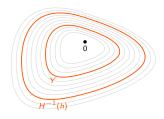


 γ $\tau\text{-periodic}$ Reeb orbit on Y

 $\Gamma(t)=h^{1/a}\gamma(au t)$ Hamiltonian 1-periodic orbit on $H^{-1}(h)$, for some unique h=h(au)

► $H^*: \mathbb{C}^{n+1} \to \mathbb{R}$ dual function to H $H(w) = \max_{z} (\langle w, z \rangle - H(z))$

▶ $a \in (1,2)$ $H: \mathbb{C}^{n+1} \to \mathbb{R}$ such that $H|_Y \equiv 1$ and $H(\lambda \cdot) = \lambda^a H$.

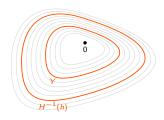


 γ $\tau\text{-periodic}$ Reeb orbit on Y

 $\Gamma(t)=h^{1/a}\gamma(au t)$ Hamiltonian 1-periodic orbit on $H^{-1}(h)$, for some unique h=h(au)

- ► $H^*: \mathbb{C}^{n+1} \to \mathbb{R}$ dual function to H $H(w) = \max_{z} (\langle w, z \rangle - H(z))$
- ► Clarke action functional

▶ $a \in (1,2)$ $H: \mathbb{C}^{n+1} \to \mathbb{R}$ such that $H|_Y \equiv 1$ and $H(\lambda \cdot) = \lambda^a H$.



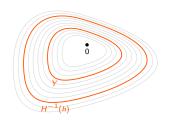
 γ τ -periodic Reeb orbit on Y

 $\Gamma(t)=h^{1/a}\gamma(au t)$ Hamiltonian 1-periodic orbit on $H^{-1}(h)$, for some unique h=h(au)

- ► $H^*: \mathbb{C}^{n+1} \to \mathbb{R}$ dual function to H $H(w) = \max (\langle w, z \rangle - H(z))$
- Clarke action functional

$$\Psi: L^b_0(S^1,\mathbb{C}^{n+1}) \to \mathbb{R}, \quad \Psi(\dot{\Gamma}) = \int_{S^1} \left(\langle i\dot{\Gamma},\Gamma \rangle - H^*(-i\dot{\Gamma}) \right) dt, \quad b = \frac{a}{a-1}$$

▶ $a \in (1,2)$ $H: \mathbb{C}^{n+1} \to \mathbb{R}$ such that $H|_Y \equiv 1$ and $H(\lambda \cdot) = \lambda^a H$.



 γ $\tau\text{-periodic}$ Reeb orbit on \emph{Y}

 $\Gamma(t)=h^{1/s}\gamma(au t)$ Hamiltonian 1-periodic orbit on $H^{-1}(h)$, for some unique h=h(au)

- ► $H^*: \mathbb{C}^{n+1} \to \mathbb{R}$ dual function to H $H(w) = \max (\langle w, z \rangle - H(z))$
- Clarke action functional

$$\Psi: L_0^b(S^1,\mathbb{C}^{n+1}) \to \mathbb{R}, \quad \Psi(\dot{\Gamma}) = \int_{S^1} \left(\langle i\dot{\Gamma},\Gamma \rangle - H^*(-i\dot{\Gamma}) \right) dt, \quad b = \frac{a}{a-1}$$

► Crit(Ψ) \ {0} = { $\dot{\Gamma}$ | Γ 1-periodic Hamiltonian orbits} $\Psi(\dot{\Gamma}) = f(\tau) := \frac{a}{2} (\frac{a-2}{2}\tau)^{(2-a)/a}$

► Clarke action functional $\Psi: L_0^b(S^1, \mathbb{C}^{n+1}) \to \mathbb{R}$ $\operatorname{Crit}(\Psi) \setminus \{0\} = \text{1-periodic Hamiltonian orbits}$ $\Psi(\dot{\Gamma}) = f(\tau) := \frac{a}{2} \left(\frac{a-2}{2}\tau\right)^{(2-a)/a}$

- ► Clarke action functional $\Psi: L_0^b(S^1, \mathbb{C}^{n+1}) \to \mathbb{R}$ $\operatorname{Crit}(\Psi) \setminus \{0\} = \text{1-periodic Hamiltonian orbits}$ $\Psi(\dot{\Gamma}) = f(\tau) := \frac{a}{2} \left(\frac{a-2}{2}\tau\right)^{(2-a)/a}$
- Ψ is S^1 -invariant $s \cdot \dot{\Gamma} = \dot{\Gamma}(s + \cdot), \qquad \forall s \in S^1, \ \dot{\Gamma} \in L^b_0(S^1, \mathbb{C}^{n+1})$

- ► Clarke action functional $\Psi: L_0^b(S^1, \mathbb{C}^{n+1}) \to \mathbb{R}$ $\operatorname{Crit}(\Psi) \setminus \{0\} = 1$ -periodic Hamiltonian orbits $\Psi(\dot{\Gamma}) = f(\tau) := \frac{a}{2} \left(\frac{a-2}{2}\tau\right)^{(2-a)/a}$
- ullet Ψ is S^1 -invariant $s\cdot\dot{\Gamma}=\dot{\Gamma}(s+\cdot), \qquad orall s\in S^1, \ \dot{\Gamma}\in L^b_0(S^1,\mathbb{C}^{n+1})$
- $\qquad \qquad H^*_{S^1}(L^b_0(S^1,\mathbb{C}^{n+1})) = H^*(\mathbb{C}P^{\infty}) = \langle 1, e, e^2, e^3, ... \rangle$

- ► Clarke action functional $\Psi: L_0^b(S^1, \mathbb{C}^{n+1}) \to \mathbb{R}$ $\operatorname{Crit}(\Psi) \setminus \{0\} = 1$ -periodic Hamiltonian orbits $\Psi(\dot{\Gamma}) = f(\tau) := \frac{a}{2} \left(\frac{a-2}{2}\tau\right)^{(2-a)/a}$
- ullet Ψ is S^1 -invariant $s\cdot\dot{\Gamma}=\dot{\Gamma}(s+\cdot), \qquad orall s\in S^1, \ \dot{\Gamma}\in L^b_0(S^1,\mathbb{C}^{n+1})$
- $\qquad \qquad H^*_{S^1}(L^b_0(S^1,\mathbb{C}^{n+1})) = H^*(\mathbb{C}P^{\infty}) = \langle 1, e, e^2, e^3, ... \rangle$

- ► Clarke action functional $\Psi: L_0^b(S^1, \mathbb{C}^{n+1}) \to \mathbb{R}$ $\operatorname{Crit}(\Psi) \setminus \{0\} = 1$ -periodic Hamiltonian orbits $\Psi(\dot{\Gamma}) = f(\tau) := \frac{a}{2} \left(\frac{a-2}{2}\tau\right)^{(2-a)/a}$
- ullet Ψ is S^1 -invariant $s\cdot\dot{\Gamma}=\dot{\Gamma}(s+\cdot), \qquad orall s\in S^1, \ \dot{\Gamma}\in L^b_0(S^1,\mathbb{C}^{n+1})$
- $\qquad \qquad H^*_{S^1}(L^b_0(S^1,\mathbb{C}^{n+1})) = H^*(\mathbb{C}P^{\infty}) = \langle 1, e, e^2, e^3, ... \rangle$
- ► Apply Lusternik-Schnirelmann theory:

If $c_k = c_{k+n} = c$ then $e^n|_U \neq 0$ for all $U \subset W^{1,b}(\mathbb{R}/c\mathbb{Z}, Y)$ S^1 -invariant neighborhood of the space of c-periodic Reeb orbits

(*) $e^n|_U \neq 0$ for all S^1 -invariant neighborhood $U \subset W^{1,b}(\mathbb{R}/c\mathbb{Z},Y)$ of the space of c-periodic Reeb orbits

- (*) $e^n|_U \neq 0$ for all S^1 -invariant neighborhood $U \subset W^{1,b}(\mathbb{R}/c\mathbb{Z},Y)$ of the space of c-periodic Reeb orbits
- With a bit of algebraic topology, (\star) implies: Every sufficiently small neighborhood $W \subset W^{1,b}(\mathbb{R}/c\mathbb{Z},Y)$ of the space of c-periodic Reeb orbits has non-zero cohomology $H^{2n+1}(W)$.

- (*) $e^n|_U \neq 0$ for all S^1 -invariant neighborhood $U \subset W^{1,b}(\mathbb{R}/c\mathbb{Z},Y)$ of the space of c-periodic Reeb orbits
 - ▶ With a bit of algebraic topology, (*) implies:

Every sufficiently small neighborhood $W \subset W^{1,b}(\mathbb{R}/c\mathbb{Z},Y)$ of the space of c-periodic Reeb orbits has non-zero cohomology $H^{2n+1}(W)$.

$$H^{2n+1}(U) \longrightarrow H^{2n+1}(W) \longrightarrow H^{2n+1}(U')$$
 $\pi_* \downarrow \qquad \qquad \downarrow \pi_*$
 $H^{2n}_{S1}(U) \longrightarrow H^{2n}_{S1}(U')$

 $U\supseteq W\supseteq U'$ neighborhoods of the space of c-periodic Reeb orbits; $U,\ U'$ are S^1 -invariant

- (*) $e^n|_U \neq 0$ for all S^1 -invariant neighborhood $U \subset W^{1,b}(\mathbb{R}/c\mathbb{Z},Y)$ of the space of c-periodic Reeb orbits
 - ▶ With a bit of algebraic topology, (*) implies: Every sufficiently small neighborhood $W \subset W^{1,b}(\mathbb{R}/c\mathbb{Z}, Y)$ of the space of c-periodic Reeb orbits has non-zero cohomology $H^{2n+1}(W)$.
- We are left to show: If some Reeb orbit of Y is not c-periodic, then there exists an arbitrarily small neighborhood $W \subset W^{1,b}(\mathbb{R}/c\mathbb{Z},Y)$ of the space of c-periodic Reeb orbits with $H^{2n+1}(W)=0$.

We are left to show:

If some Reeb orbit of Y is not c-periodic, then there exists an arbitrarily small neighborhood $W \subset W^{1,b}(\mathbb{R}/c\mathbb{Z},Y)$ of the space of c-periodic Reeb orbits with $H^{2n+1}(W)=0$.

We are left to show:

If some Reeb orbit of Y is not c-periodic, then there exists an arbitrarily small neighborhood $W \subset W^{1,b}(\mathbb{R}/c\mathbb{Z},Y)$ of the space of c-periodic Reeb orbits with $H^{2n+1}(W)=0$.

Proof

▶ The Reeb orbits are geodesics of a suitable Riemannian metric

We are left to show:

If some Reeb orbit of Y is not c-periodic, then there exists an arbitrarily small neighborhood $W \subset W^{1,b}(\mathbb{R}/c\mathbb{Z},Y)$ of the space of c-periodic Reeb orbits with $H^{2n+1}(W)=0$.

- ▶ The Reeb orbits are geodesics of a suitable Riemannian metric
- ▶ $Z \subsetneq Y$ open neighborhood of $fix(\phi_c)$

We are left to show:

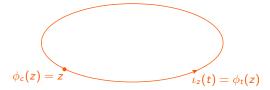
If some Reeb orbit of Y is not c-periodic, then there exists an arbitrarily small neighborhood $W \subset W^{1,b}(\mathbb{R}/c\mathbb{Z},Y)$ of the space of c-periodic Reeb orbits with $H^{2n+1}(W)=0$.

- ▶ The Reeb orbits are geodesics of a suitable Riemannian metric
- ▶ $Z \subsetneq Y$ open neighborhood of $fix(\phi_c)$
- $ightharpoonup \iota: Z \hookrightarrow W^{1,b}(\mathbb{R}/c\mathbb{Z},Y), \ z \mapsto \iota_z$

We are left to show:

If some Reeb orbit of Y is not c-periodic, then there exists an arbitrarily small neighborhood $W \subset W^{1,b}(\mathbb{R}/c\mathbb{Z},Y)$ of the space of c-periodic Reeb orbits with $H^{2n+1}(W)=0$.

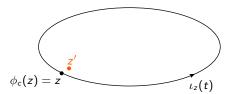
- The Reeb orbits are geodesics of a suitable Riemannian metric
- ▶ $Z \subsetneq Y$ open neighborhood of $fix(\phi_c)$
- $\iota: Z \hookrightarrow W^{1,b}(\mathbb{R}/c\mathbb{Z}, Y), z \mapsto \iota_z$



We are left to show:

If some Reeb orbit of Y is not c-periodic, then there exists an arbitrarily small neighborhood $W \subset W^{1,b}(\mathbb{R}/c\mathbb{Z},Y)$ of the space of c-periodic Reeb orbits with $H^{2n+1}(W)=0$.

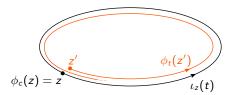
- The Reeb orbits are geodesics of a suitable Riemannian metric
- ▶ $Z \subsetneq Y$ open neighborhood of $fix(\phi_c)$
- $\iota: Z \hookrightarrow W^{1,b}(\mathbb{R}/c\mathbb{Z}, Y), z \mapsto \iota_z$



We are left to show:

If some Reeb orbit of Y is not c-periodic, then there exists an arbitrarily small neighborhood $W \subset W^{1,b}(\mathbb{R}/c\mathbb{Z},Y)$ of the space of c-periodic Reeb orbits with $H^{2n+1}(W)=0$.

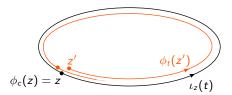
- The Reeb orbits are geodesics of a suitable Riemannian metric
- ▶ $Z \subsetneq Y$ open neighborhood of $fix(\phi_c)$
- $\iota: Z \hookrightarrow W^{1,b}(\mathbb{R}/c\mathbb{Z}, Y), z \mapsto \iota_z$



We are left to show:

If some Reeb orbit of Y is not c-periodic, then there exists an arbitrarily small neighborhood $W \subset W^{1,b}(\mathbb{R}/c\mathbb{Z},Y)$ of the space of c-periodic Reeb orbits with $H^{2n+1}(W)=0$.

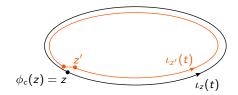
- The Reeb orbits are geodesics of a suitable Riemannian metric
- ▶ $Z \subsetneq Y$ open neighborhood of $fix(\phi_c)$
- $\iota: Z \hookrightarrow W^{1,b}(\mathbb{R}/c\mathbb{Z}, Y), z \mapsto \iota_z$



We are left to show:

If some Reeb orbit of Y is not c-periodic, then there exists an arbitrarily small neighborhood $W \subset W^{1,b}(\mathbb{R}/c\mathbb{Z},Y)$ of the space of c-periodic Reeb orbits with $H^{2n+1}(W)=0$.

- The Reeb orbits are geodesics of a suitable Riemannian metric
- ▶ $Z \subsetneq Y$ open neighborhood of $fix(\phi_c)$
- $\iota: Z \hookrightarrow W^{1,b}(\mathbb{R}/c\mathbb{Z}, Y), z \mapsto \iota_z$

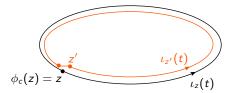


We are left to show:

If some Reeb orbit of Y is not c-periodic, then there exists an arbitrarily small neighborhood $W \subset W^{1,b}(\mathbb{R}/c\mathbb{Z},Y)$ of the space of c-periodic Reeb orbits with $H^{2n+1}(W)=0$.

Proof

- The Reeb orbits are geodesics of a suitable Riemannian metric
- ▶ $Z \subsetneq Y$ open neighborhood of $fix(\phi_c)$
- $\iota: Z \hookrightarrow W^{1,b}(\mathbb{R}/c\mathbb{Z}, Y), z \mapsto \iota_z$

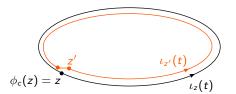


 $lackbrack W\subset W^{1,b}(\mathbb{R}/c\mathbb{Z},Y)$ small tubular neighborhood of $\iota(Z)$

We are left to show:

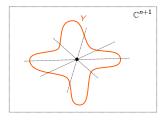
If some Reeb orbit of Y is not c-periodic, then there exists an arbitrarily small neighborhood $W \subset W^{1,b}(\mathbb{R}/c\mathbb{Z},Y)$ of the space of c-periodic Reeb orbits with $H^{2n+1}(W)=0$.

- ▶ The Reeb orbits are geodesics of a suitable Riemannian metric
- ▶ $Z \subsetneq Y$ open neighborhood of $fix(\phi_c)$
- $\iota: Z \hookrightarrow W^{1,b}(\mathbb{R}/c\mathbb{Z}, Y), z \mapsto \iota_z$

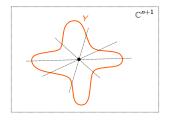


- $V \subset W^{1,b}(\mathbb{R}/c\mathbb{Z},Y)$ small tubular neighborhood of $\iota(Z)$
- $\vdash H^{2n+1}(W) \cong H^{2n+1}(Z) = 0.$

 (Y^{2n+1},λ) restricted contact type hypersurface of \mathbb{C}^{n+1}

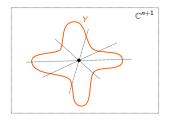


 (Y^{2n+1},λ) restricted contact type hypersurface of \mathbb{C}^{n+1}



Ekeland-Hofer capacities $c_k = c_k(Y) = c_k(\text{fill}(Y)) \in \sigma(Y, \lambda)$

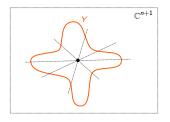
 (Y^{2n+1},λ) restricted contact type hypersurface of \mathbb{C}^{n+1}



Ekeland-Hofer capacities
$$c_k = c_k(Y) = c_k(\text{fill}(Y)) \in \sigma(Y, \lambda)$$

$$c_1 \leq c_2 \leq c_3 \leq \dots$$

 (Y^{2n+1},λ) restricted contact type hypersurface of \mathbb{C}^{n+1}



Ekeland-Hofer capacities
$$c_k = c_k(Y) = c_k(\text{fill}(Y)) \in \sigma(Y, \lambda)$$

$$c_1 \leq c_2 \leq c_3 \leq \dots$$

Theorem (Ginzburg, Gürel, Mazzucchelli, 2019) If $\sigma(Y, \lambda)$ is discrete and $c_k(Y) = c_{k+n}(Y) =: c$ for some $k \ge 1$, then (Y, λ) is Besse and c is a common period for its closed Reeb orbits.

► (M, g) closed Riemannian manifold

- \blacktriangleright (M,g) closed Riemannian manifold
- Energy functional

$$E: \Lambda M = W^{1,2}(S^1, M) \to [0, \infty), \quad E(\gamma) = \int_{S^1} \|\dot{\gamma}(t)\|_g^2 dt$$

- ightharpoonup (M,g) closed Riemannian manifold
- Energy functional $E: \Lambda M = W^{1,2}(S^1, M) \to [0, \infty), \quad E(\gamma) = \int_{S^1} \|\dot{\gamma}(t)\|_g^2 dt$
- Action selector associated to $\kappa \in H^*_{S^1}(\Lambda M, M)$, $\kappa \neq 0$ $c(\kappa) := \inf \left\{ \sqrt{b} \mid \kappa \neq 0 \text{ in } H^*_{S^1}(\{E < b\}, M) \right\} \in \sigma(M, g)$

- ightharpoonup (M,g) closed Riemannian manifold
- Energy functional $E: \Lambda M = W^{1,2}(S^1, M) \to [0, \infty), \quad E(\gamma) = \int_{S^1} \|\dot{\gamma}(t)\|_g^2 dt$
- Action selector associated to $\kappa \in H^*_{S^1}(\Lambda M, M)$, $\kappa \neq 0$ $c(\kappa) := \inf \left\{ \sqrt{b} \mid \kappa \neq 0 \text{ in } H^*_{S^1}(\{E < b\}, M) \right\} \in \sigma(M, g)$
- Assume M is a simply connected, spin, CROSS: $M = S^n$, $\mathbb{CP}^{n/2}$, $\mathbb{HP}^{n/4}$, or CaP^2 (n = 16) except $\mathbb{CP}^{n/2}$ with n/2 even

- ightharpoonup (M,g) closed Riemannian manifold
- Energy functional $E: \Lambda M = W^{1,2}(S^1, M) \to [0, \infty), \quad E(\gamma) = \int_{S^1} \|\dot{\gamma}(t)\|_g^2 dt$
- Action selector associated to $\kappa \in H^*_{S^1}(\Lambda M, M)$, $\kappa \neq 0$ $c(\kappa) := \inf \left\{ \sqrt{b} \mid \kappa \neq 0 \text{ in } H^*_{S^1}(\{E < b\}, M) \right\} \in \sigma(M, g)$
- Assume M is a simply connected, spin, CROSS: $M = S^n$, $\mathbb{CP}^{n/2}$, $\mathbb{HP}^{n/4}$, or CaP^2 (n = 16) except $\mathbb{CP}^{n/2}$ with n/2 even

M closed, simply connected, spin, CROSS α_m , β_m generators of $H^{i_m}_{S^1}(\Lambda M,M)$ and $H^{i_m+2n-1}_{S^1}(\Lambda M,M)$ $i_m=m\,i(M)+(m-1)(n-1)$

M closed, simply connected, spin, CROSS α_m , β_m generators of $H^{i_m}_{S^1}(\Lambda M,M)$ and $H^{i_m+2n-1}_{S^1}(\Lambda M,M)$ $i_m=m\,i(M)+(m-1)(n-1)$

Theorem (Ginzburg, Gürel, Mazzucchelli, 2019) The following conditions are equivalent:

- (i) $c(\alpha_1) = c(\beta_1)$
- (ii) $c(\alpha_m) = c(\beta_m)$ for all $m \ge 1$
- (iii) (M,g) is Zoll

M closed, simply connected, spin, CROSS α_m , β_m generators of $H^{i_m}_{S^1}(\Lambda M,M)$ and $H^{i_m+2n-1}_{S^1}(\Lambda M,M)$ $i_m=m\,i(M)+(m-1)(n-1)$

Theorem (Ginzburg, Gürel, Mazzucchelli, 2019)

The following conditions are equivalent:

- (i) $c(\alpha_1) = c(\beta_1)$
- (ii) $c(\alpha_m) = c(\beta_m)$ for all $m \ge 1$
- (iii) (M,g) is Zoll

If $M = S^n$ with $n \neq 3$, then (i) can be replaced by:

(i')
$$c(\alpha_m) = c(\beta_m)$$
 for some $m \ge 1$

Thank you for your attention!