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Motivation/Application



 Baby example (already non-trivial) 







       Symplectic Geometry

	 	 	 	 	 	 	 	 	 	 	 	 		                                         Previous works on BH HMS

	 	 	 	 	 	 	 	 	 	 	 	 					                                             - Seidel

	 	 	 	 	 	 	 	 	 	 	 	 		                                             - Takahashi-Saito-Kajiura 

	 	 	 	 	 	 	 	 	 	 	 	 								                                             - Ueda-Futaki

	 	 	 	 	 	 	 	 	 	 	 	 			                                             - Lekili-Ueda

	 	 	 	 	 	 	 	 	 	 	 	 							                                             - Harbermann-Smith,  ...







       Complex algebraic geometry   
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Add diagonal symmetry group: 





       Plan:       Fukaya (W, G  )                                   MF(W)  







 (1) Take the Milnor fiber and its quotient. 













(2) Take Seidel Lagrangian in the orbi-sphere (immersed Lagrangian representing the skeleton)

























(3) Look at lifts of Seidel Lagrangian on the Milnor fiber.

    And count polygons with X,Y,Z corners through a generic point.
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(4) Set z =0 to obtain the dual polynomial 







(5) Apply localized mirror functor (w/ Hong-Lau) to prove HMS for Milnor fiber











 



































Consider test Lagrangian K
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(6) Set z=0  to the localized mirror functor

















( c.f. Lekili-Ueda )





















Thm 1.    (1)~(6) works for invertible curve singularities:  

  

 (Fermat)	 	 	 	   (Chain) 	 	 	 	 	                         (Loop)















(Fermat) 















 

(Chain) 

















  (Loop)
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Monodromy

	 	 	 	 	 	 	 	 	 	 	 	 	                                         Mirror of Milnor fiber quotient























	 	 	 	 	 	 	 	 	 	 	 	 					                                                    Isolated singularity 




 Aim:



  (1) Define the new category using monodromy information



  (2) Show that this operation is mirror to the restriction to z=g(x,y) hypersurface.



  (3) Prove HMS for invertible curve singularities.









  Monodromy (fixing boundary)            	 	 	 	 	               Monodromy (not fixing boundary)





















  Variation operator:
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In the quotient, we get a Reeb orbit          corresponding to the monodromy













Quantum cap action by monodromy orbit on wrapped Fukaya category





















In our baby example, 



	 	 	 	 	 	 	 	 	 Cap action by        ~     multiplication by 

	 

	 	 	 	 	 	 	 	 	 	 	 	 	   on CW (K,K)











Recall that  in Lagrangian Floer theory, cone of a morphism  may be regarded as a surgery.























Analogue of variation operator : We take a cone of quantum cap action by  













(1)  This gives only A  -bimodule, not an A -category. 

      We construct new A -operations on 



(2)  Morphisms in         are different from morphisms of category of such cones (it is roughly half of it)



(3)  The image of cap action vanishes,  most of wrapped generators are killed to give finite dim. hom space.
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Quick summary: 



	 	 Variation operator		 	 	 	 	 	 	                         Lagrangian Floer theory



  Monodromy around the origin(fixing boundary).                  Reeb orbit        of the quotient



 







 	 	 	 	 	 	 	 	 	 	 	 	             (not fixing boundary)

	 	 	 	 	 	 	 	 	 	 	 	 					          

  Monodromy homomorphism 	 	 	 	 	 	          Quantum cap action 								      









  Variation operator   	 	 	 	 	 	 	 	 		         New A-infinity category with distinguished 

	 	 	 	 	 	 	 	 	 	 	 	 	          exact triangle

















To define the new category, we first consider the manifold case.



  Thm 2.   Given a Louville manifold  M and an element        SH (M), there exist a new 
A -category               with such a distinguished triangle as  A -bimodules











Construction 



 - Objects:   Same set of objects as WF(M) : (wrapped Fukaya category)



 - Morphisms:  

 



 

-  To define A -operations:   

 

       we use popsicle structures in the domain, developed by Abouzaid-Seidel and Seidel



       Geometric setting is very different, but algebraic structures as well as desired algebraic effects

       are similar to the recent work of Seidel (Lefschetz fibration 6) 



     Popsicles are discs with interior marked points lying on hyperbolic geodesics
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Fukaya category for weighted homogeneous polynomial W with diagonal symmetry group G_W









(Milnor). Characteristic homeomorphism for monodromy of WHS : 















 Thm 3.  For a weighted homogeneous polynomial W, and its maximal diagonal 
symmetry group G   ,  take the Milnor fiber quotient





  Then (1) we can define the Monodromy Reeb orbit     



           (2) New A -category                           is  well-defined



          For any subgroup

Def









Monodromy is mirror to the restricting hypersurface.

	 	 	 	 	 	 	 	 	 	 	                                  [Amorim-C-Hong-Lau], 

	 	 	 	 	 	 	 	 	 	 	 	 			                          [Fukaya-Oh-Ohta-Ono], 

	 	 	 	 	 	 	 	                    Kodaira-Spencer map

   Monodromy for curve singularities
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Thm 4.       Let W be an invertible curve singularity.



     (1) Cap action for monodromy orbit is mirror to the hypersurface restriction.

            (up to homotopy)

 

     (2) There exist an A -functor which proves Berglund-Hubsch HMS for curve 
singularities.



























Proof)  Combine popsicles and localized mirror functor.





































Thm 5.  For an ADE curve singularity 



         (1) we find all Lagrangians in                corresponding to indecomposable MF,



         (2) we realize Auslander-Reiten exact sequence for MF as Lagrangian surgeries.





 We illustrate this for E7 singularity:
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터 Minor Fiber X3 xP다 genus3
Surface



Indecomposable MF for E7 singularity x3 +x y3

- Yuji Yoshino’s textbook (1990):

Maximal Cohen-Macaulay modules over Cohen-Macaulay rings

C D

A M2 Y2 Y3 Y1 M1

R

B N2 X2 X3 X1 N1

• A (resp. B) : 1£1 factorization x • (x2 + y3) (resp. (x2 + y3)•x).

• C (resp. D) : 2£2 MF (∞,±) (resp. (±,∞))

∞=
µ

x2 x y
x y2 °x2

∂
,±=

µ
x y
y2 °x

∂

• . M j (resp. N j ) : 2£2 MF (¡ j ,√ j ) (resp. (√ j ,¡ j )) for j = 1,2.

¡1 =
µ

x y
x y2 °x2

∂
,√1 =

µ
x2 y

x y2 °x

∂

¡2 =
µ

x y2

x y °x2

∂
,√2 =

µ
x2 y2

x y °x

∂

• X j (resp. Y j ): 3£3 MF (ª j ,¥ j ) (resp. (¥ j ,ª j )) for j = 1,2.

ª1 =

0

@
x y2 °x2 °x2 y
x y °y2 x2

x2 x y x y2

1

A ,¥1 =

0

@
y 0 x
°x x y 0
0 °x y

1

A

ª2 =

0

@
x2 °y2 °x y
x y x °y2

x y2 x y x2

1

A ,¥2 =

0

@
x 0 y

°x y x2 0
0 °x y x

1

A

• X3 (resp. Y3) : 4£4 MF (ª3,¥3) (resp. (¥3,ª3)).

ª3 =
µ
∞ ≤
0 ±

∂
,¥3 =

µ
± °≤
0 ∞

∂
with ≤=

µ
y2 0
0 y2

∂
.

Remark: In fact, in Yoshino’s book, X3,Y3 is defined with

≤=
µ

y 0
0 y

∂

We think it is a typo/mistake.
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Lemma 0.1. The following AR exact sequences (and their AR transpose) for E7 singularity can be realized
as Lagrangian surgeries.

0 ! A ! M2 ! B ! 0(0.1)

0 ! D ! Y3 !C ! 0(0.2)

0 ! M1 ! X1 ! N1 ! 0(0.3)

0 ! M2 ! B ©Y2 ! N2 ! 0(0.4)

0 ! Y1 ! M1 ©X3 ! X1 ! 0(0.5)

0 ! Y2 ! N2 ©Y3 ! X2 ! 0(0.6)

0 ! Y3 ! X2 ©C ©Y1 ! X3 ! 0(0.7)

Ei

챥
gs
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LM2

LA
�

LB

(A) Lagrangian surgery for the exact sequence (0.1)

LY3

LD

LC
�

(B) for the exact sequence (0.2)

LM1

LN1 LX1

�

(C) Lagrangian surgery for the exact sequence (0.3)
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�

LN2

(D) for the exact sequence (0.4)

LM1
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LX3

LX1

�

(E) Lagrangian surgery for the exact sequence (0.5)
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LY2
�

LN2
LX2

(F) for the exact sequence (0.6)

�

LY3

LX3

LC

LY1�X2

(G) Lagrangian surgery for the exact sequence (0.7)


