Real Lagrangian Tori in toric symplectic manifolds

Joé Brendel

Université de Neuchâtel

5 May, 2020 Symplectic Zoominar

Let (M, ω) be a symplectic manifold.

Let (M, ω) be a symplectic manifold.

Definition:

 $\sigma \colon M \to M$ is an **antisymplectic involution** if

- $\sigma \circ \sigma = id$;
- $\sigma^*\omega = -\omega$.

Let (M, ω) be a symplectic manifold.

Definition:

 $\sigma \colon M \to M$ is an **antisymplectic involution** if

- $\sigma \circ \sigma = id$;
- $\sigma^*\omega = -\omega$.

Its fixed point set $Fix \sigma$ is Lagrangian (whenever non-empty).

Definition:

A Lagrangian $L \subset (M, \omega)$ is called **real** if there is an antisymplectic involution σ such that Fix $\sigma = L$.

Definition:

A Lagrangian $L \subset (M, \omega)$ is called **real** if there is an antisymplectic involution σ such that Fix $\sigma = L$.

If $L = \operatorname{Fix} \sigma$ and $\varphi \in \operatorname{Symp}(M, \omega)$ then $\varphi(L) = \operatorname{Fix}(\varphi \sigma \varphi^{-1})$. The notion is invariant under symplectomorphisms.

Let $L \subset (M, \omega)$ be a Lagrangian.

Main Question:

Is L real?

1) In (\mathbb{C}^n, ω_0) :

- 1) In (\mathbb{C}^n, ω_0) :
 - $L = \mathbb{R}^n$ is real.

- 1) In (\mathbb{C}^n, ω_0) :
 - $L = \mathbb{R}^n$ is real.
 - Product tori $L = T(a_1, ..., a_n)$ are not real.

- 1) In (\mathbb{C}^n, ω_0) :
 - $L = \mathbb{R}^n$ is real.
 - Product tori $L = T(a_1, ..., a_n)$ are not real.
- 2) The zero section in $(T^*Q, \omega = d\lambda)$ is real.

- 1) In (\mathbb{C}^n, ω_0) :
 - $L = \mathbb{R}^n$ is real.
 - Product tori $L = T(a_1, ..., a_n)$ are not real.
- 2) The zero section in $(T^*Q, \omega = d\lambda)$ is real.
- 3) Real projective space $\mathbb{R}P^n$ in $(\mathbb{C}P^n, \omega_{FS})$ is real.

- 1) In (\mathbb{C}^n, ω_0) :
 - $L = \mathbb{R}^n$ is real.
 - Product tori $L = T(a_1, \ldots, a_n)$ are not real.
- 2) The zero section in $(T^*Q, \omega = d\lambda)$ is real.
- 3) Real projective space $\mathbb{R}P^n$ in $(\mathbb{C}P^n, \omega_{FS})$ is real. (This example generalizes to all toric manifolds.)

The equator in (S^2, ω) is real. Other circles of constant height are not real.

The equator in (S^2, ω) is real. Other circles of constant height are not real.

In general: If (M, ω) is monotone and L is real, then L is monotone.

From now on: (M^{2n}, ω) toric monotone symplectic manifold, i.e. there is a moment map $\mu \colon M \to \mathbb{R}^n$ which generates an effective Hamiltonian T^n -action on M.

From now on: (M^{2n}, ω) toric monotone symplectic manifold, i.e. there is a moment map $\mu \colon M \to \mathbb{R}^n$ which generates an effective Hamiltonian T^n -action on M. Toric fibres $T_x = \mu^{-1}(x)$ for $x \in \operatorname{int} \Delta$ are Lagrangian.

From now on: (M^{2n},ω) toric monotone symplectic manifold, i.e. there is a moment map $\mu\colon M\to\mathbb{R}^n$ which generates an effective Hamiltonian T^n -action on M. Toric fibres $T_x=\mu^{-1}(x)$ for $x\in\operatorname{int}\Delta$ are Lagrangian.

Technical assumption: We will assume that Δ has property FS:

Technical assumption: We will assume that Δ has property FS: Every facet F of Δ contains a lattice point x_F such that $-x_F$ is also contained in Δ .

Technical assumption: We will assume that Δ has property FS: Every facet F of Δ contains a lattice point x_F such that $-x_F$ is also contained in Δ . Conjecturally,

M monotone $\Rightarrow \Delta$ has property FS.

Technical assumption: We will assume that Δ has property FS: Every facet F of Δ contains a lattice point x_F such that $-x_F$ is also contained in Δ . Conjecturally,

M monotone $\Rightarrow \Delta$ has property FS.

Has been checked for $n \leq 9$ by M. Øbro and A. Paffenholz.

Theorem: (P. A. Smith '39)

Let $F \subset M$ be the fixed point set of a smooth involution, then

- 1) $\chi(F) \equiv \chi(M) \pmod{2}$
- 2) dim $H_*(F, \mathbb{Z}_2) \leq \dim H_*(M, \mathbb{Z}_2)$

Theorem: (P. A. Smith '39)

Let $F \subset M$ be the fixed point set of a smooth involution, then

- 1) $\chi(F) \equiv \chi(M) \pmod{2}$
- 2) dim $H_*(F, \mathbb{Z}_2) \leq \dim H_*(M, \mathbb{Z}_2)$

This excludes $\mathbb{C}P^2$ and $\mathbb{C}P^2\#2\overline{\mathbb{C}P^2}$ from having real tori already at the topological level.

Theorem A: (B.)

If the central fibre T_0 is real, then Δ is centrally symmetric, i.e.

$$\Delta = -\Delta$$
.

Theorem A: (B.)

If the central fibre T_0 is real, then Δ is centrally symmetric, i.e. $\Delta = -\Delta$.

The converse is also true! Joint work with J. Kim and J. Moon.

What about exotic tori?

What about exotic tori?

Theorem: (J. Kim '19)

The Chekanov torus in $S^2 \times S^2$ is not real.

What about exotic tori?

Theorem: (J. Kim '19)

The Chekanov torus in $S^2 \times S^2$ is not real.

Theorem: (J. Kim '20)

If $T \subset S^2 \times S^2$ is real, then it is Hamiltonian isotopic to the Clifford torus.

What about exotic tori?

Theorem: (J. Kim '19)

The Chekanov torus in $S^2 \times S^2$ is not real.

Theorem: (J. Kim '20)

If $T \subset S^2 \times S^2$ is real, then it is Hamiltonian isotopic to the Clifford torus.

Theorem B: (B. '20)

There is an exotic Chekanov torus in every toric monotone symplectic manifold and it is **not real**.

What about exotic tori?

Theorem: (J. Kim '19)

The Chekanov torus in $S^2 \times S^2$ is not real.

Theorem: (J. Kim '20)

If $T \subset S^2 \times S^2$ is real, then it is Hamiltonian isotopic to the Clifford torus.

Theorem B: (B. '20)

There is an exotic Chekanov torus in every toric monotone symplectic manifold and it is not real.

Whenever $\Delta = -\Delta$, then the Chekanov tori are, however, the fixed point set of a smooth involution.

Method: Versal deformations (Chekanov '96; Chekanov—Schlenk '10/'15) Elementary in the sense that the only "hard" result used is the computation of displacement energy of product tori in \mathbb{C}^n .

Method: Versal deformations (Chekanov '96; Chekanov–Schlenk '10/'15) Elementary in the sense that the only "hard" result used is the computation of displacement energy of product tori in \mathbb{C}^n .

1) Determine the displacement energy of toric fibres. (Using Property FS, McDuff's probes and Symplectic reduction)

$$e(T_x) = \operatorname{dist}(x, \partial \Delta)$$

Method: Versal deformations (Chekanov '96; Chekanov—Schlenk '10/'15) Elementary in the sense that the only "hard" result used is the computation of displacement energy of product tori in \mathbb{C}^n .

1) Determine the displacement energy of toric fibres. (Using Property FS, McDuff's probes and Symplectic reduction)

$$e(T_x) = \operatorname{dist}(x, \partial \Delta)$$

2) Look at the displacement energy of fibres near to the central fibre.

2) Look at the displacement energy of fibres near to the central fibre. \rightsquigarrow Versal deformation

$$S_{T_0}: \mathcal{U} \to \mathbb{R} \cup \{\infty\}; \quad x \mapsto e(T_x)$$

2) Look at the displacement energy of fibres near to the central fibre. → Versal deformation

$$S_{T_0}: \mathcal{U} \to \mathbb{R} \cup \{\infty\}; \quad x \mapsto e(T_x)$$

3) Antisymplectic involutions preserve displacement energy and hence obtain

Lemma:

If L is real, then its displacement energy germ satisfies

$$S_L \circ (-id) = S_L$$
.

 \Rightarrow Theorem A

 Antisymplectic involutions preserve displacement energy and hence obtain

Lemma:

If L is real, then its displacement energy germ satisfies

$$S_L \circ (-id) = S_L.$$

- \Rightarrow Theorem A
- 4) Many Lagrangian neighbours of exotic tori are toric fibres ⇒ Theorem B. (One can also distinguish Vianna tori in this way (B.–Chekanov–Schlenk) and prove that they are not real.)

Thank you!

Displacement energy

Definition:

Let $A \subset (M, \omega)$ be a subset. The **displacement energy** of A is defined by

$$e(A) = \inf \left\{ \|H\| \mid H \text{ Hamiltonian with } \varphi_H^1(A) \cap A = \varnothing \right\},$$

where $\|\cdot\|$ is the **Hofer norm** defined by

$$\|H\| = \int_0^1 \left(\max_{p \in M} H_t(p) - \min_{p \in M} H_t(p) \right) dt$$

Example: Let $S^1(a) \subset \mathbb{C}$ be the circle enclosing area a, then

$$e(S^1(a)) = a.$$

