Real Lagrangian Tori in toric symplectic manifolds

Joé Brendel

Université de Neuchâtel

5 May, 2020
Symplectic Zoominar
Let \((M, \omega)\) be a symplectic manifold.
Let \((M, \omega)\) be a symplectic manifold.

Definition:

\[\sigma : M \rightarrow M\] is an **antisymplectic involution** if

- \(\sigma \circ \sigma = id\);
- \(\sigma^*\omega = -\omega\).
Let \((M, \omega)\) be a symplectic manifold.

Definition:

\(\sigma : M \to M\) is an **antisymplectic involution** if

- \(\sigma \circ \sigma = id\);
- \(\sigma^* \omega = -\omega\).

Its fixed point set \(\text{Fix} \sigma\) is Lagrangian (whenever non-empty).
Definition:

A Lagrangian \(L \subset (M, \omega) \) is called \textbf{real} if there is an antisymplectic involution \(\sigma \) such that \(\text{Fix} \, \sigma = L \).
Definition:

A Lagrangian $L \subset (M, \omega)$ is called real if there is an antisymplectic involution σ such that $\text{Fix} \, \sigma = L$.

If $L = \text{Fix} \, \sigma$ and $\varphi \in \text{Symp}(M, \omega)$ then $\varphi(L) = \text{Fix}(\varphi \sigma \varphi^{-1})$. The notion is invariant under symplectomorphisms.
Real Lagrangians

Let $L \subset (M, \omega)$ be a Lagrangian.

Main Question:

Is L real?
Examples

1) In \((\mathbb{C}^n,\omega_0)\):
 \[L = \mathbb{R}^n \] is real. Product tori \(L = T(a_1, \ldots, a_n)\) are not real.

2) The zero section in \((T^*Q, \omega = d\lambda)\) is real.

3) Real projective space \(\mathbb{R}P^n\) in \((\mathbb{C}P^n, \omega_{FS})\) is real.
 (This example generalizes to all toric manifolds.)
Examples

1) In \((\mathbb{C}^n, \omega_0)\):

\[L = R^n \text{ is real.} \]

Product tori \(L = T(a_1, \ldots, a_n)\) are not real.

2) The zero section in \((T^*Q, \omega = d\lambda)\) is real.

3) Real projective space \(\mathbb{R}P^n\) in \((\mathbb{C}P^n, \omega_{FS})\) is real.

(This example generalizes to all toric manifolds.)
Examples

1) In (\mathbb{C}^n, ω_0):
 - $L = \mathbb{R}^n$ is real.
Examples

1) In \((\mathbb{C}^n, \omega_0)\):

- \(L = \mathbb{R}^n\) is real.
- Product tori \(L = T(a_1, \ldots, a_n)\) are not real.
1) In \mathbb{C}^n, ω_0:
 - $L = \mathbb{R}^n$ is real.
 - Product tori $L = T(a_1, \ldots, a_n)$ are not real.

2) The zero section in $(T^* Q, \omega = d\lambda)$ is real.
Examples

1) In (\mathbb{C}^n, ω_0):
 - $L = \mathbb{R}^n$ is real.
 - Product tori $L = T(a_1, \ldots, a_n)$ are not real.

2) The zero section in $(T^*Q, \omega = d\lambda)$ is real.

3) Real projective space $\mathbb{R}P^n$ in $(\mathbb{C}P^n, \omega_{FS})$ is real.
Examples

1) In \((\mathbb{C}^n, \omega_0)\):
 - \(L = \mathbb{R}^n\) is real.
 - Product tori \(L = T(a_1, \ldots, a_n)\) are not real.

2) The zero section in \((T^*Q, \omega = d\lambda)\) is real.

3) Real projective space \(\mathbb{R}P^n\) in \((\mathbb{C}P^n, \omega_{FS})\) is real. (This example generalizes to all toric manifolds.)
Examples

The equator in \((S^2, \omega)\) is real. Other circles of constant height are not real.

![Diagram showing the equator in \(S^2\) and other circles of constant height]

Joé Brendel

Real Lagrangian Tori in toric Symplectic Manifolds
Examples

The equator in \((S^2, \omega)\) is real. Other circles of constant height are not real.

In general: If \((M, \omega)\) is monotone and \(L\) is real, then \(L\) is monotone.
From now on: \((M^{2n}, \omega)\) toric monotone symplectic manifold, i.e. there is a moment map \(\mu : M \to \mathbb{R}^n\) which generates an effective Hamiltonian \(T^n\)-action on \(M\).
From now on: \((M^{2n}, \omega)\) toric monotone symplectic manifold, i.e. there is a moment map \(\mu: M \to \mathbb{R}^n\) which generates an effective Hamiltonian \(T^n\)-action on \(M\). Toric fibres \(T_x = \mu^{-1}(x)\) for \(x \in \text{int } \Delta\) are Lagrangian.
From now on: (M^{2n}, ω) toric monotone symplectic manifold, i.e. there is a moment map $\mu: M \to \mathbb{R}^n$ which generates an effective Hamiltonian T^n-action on M. Toric fibres $T_x = \mu^{-1}(x)$ for $x \in \text{int} \Delta$ are Lagrangian.
Technical assumption: We will assume that Δ has property FS:
Technical assumption: We will assume that Δ has property FS: Every facet F of Δ contains a lattice point x_F such that $-x_F$ is also contained in Δ.
Technical assumption: We will assume that Δ has property FS: Every facet F of Δ contains a lattice point x_F such that $-x_F$ is also contained in Δ. Conjecturally,

\[M \text{ monotone } \Rightarrow \Delta \text{ has property } FS. \]
Technical assumption: We will assume that Δ has property FS: Every facet F of Δ contains a lattice point x_F such that $-x_F$ is also contained in Δ.

Conjecturally,

$$M \text{ monotone } \Rightarrow \Delta \text{ has property } FS.$$

Has been checked for $n \leq 9$ by M. Øbro and A. Paffenholz.
Toric fibres

(A) $S^2 \times S^2$

(B) \mathbb{CP}^2

(C) $X_1 = \mathbb{CP}^2 \# \overline{\mathbb{CP}^2}$

(D) $X_2 = \mathbb{CP}^2 \# 2\overline{\mathbb{CP}^2}$

(E) $X_3 = \mathbb{CP}^2 \# 3\overline{\mathbb{CP}^2}$
Toric fibres

Theorem: (P. A. Smith '39)

Let $F \subset M$ be the fixed point set of a smooth involution, then

1) $\chi(F) \equiv \chi(M) \pmod{2}$

2) $\dim H_*(F, \mathbb{Z}_2) \leq \dim H_*(M, \mathbb{Z}_2)$
Toric fibres

Theorem: (P. A. Smith '39)

Let \(F \subset M \) be the fixed point set of a smooth involution, then

1) \(\chi(F) \equiv \chi(M) \pmod{2} \)

2) \(\text{dim} \, H^*(F, \mathbb{Z}_2) \leq \text{dim} \, H^*(M, \mathbb{Z}_2) \)

This excludes \(\mathbb{C}P^2 \) and \(\mathbb{C}P^2 \# 2\overline{\mathbb{C}P^2} \) from having real tori already at the topological level.
Theorem A: (B.)

If the central fibre T_0 is real, then Δ is centrally symmetric, i.e. $\Delta = -\Delta$.

Joint work with J. Kim and J. Moon.
Theorem A: (B.)

If the central fibre T_0 is real, then Δ is centrally symmetric, i.e. $\Delta = -\Delta$.

The converse is also true! Joint work with J. Kim and J. Moon.
Exotic tori

What about exotic tori?

Theorem: (J. Kim '19)

The Chekanov torus in $S^2 \times S^2$ is not real.

Theorem: (J. Kim '20)

If $T \subset S^2 \times S^2$ is real, then it is Hamiltonian isotopic to the Clifford torus.

Theorem B: (B. '20)

There is an exotic Chekanov torus in every toric monotone symplectic manifold and it is not real.

Whenever $\Delta = -\Delta$, then the Chekanov tori are, however, the fixed point set of a smooth involution.
What about exotic tori?

Theorem: (J. Kim ’19)

The Chekanov torus in $S^2 \times S^2$ is not real.
What about exotic tori?

Theorem: (J. Kim ’19)

The Chekanov torus in $S^2 \times S^2$ is not real.

Theorem: (J. Kim ’20)

If $T \subset S^2 \times S^2$ is real, then it is Hamiltonian isotopic to the Clifford torus.
What about exotic tori?

Theorem: (J. Kim ’19)
The Chekanov torus in $S^2 \times S^2$ is not real.

Theorem: (J. Kim ’20)
If $T \subset S^2 \times S^2$ is real, then it is Hamiltonian isotopic to the Clifford torus.

Theorem B: (B. ’20)
There is an exotic Chekanov torus in every toric monotone symplectic manifold and it is not real.
What about exotic tori?

Theorem: (J. Kim '19)
The Chekanov torus in $S^2 \times S^2$ is not real.

Theorem: (J. Kim '20)
If $T \subset S^2 \times S^2$ is real, then it is Hamiltonian isotopic to the Clifford torus.

Theorem B: (B. '20)
There is an exotic Chekanov torus in every toric monotone symplectic manifold and it is not real.

Whenever $\Delta = -\Delta$, then the Chekanov tori are, however, the fixed point set of a smooth involution.
Sketch of proof

Method: Versal deformations (Chekanov ’96; Chekanov–Schlenk ’10/’15) Elementary in the sense that the only ”hard” result used is the computation of displacement energy of product tori in \mathbb{C}^n.

1) Determine the displacement energy of toric fibres. (Using Property FS, McDuff’s probes and Symplectic reduction)

$e(T \times x) = \text{dist}(x, \partial \Delta)$
Sketch of proof

Method: Versal deformations (Chekanov ’96; Chekanov–Schlenk ’10/’15) Elementary in the sense that the only ”hard” result used is the computation of displacement energy of product tori in \mathbb{C}^n.

1) Determine the displacement energy of toric fibres. (Using Property FS, McDuff’s probes and Symplectic reduction)

$$e(T_x) = \text{dist}(x, \partial \Delta)$$
Sketch of proof

Method: Versal deformations (Chekanov ’96; Chekanov–Schlenk ’10/’15) Elementary in the sense that the only "hard" result used is the computation of displacement energy of product tori in \mathbb{C}^n.

1) Determine the displacement energy of toric fibres. (Using Property FS, McDuff’s probes and Symplectic reduction)

$$e(T_x) = \text{dist}(x, \partial \Delta)$$

(A) $M = \mathbb{CP}^2$

(B) $M = S^2 \times S^2$
Sketch of proof

2) Look at the displacement energy of fibres near to the central fibre.
2) Look at the displacement energy of fibres near to the central fibre. \(\leadsto \) Versal deformation

\[
S_{T_0} : \mathcal{U} \rightarrow \mathbb{R} \cup \{\infty\}; \quad x \mapsto e(T_x)
\]
2) Look at the displacement energy of fibres near to the central fibre. \(\rightsquigarrow \text{Versal deformation} \)

\[
S_{T_0} : \mathcal{U} \to \mathbb{R} \cup \{\infty\}; \quad x \mapsto e(T_x)
\]
3) Antisymplectic involutions preserve displacement energy and hence obtain

Lemma:

If L is real, then its displacement energy germ satisfies

$$S_L \circ (-id) = S_L.$$

\Rightarrow Theorem A
Sketch of proof

3) Antisymplectic involutions preserve displacement energy and hence obtain

Lemma:
If L is real, then its displacement energy germ satisfies

$$S_L \circ (-id) = S_L.$$

\Rightarrow Theorem A

4) Many Lagrangian neighbours of exotic tori are toric fibres \Rightarrow Theorem B. (One can also distinguish Vianna tori in this way (B.–Chekanov–Schlenk) and prove that they are not real.)
Thank you!
Definition:

Let $A \subset (M, \omega)$ be a subset. The **displacement energy** of A is defined by

$$e(A) = \inf \{ \|H\| \mid H \text{ Hamiltonian with } \varphi^1_H(A) \cap A = \emptyset \},$$

where $\| \cdot \|$ is the **Hofer norm** defined by

$$\|H\| = \int_0^1 \left(\max_{p \in M} H_t(p) - \min_{p \in M} H_t(p) \right) dt$$

Example: Let $S^1(a) \subset \mathbb{C}$ be the circle enclosing area a, then

$$e(S^1(a)) = a.$$