Zoll contact forms are local maximizers of the systolic ratio

Alberto Abbondandolo

Ruhr-University Bochum
Symplectic Zoominar - May 1st, 2020

The systolic ratio of a contact form

The systolic ratio of a contact form

Contact form α on closed ($2 n-1$)-manifold M, i.e. $\alpha \wedge d \alpha^{n-1}$ volume form.

The systolic ratio of a contact form

Contact form α on closed $(2 n-1)$-manifold M, i.e. $\alpha \wedge d \alpha^{n-1}$ volume form.
Volume of $(M, \alpha): \operatorname{vol}(M, \alpha):=\int_{M} \alpha \wedge d \alpha^{n-1}$.

The systolic ratio of a contact form

Contact form α on closed $(2 n-1)$-manifold M, i.e. $\alpha \wedge d \alpha^{n-1}$ volume form.
Volume of $(M, \alpha): \operatorname{vol}(M, \alpha):=\int_{M} \alpha \wedge d \alpha^{n-1}$.
Reeb vector field $R_{\alpha}: \imath_{R_{\alpha}} d \alpha=0, \imath_{R_{\alpha}} \alpha=1$.

The systolic ratio of a contact form

Contact form α on closed ($2 n-1$)-manifold M, i.e. $\alpha \wedge d \alpha^{n-1}$ volume form.
Volume of $(M, \alpha): \operatorname{vol}(M, \alpha):=\int_{M} \alpha \wedge d \alpha^{n-1}$.
Reeb vector field $R_{\alpha}: \imath_{R_{\alpha}} d \alpha=0, \imath_{R_{\alpha}} \alpha=1$.
Systolic ratio of (M, α) :

$$
\rho_{\mathrm{sys}}(M, \alpha):=\frac{T_{\min }(\alpha)^{n}}{\operatorname{vol}(M, \alpha)}
$$

$T_{\min }(\alpha):=$ minimum of all periods of closed orbits of R_{α}.

Zoll contact forms

Zoll contact forms

The contact form α_{0} is said to be Zoll if all the orbits of $R_{\alpha_{0}}$ are closed and have the same period.

Zoll contact forms

The contact form α_{0} is said to be Zoll if all the orbits of $R_{\alpha_{0}}$ are closed and have the same period.
Boothby \& Wang (1958): α_{0} Zoll on $M \Rightarrow$ Basis B of circle bundle $\pi: M \rightarrow B$ induced by S^{1}-action of $R_{\alpha_{0}}$ has integral symplectic form ω such that $d \alpha_{0}=T_{\text {min }}\left(\alpha_{0}\right) \pi^{*} \omega$, and hence $\rho_{\text {sys }}\left(M, \alpha_{0}\right)=\frac{1}{N}$, where $N:=\left\langle[\omega]^{n-1},[B]\right\rangle \in \mathbb{N}$ is the Euler number.

Zoll contact forms

The contact form α_{0} is said to be Zoll if all the orbits of $R_{\alpha_{0}}$ are closed and have the same period.
Boothby \& Wang (1958): α_{0} Zoll on $M \Rightarrow$ Basis B of circle bundle $\pi: M \rightarrow B$ induced by S^{1}-action of $R_{\alpha_{0}}$ has integral symplectic form ω such that $d \alpha_{0}=T_{\text {min }}\left(\alpha_{0}\right) \pi^{*} \omega$, and hence $\rho_{\text {sys }}\left(M, \alpha_{0}\right)=\frac{1}{N}$, where $N:=\left\langle[\omega]^{n-1},[B]\right\rangle \in \mathbb{N}$ is the Euler number.
Main example: $S^{2 n-1}$ with standard contact form α_{0}, whose Reeb orbits are the fibers of the Hopf fibration $\pi: S^{2 n-1} \rightarrow \mathbb{C P}^{n-1}$, and $\rho_{\text {sys }}\left(S^{2 n-1}, \alpha_{0}\right)=1$.

Zoll contact forms

The contact form α_{0} is said to be Zoll if all the orbits of $R_{\alpha_{0}}$ are closed and have the same period.
Boothby \& Wang (1958): α_{0} Zoll on $M \Rightarrow$ Basis B of circle bundle $\pi: M \rightarrow B$ induced by S^{1}-action of $R_{\alpha_{0}}$ has integral symplectic form ω such that $d \alpha_{0}=T_{\text {min }}\left(\alpha_{0}\right) \pi^{*} \omega$, and hence $\rho_{\text {sys }}\left(M, \alpha_{0}\right)=\frac{1}{N}$, where $N:=\left\langle[\omega]^{n-1},[B]\right\rangle \in \mathbb{N}$ is the Euler number.
Main example: $S^{2 n-1}$ with standard contact form α_{0}, whose Reeb orbits are the fibers of the Hopf fibration $\pi: S^{2 n-1} \rightarrow \mathbb{C P}^{n-1}$, and $\rho_{\text {sys }}\left(S^{2 n-1}, \alpha_{0}\right)=1$.
J. C. Álvarez Paiva \& F. Balacheff (2014):

Zoll contact forms

The contact form α_{0} is said to be Zoll if all the orbits of $R_{\alpha_{0}}$ are closed and have the same period.
Boothby \& Wang (1958): α_{0} Zoll on $M \Rightarrow$ Basis B of circle bundle $\pi: M \rightarrow B$ induced by S^{1}-action of $R_{\alpha_{0}}$ has integral symplectic form ω such that $d \alpha_{0}=T_{\text {min }}\left(\alpha_{0}\right) \pi^{*} \omega$, and hence $\rho_{\text {sys }}\left(M, \alpha_{0}\right)=\frac{1}{N}$, where $N:=\left\langle[\omega]^{n-1},[B]\right\rangle \in \mathbb{N}$ is the Euler number.
Main example: $S^{2 n-1}$ with standard contact form α_{0}, whose Reeb orbits are the fibers of the Hopf fibration $\pi: S^{2 n-1} \rightarrow \mathbb{C P}^{n-1}$, and $\rho_{\text {sys }}\left(S^{2 n-1}, \alpha_{0}\right)=1$.
J. C. Álvarez Paiva \& F. Balacheff (2014):

- Any contact form that is a local maximizer of $\rho_{\text {sys }}$ must be Zoll.

Zoll contact forms

The contact form α_{0} is said to be Zoll if all the orbits of $R_{\alpha_{0}}$ are closed and have the same period.
Boothby \& Wang (1958): α_{0} Zoll on $M \Rightarrow$ Basis B of circle bundle $\pi: M \rightarrow B$ induced by S^{1}-action of $R_{\alpha_{0}}$ has integral symplectic form ω such that $d \alpha_{0}=T_{\text {min }}\left(\alpha_{0}\right) \pi^{*} \omega$, and hence $\rho_{\text {sys }}\left(M, \alpha_{0}\right)=\frac{1}{N}$, where $N:=\left\langle[\omega]^{n-1},[B]\right\rangle \in \mathbb{N}$ is the Euler number.
Main example: $S^{2 n-1}$ with standard contact form α_{0}, whose Reeb orbits are the fibers of the Hopf fibration $\pi: S^{2 n-1} \rightarrow \mathbb{C P}^{n-1}$, and $\rho_{\text {sys }}\left(S^{2 n-1}, \alpha_{0}\right)=1$.
J. C. Álvarez Paiva \& F. Balacheff (2014):

- Any contact form that is a local maximizer of $\rho_{\text {sys }}$ must be Zoll.
- α_{t} smooth path of contact forms with α_{0} Zoll. Then either $t \mapsto \rho_{\text {sys }}\left(M, \alpha_{t}\right)$ has a strict local maximum at $t=0$, or α_{t} is tangent up to every order to the space of Zoll contact forms.

Today's main theorem

Today's main theorem

Theorem 1. (A. A. \& G. Benedetti) Let α_{0} be a Zoll contact form on the closed manifold M. Then α_{0} has a C^{3}-neighborhood \mathcal{U} in the space of contact forms on M such that

$$
\rho_{\mathrm{sys}}(M, \alpha) \leq \rho_{\mathrm{sys}}\left(M, \alpha_{0}\right) \quad \forall \alpha \in \mathcal{U}
$$

with equality if and only if α is Zoll.

Today's main theorem

Theorem 1. (A. A. \& G. Benedetti) Let α_{0} be a Zoll contact form on the closed manifold M. Then α_{0} has a C^{3}-neighborhood \mathcal{U} in the space of contact forms on M such that

$$
\rho_{\mathrm{sys}}(M, \alpha) \leq \rho_{\mathrm{sys}}\left(M, \alpha_{0}\right) \quad \forall \alpha \in \mathcal{U}
$$

with equality if and only if α is Zoll.
C^{3}-local maximality of Zoll contact forms in dimension 3: For $M=S^{3}$: A. A., B. Bramham, U. Hryniewicz \& P. Salomão (2018). For any closed 3-manifold: G. Benedetti \& J. Kang.

Today's main theorem

Theorem 1. (A. A. \& G. Benedetti) Let α_{0} be a Zoll contact form on the closed manifold M. Then α_{0} has a C^{3}-neighborhood \mathcal{U} in the space of contact forms on M such that

$$
\rho_{\mathrm{sys}}(M, \alpha) \leq \rho_{\mathrm{sys}}\left(M, \alpha_{0}\right) \quad \forall \alpha \in \mathcal{U}
$$

with equality if and only if α is Zoll.
C^{3}-local maximality of Zoll contact forms in dimension 3: For $M=S^{3}$: A. A., B. Bramham, U. Hryniewicz \& P. Salomão (2018). For any closed 3-manifold: G. Benedetti \& J. Kang.

The systolic ratio is unbounded from above on the space of contact forms supporting any given contact structure: closed 3-manifolds (ABHS, 2019), contact manifolds of arbitrary dimension (M. Săglam).

Metric systolic geometry, I

Metric systolic geometry, I

The systolic ratio of an n-dimensional closed Riemannian manifold (W, g) is:

$$
\rho_{\mathrm{sys}}(W, g):=\frac{\ell_{\min }(g)^{n}}{\operatorname{vol}(W, g)}
$$

where $\ell_{\min }(g)$ is the shortest length of a closed geodesic on (W, g).

Metric systolic geometry, I

The systolic ratio of an n-dimensional closed Riemannian manifold (W, g) is:

$$
\rho_{\mathrm{sys}}(W, g):=\frac{\ell_{\min }(g)^{n}}{\operatorname{vol}(W, g)}
$$

where $\ell_{\min }(g)$ is the shortest length of a closed geodesic on (W, g). See survey of M. Gromov (1996) and book of M. Berger (2003).

Metric systolic geometry, I

The systolic ratio of an n-dimensional closed Riemannian manifold (W, g) is:

$$
\rho_{\mathrm{sys}}(W, g):=\frac{\ell_{\min }(g)^{n}}{\operatorname{vol}(W, g)}
$$

where $\ell_{\min }(g)$ is the shortest length of a closed geodesic on (W, g). See survey of M. Gromov (1996) and book of M. Berger (2003). The geodesic flow on $T^{1} W$ is the Reeb flow of a contact form α_{g} and

$$
T_{\min }\left(\alpha_{g}\right)=\ell_{\min }(g), \quad \operatorname{vol}\left(T^{1} W, \alpha_{g}\right)=n!\omega_{n} \operatorname{vol}(W, g)
$$

where ω_{n} is the volume of the Euclidean unit ball in \mathbb{R}^{n}.

Metric systolic geometry, I

The systolic ratio of an n-dimensional closed Riemannian manifold (W, g) is:

$$
\rho_{\mathrm{sys}}(W, g):=\frac{\ell_{\min }(g)^{n}}{\operatorname{vol}(W, g)}
$$

where $\ell_{\min }(g)$ is the shortest length of a closed geodesic on (W, g). See survey of M. Gromov (1996) and book of M. Berger (2003). The geodesic flow on $T^{1} W$ is the Reeb flow of a contact form α_{g} and

$$
T_{\min }\left(\alpha_{g}\right)=\ell_{\min }(g), \quad \operatorname{vol}\left(T^{1} W, \alpha_{g}\right)=n!\omega_{n} \operatorname{vol}(W, g)
$$

where ω_{n} is the volume of the Euclidean unit ball in \mathbb{R}^{n}.

$$
\rho_{\mathrm{sys}}(W, g)=n!\omega_{n} \rho_{\mathrm{sys}}\left(T^{1} W, \alpha_{g}\right)
$$

Metric systolic geometry, II

Metric systolic geometry, II

A metric g on W is said to be Zoll if all its geodesics are closed and have the same length.

Metric systolic geometry, II

A metric g on W is said to be Zoll if all its geodesics are closed and have the same length.

Corollary 1. Zoll Riemannian metrics are local maximizers of the systolic ratio in the C^{3}-topology.

Metric systolic geometry, II

A metric g on W is said to be Zoll if all its geodesics are closed and have the same length.

Corollary 1. Zoll Riemannian metrics are local maximizers of the systolic ratio in the C^{3}-topology.

Case $\operatorname{dim} W=2$: Zoll metrics exist only on S^{2} and on $\mathbb{R P}^{2}$.

Metric systolic geometry, II

A metric g on W is said to be Zoll if all its geodesics are closed and have the same length.

Corollary 1. Zoll Riemannian metrics are local maximizers of the systolic ratio in the C^{3}-topology.

Case $\operatorname{dim} W=2$: Zoll metrics exist only on S^{2} and on $\mathbb{R P}^{2}$. $\mathbb{R P}^{2}$: up to rescaling there is only one Zoll metric, which is the global maximizer of the systolic ratio (P. M. Pu, 1952).

Metric systolic geometry, II

A metric g on W is said to be Zoll if all its geodesics are closed and have the same length.

Corollary 1. Zoll Riemannian metrics are local maximizers of the systolic ratio in the C^{3}-topology.

Case $\operatorname{dim} W=2$: Zoll metrics exist only on S^{2} and on $\mathbb{R P}^{2}$.
$\mathbb{R P}^{2}$: up to rescaling there is only one Zoll metric, which is the global maximizer of the systolic ratio (P. M. Pu, 1952).
S^{2} : infinite dimensional space of Zoll metrics (O. Zoll, 1903, V. Guillemin, 1976),

Metric systolic geometry, II

A metric g on W is said to be Zoll if all its geodesics are closed and have the same length.

Corollary 1. Zoll Riemannian metrics are local maximizers of the systolic ratio in the C^{3}-topology.

Case $\operatorname{dim} W=2$: Zoll metrics exist only on S^{2} and on $\mathbb{R P}^{2}$.
$\mathbb{R P}^{2}$: up to rescaling there is only one Zoll metric, which is the global maximizer of the systolic ratio (P. M. Pu, 1952).
S^{2} : infinite dimensional space of Zoll metrics (O. Zoll, 1903, V. Guillemin, 1976), all local maximizers of $\rho_{\text {sys }}$ (ABHS, 2017 and 2018),

Metric systolic geometry, II

A metric g on W is said to be Zoll if all its geodesics are closed and have the same length.

Corollary 1. Zoll Riemannian metrics are local maximizers of the systolic ratio in the C^{3}-topology.

Case $\operatorname{dim} W=2$: Zoll metrics exist only on S^{2} and on $\mathbb{R P}^{2}$.
$\mathbb{R P}^{2}$: up to rescaling there is only one Zoll metric, which is the global maximizer of the systolic ratio (P. M. Pu, 1952).
S^{2} : infinite dimensional space of Zoll metrics (O. Zoll, 1903, V. Guillemin, 1976), all local maximizers of $\rho_{\text {sys }}$ (ABHS, 2017 and 2018), but not global maximizers, although sup $\rho_{\text {sys }}(W, g)<+\infty$ (C. B. Croke, 1988).

Metric systolic geometry, II

A metric g on W is said to be Zoll if all its geodesics are closed and have the same length.

Corollary 1. Zoll Riemannian metrics are local maximizers of the systolic ratio in the C^{3}-topology.

Case $\operatorname{dim} W=2$: Zoll metrics exist only on S^{2} and on $\mathbb{R P}^{2}$.
$\mathbb{R P}^{2}$: up to rescaling there is only one Zoll metric, which is the global maximizer of the systolic ratio (P. M. Pu, 1952).
S^{2} : infinite dimensional space of Zoll metrics (O. Zoll, 1903, V. Guillemin, 1976), all local maximizers of $\rho_{\text {sys }}$ (ABHS, 2017 and 2018), but not global maximizers, although sup $\rho_{\text {sys }}(W, g)<+\infty$ (C. B. Croke, 1988).

Corollary 1 answers a question of M. Berger (1970).

A conjecture of Viterbo, I

A conjecture of Viterbo, I

Conjecture (C. Viterbo, 2000). Let c be a normalized symplectic capacity on $\left(\mathbb{R}^{2 n}, \omega_{0}\right)$. For every convex body $K \subset \mathbb{R}^{2 n}$ we have

$$
c(K)^{n} \leq \operatorname{vol}\left(K, \omega_{0}^{n}\right)
$$

with equality if and only of the interior of K is symplectomorphic to a ball.

A conjecture of Viterbo, I

Conjecture (C. Viterbo, 2000). Let c be a normalized symplectic capacity on $\left(\mathbb{R}^{2 n}, \omega_{0}\right)$. For every convex body $K \subset \mathbb{R}^{2 n}$ we have

$$
c(K)^{n} \leq \operatorname{vol}\left(K, \omega_{0}^{n}\right),
$$

with equality if and only of the interior of K is symplectomorphic to a ball.

EHZ-capacities: $\lambda_{0}:=\frac{1}{2} \sum_{j=1}^{n}\left(x_{j} d y_{j}-y_{j} d x_{j}\right)$ primitive of ω_{0}, K smooth convex body with $0 \in \operatorname{int}(K)$, so that λ_{0} restricts to a contact form on ∂K.

A conjecture of Viterbo, I

Conjecture (C. Viterbo, 2000). Let c be a normalized symplectic capacity on $\left(\mathbb{R}^{2 n}, \omega_{0}\right)$. For every convex body $K \subset \mathbb{R}^{2 n}$ we have

$$
c(K)^{n} \leq \operatorname{vol}\left(K, \omega_{0}^{n}\right),
$$

with equality if and only of the interior of K is symplectomorphic to a ball.

EHZ-capacities: $\lambda_{0}:=\frac{1}{2} \sum_{j=1}^{n}\left(x_{j} d y_{j}-y_{j} d x_{j}\right)$ primitive of ω_{0}, K smooth convex body with $0 \in \operatorname{int}(K)$, so that λ_{0} restricts to a contact form on ∂K. Then many symplectic capacities c satisfy

$$
c(K)=T_{\min }\left(\left.\lambda_{0}\right|_{\partial K}\right)
$$

We denote by $c_{E H z}$ one of them.

A conjecture of Viterbo, I

Conjecture (C. Viterbo, 2000). Let c be a normalized symplectic capacity on $\left(\mathbb{R}^{2 n}, \omega_{0}\right)$. For every convex body $K \subset \mathbb{R}^{2 n}$ we have

$$
c(K)^{n} \leq \operatorname{vol}\left(K, \omega_{0}^{n}\right),
$$

with equality if and only of the interior of K is symplectomorphic to a ball.

EHZ-capacities: $\lambda_{0}:=\frac{1}{2} \sum_{j=1}^{n}\left(x_{j} d y_{j}-y_{j} d x_{j}\right)$ primitive of ω_{0}, K smooth convex body with $0 \in \operatorname{int}(K)$, so that λ_{0} restricts to a contact form on ∂K. Then many symplectic capacities c satisfy

$$
c(K)=T_{\min }\left(\left.\lambda_{0}\right|_{\partial K}\right)
$$

We denote by $c_{E H z}$ one of them. Viterbos' conjecture for $c_{E H Z}$ reads:

$$
T_{\min }\left(\left.\lambda_{0}\right|_{\partial K}\right)^{n} \leq \operatorname{vol}\left(\partial K,\left.\lambda_{0}\right|_{\partial K}\right), \quad \text { i.e. } \quad \rho_{\mathrm{sys}}\left(\partial K,\left.\lambda_{0}\right|_{\partial K}\right) \leq 1,
$$

with equality if and only of the interior of K is symplectomorphic to a ball.

A conjecture of Viterbo, II

A conjecture of Viterbo, II

S. Artstein-Avidan, V. Milman \& Y. Ostrover (2008):

$$
c(K)^{n} \leq C \operatorname{vol}\left(K, \omega_{0}^{n}\right),
$$

for some constant C which is independent of n.

A conjecture of Viterbo, II

S. Artstein-Avidan, V. Milman \& Y. Ostrover (2008):

$$
c(K)^{n} \leq C \operatorname{vol}\left(K, \omega_{0}^{n}\right),
$$

for some constant C which is independent of n.
S. Artstein-Avidan, R. Karasev \& Y. Ostrover (2014): Viterbo's conjecture for $C_{E H Z}$ implies the Mahler conjecture (1939) in convex geometry.

A conjecture of Viterbo, II

S. Artstein-Avidan, V. Milman \& Y. Ostrover (2008):

$$
c(K)^{n} \leq C \operatorname{vol}\left(K, \omega_{0}^{n}\right),
$$

for some constant C which is independent of n.
S. Artstein-Avidan, R. Karasev \& Y. Ostrover (2014): Viterbo's conjecture for $C_{E H Z}$ implies the Mahler conjecture (1939) in convex geometry.
Corollary 2. There exists a C^{3}-neighborhood \mathcal{U} of the ball in the space of smooth convex bodies in $\mathbb{R}^{2 n}$ such that

$$
c_{E H Z}(K)^{n} \leq \operatorname{vol}\left(K, \omega_{0}^{n}\right) \quad \forall K \in \mathcal{U},
$$

with equality if and only if K is symplectotmorphic to a closed ball.

A conjecture of Viterbo, II

S. Artstein-Avidan, V. Milman \& Y. Ostrover (2008):

$$
c(K)^{n} \leq C \operatorname{vol}\left(K, \omega_{0}^{n}\right),
$$

for some constant C which is independent of n.
S. Artstein-Avidan, R. Karasev \& Y. Ostrover (2014): Viterbo's conjecture for $C_{E H Z}$ implies the Mahler conjecture (1939) in convex geometry.

Corollary 2. There exists a C^{3}-neighborhood \mathcal{U} of the ball in the space of smooth convex bodies in $\mathbb{R}^{2 n}$ such that

$$
c_{E H Z}(K)^{n} \leq \operatorname{vol}\left(K, \omega_{0}^{n}\right) \quad \forall K \in \mathcal{U}
$$

with equality if and only if K is symplectotmorphic to a closed ball.
Case $n=2$: ABHS (2018).

A conjecture of Viterbo, II

S. Artstein-Avidan, V. Milman \& Y. Ostrover (2008):

$$
c(K)^{n} \leq C \operatorname{vol}\left(K, \omega_{0}^{n}\right),
$$

for some constant C which is independent of n.
S. Artstein-Avidan, R. Karasev \& Y. Ostrover (2014): Viterbo's conjecture for $c_{E H Z}$ implies the Mahler conjecture (1939) in convex geometry.

Corollary 2. There exists a C^{3}-neighborhood \mathcal{U} of the ball in the space of smooth convex bodies in $\mathbb{R}^{2 n}$ such that

$$
c_{E H Z}(K)^{n} \leq \operatorname{vol}\left(K, \omega_{0}^{n}\right) \quad \forall K \in \mathcal{U},
$$

with equality if and only if K is symplectotmorphic to a closed ball.
Characterization of the equality: Need to show that if the Reeb flow on ∂K is Zoll then K is symplectomorphic to a closed ball.

Shadows of symplectic balls, I

Shadows of symplectic balls, I

Gromov's non-squeezing theorem (1985): V symplectic 2-plane in $\left(\mathbb{R}^{2 n}, \omega_{0}\right), P_{V}$ symplectic projector onto V, B unit ball in $\mathbb{R}^{2 n}$. Then

$$
\operatorname{area}\left(P_{V} \varphi(B), \omega_{0} \mid v\right) \geq \pi
$$

for any symplectomorphism $\varphi: B \hookrightarrow \mathbb{R}^{2 n}$.

Shadows of symplectic balls, I

Gromov's non-squeezing theorem (1985): V symplectic 2-plane in $\left(\mathbb{R}^{2 n}, \omega_{0}\right), P_{V}$ symplectic projector onto V, B unit ball in $\mathbb{R}^{2 n}$. Then

$$
\operatorname{area}\left(P_{v} \varphi(B), \omega_{0} \mid v\right) \geq \pi
$$

for any symplectomorphism $\varphi: B \hookrightarrow \mathbb{R}^{2 n}$.
A. A. \& R. Matveyev (2013): If V is a symplectic $2 k$-plane with $1<k<n$ and $\epsilon>0$, then there exists a symplectomorphism $\varphi: B \hookrightarrow \mathbb{R}^{2 n}$ such that

$$
\operatorname{vol}\left(P_{V} \varphi(B), \omega_{0}^{k} \mid v\right)<\epsilon
$$

Shadows of symplectic balls, II

Shadows of symplectic balls, II

Linear symplectomorphisms: If $\Phi: \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{2 n}$ is a linear symplectomorphism, then
where

$$
\operatorname{vol}\left(P_{V} \Phi(B), \omega_{0}^{k} \mid v\right)=\frac{\pi^{k}}{w\left(\Phi^{-1}(V)\right)}
$$

$$
w(X):=\frac{\left|\omega_{0}^{k}\left[u_{1}, u_{2}, \ldots, u_{2 k}\right]\right|}{k!\left|u_{1} \wedge u_{2} \wedge \cdots \wedge u_{2 k}\right|}, u_{1}, u_{2}, \ldots, u_{2 k} \text { basis of } X \in \operatorname{Gr}_{2 k}\left(\mathbb{R}^{2 n}\right) .
$$

Shadows of symplectic balls, II

Linear symplectomorphisms: If $\Phi: \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{2 n}$ is a linear symplectomorphism, then
where

$$
\operatorname{vol}\left(P_{V} \Phi(B), \omega_{0}^{k} \mid v\right)=\frac{\pi^{k}}{w\left(\Phi^{-1}(V)\right)}
$$

$$
\begin{aligned}
& \text { where } \\
& w(X):=\frac{\left|\omega_{0}^{k}\left[u_{1}, u_{2}, \ldots, u_{2 k}\right]\right|}{k!\left|u_{1} \wedge u_{2} \wedge \cdots \wedge u_{2 k}\right|}, u_{1}, u_{2}, \ldots, u_{2 k} \text { basis of } X \in \operatorname{Gr}_{2 k}\left(\mathbb{R}^{2 n}\right) .
\end{aligned}
$$

Wirtinger inequality: $w(X) \leq 1$, and $=1$ if and only if X is a complex subspace.

Shadows of symplectic balls, II

Linear symplectomorphisms: If $\Phi: \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{2 n}$ is a linear symplectomorphism, then
where

$$
\operatorname{vol}\left(P_{V} \Phi(B), \omega_{0}^{k} \mid v\right)=\frac{\pi^{k}}{w\left(\Phi^{-1}(V)\right)}
$$

$$
\begin{aligned}
& \text { where } \\
& w(X):=\frac{\left|\omega_{0}^{k}\left[u_{1}, u_{2}, \ldots, u_{2 k}\right]\right|}{k!\left|u_{1} \wedge u_{2} \wedge \cdots \wedge u_{2 k}\right|}, u_{1}, u_{2}, \ldots, u_{2 k} \text { basis of } X \in \operatorname{Gr}_{2 k}\left(\mathbb{R}^{2 n}\right) .
\end{aligned}
$$

Wirtinger inequality: $w(X) \leq 1$, and $=1$ if and only if X is a complex subspace. Therefore:

$$
\operatorname{vol}\left(P_{V} \Phi(B), \omega_{0}^{k} \mid v\right) \geq \pi^{k}
$$

for every linear symplectomorphism $\Phi: \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{2 n}$.

Shadows of symplectic balls, II

Linear symplectomorphisms: If $\Phi: \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{2 n}$ is a linear symplectomorphism, then
where

$$
\operatorname{vol}\left(P_{V} \Phi(B), \omega_{0}^{k} \mid v\right)=\frac{\pi^{k}}{w\left(\Phi^{-1}(V)\right)}
$$

$$
w(X):=\frac{\left|\omega_{0}^{k}\left[u_{1}, u_{2}, \ldots, u_{2 k}\right]\right|}{k!\left|u_{1} \wedge u_{2} \wedge \cdots \wedge u_{2 k}\right|}, u_{1}, u_{2}, \ldots, u_{2 k} \text { basis of } X \in \operatorname{Gr}_{2 k}\left(\mathbb{R}^{2 n}\right) .
$$

Wirtinger inequality: $w(X) \leq 1$, and $=1$ if and only if X is a complex subspace. Therefore:

$$
\operatorname{vol}\left(P_{V} \Phi(B), \omega_{0}^{k} \mid v\right) \geq \pi^{k}
$$

for every linear symplectomorphism $\Phi: \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{2 n}$. Corollary 3. There exists a $C_{\text {loc }}^{3}$-neighborhood \mathcal{U} of the set of linear symplectorphisms in the space of all smooth symplectomorphisms of $\mathbb{R}^{2 n}$ such that for every symplectic $2 k$-plane $V \subset \mathrm{R}^{2 n}$ we have

$$
\operatorname{vol}\left(P_{V \varphi}(B), \omega_{0}^{k} \mid v\right) \geq \pi^{k}
$$

for every $\varphi \in \mathcal{U}$.

Proof of Theorem 1 in a simple case

Proof of Theorem 1 in a simple case

M closed $(2 n-1)$-dimensional manifold with Zoll contact form α_{0}. Normalization: $T_{\text {min }}\left(\alpha_{0}\right)=1$.

Proof of Theorem 1 in a simple case

M closed $(2 n-1)$-dimensional manifold with Zoll contact form α_{0}. Normalization: $T_{\text {min }}\left(\alpha_{0}\right)=1$.
Assume that the contact form α of M has the form

$$
\alpha=S \alpha_{0}
$$

where $S: M \rightarrow(0,+\infty)$ is a function that is constant on the orbits of $R_{\alpha_{0}}$.

Proof of Theorem 1 in a simple case

M closed $(2 n-1)$-dimensional manifold with Zoll contact form α_{0}. Normalization: $T_{\text {min }}\left(\alpha_{0}\right)=1$.
Assume that the contact form α of M has the form

$$
\alpha=S \alpha_{0}
$$

where $S: M \rightarrow(0,+\infty)$ is a function that is constant on the orbits of $R_{\alpha_{0}}$.
Since $d \alpha=d S \wedge \alpha_{0}+S d \alpha_{0}$, every closed orbit γ of $R_{\alpha_{0}}$ consisting of critical points of S is a closed orbit of R_{α} of period $S(\gamma)$.

Proof of Theorem 1 in a simple case

M closed $(2 n-1)$-dimensional manifold with Zoll contact form α_{0}. Normalization: $T_{\text {min }}\left(\alpha_{0}\right)=1$.
Assume that the contact form α of M has the form

$$
\alpha=S \alpha_{0}
$$

where $S: M \rightarrow(0,+\infty)$ is a function that is constant on the orbits of $R_{\alpha_{0}}$.
Since $d \alpha=d S \wedge \alpha_{0}+S d \alpha_{0}$, every closed orbit γ of $R_{\alpha_{0}}$ consisting of critical points of S is a closed orbit of R_{α} of period $S(\gamma)$. Therefore:

$$
\operatorname{vol}(M, \alpha)
$$

Proof of Theorem 1 in a simple case

M closed $(2 n-1)$-dimensional manifold with Zoll contact form α_{0}. Normalization: $T_{\text {min }}\left(\alpha_{0}\right)=1$.
Assume that the contact form α of M has the form

$$
\alpha=S \alpha_{0}
$$

where $S: M \rightarrow(0,+\infty)$ is a function that is constant on the orbits of $R_{\alpha_{0}}$.
Since $d \alpha=d S \wedge \alpha_{0}+S d \alpha_{0}$, every closed orbit γ of $R_{\alpha_{0}}$ consisting of critical points of S is a closed orbit of R_{α} of period $S(\gamma)$. Therefore:

$$
\operatorname{vol}(M, \alpha)=\int_{M} S^{n} \alpha_{0} \wedge d \alpha_{0}^{n-1}
$$

Proof of Theorem 1 in a simple case

M closed $(2 n-1)$-dimensional manifold with Zoll contact form α_{0}. Normalization: $T_{\text {min }}\left(\alpha_{0}\right)=1$.
Assume that the contact form α of M has the form

$$
\alpha=S \alpha_{0}
$$

where $S: M \rightarrow(0,+\infty)$ is a function that is constant on the orbits of $R_{\alpha_{0}}$.
Since $d \alpha=d S \wedge \alpha_{0}+S d \alpha_{0}$, every closed orbit γ of $R_{\alpha_{0}}$ consisting of critical points of S is a closed orbit of R_{α} of period $S(\gamma)$. Therefore:

$$
\operatorname{vol}(M, \alpha)=\int_{M} S^{n} \alpha_{0} \wedge d \alpha_{0}^{n-1} \geq(\min S)^{n} \int_{M} \alpha_{0} \wedge d \alpha_{0}^{n-1}
$$

Proof of Theorem 1 in a simple case

M closed $(2 n-1)$-dimensional manifold with Zoll contact form α_{0}. Normalization: $T_{\text {min }}\left(\alpha_{0}\right)=1$.
Assume that the contact form α of M has the form

$$
\alpha=S \alpha_{0}
$$

where $S: M \rightarrow(0,+\infty)$ is a function that is constant on the orbits of $R_{\alpha_{0}}$.
Since $d \alpha=d S \wedge \alpha_{0}+S d \alpha_{0}$, every closed orbit γ of $R_{\alpha_{0}}$ consisting of critical points of S is a closed orbit of R_{α} of period $S(\gamma)$. Therefore:

$$
\begin{aligned}
\operatorname{vol}(M, \alpha) & =\int_{M} S^{n} \alpha_{0} \wedge d \alpha_{0}^{n-1} \geq(\min S)^{n} \int_{M} \alpha_{0} \wedge d \alpha_{0}^{n-1} \\
& =(\min S)^{n} \operatorname{vol}\left(M, \alpha_{0}\right)
\end{aligned}
$$

Proof of Theorem 1 in a simple case

M closed $(2 n-1)$-dimensional manifold with Zoll contact form α_{0}. Normalization: $T_{\text {min }}\left(\alpha_{0}\right)=1$.
Assume that the contact form α of M has the form

$$
\alpha=S \alpha_{0}
$$

where $S: M \rightarrow(0,+\infty)$ is a function that is constant on the orbits of $R_{\alpha_{0}}$.
Since $d \alpha=d S \wedge \alpha_{0}+S d \alpha_{0}$, every closed orbit γ of $R_{\alpha_{0}}$ consisting of critical points of S is a closed orbit of R_{α} of period $S(\gamma)$. Therefore:

$$
\begin{aligned}
\operatorname{vol}(M, \alpha) & =\int_{M} S^{n} \alpha_{0} \wedge d \alpha_{0}^{n-1} \geq(\min S)^{n} \int_{M} \alpha_{0} \wedge d \alpha_{0}^{n-1} \\
& =(\min S)^{n} \operatorname{vol}\left(M, \alpha_{0}\right) \geq T_{\min }(\alpha)^{n} \operatorname{vol}\left(M, \alpha_{0}\right)
\end{aligned}
$$

Proof of Theorem 1 in a simple case

M closed ($2 n-1$)-dimensional manifold with Zoll contact form α_{0}. Normalization: $T_{\text {min }}\left(\alpha_{0}\right)=1$.
Assume that the contact form α of M has the form

$$
\alpha=S \alpha_{0}
$$

where $S: M \rightarrow(0,+\infty)$ is a function that is constant on the orbits of $R_{\alpha_{0}}$.
Since $d \alpha=d S \wedge \alpha_{0}+S d \alpha_{0}$, every closed orbit γ of $R_{\alpha_{0}}$ consisting of critical points of S is a closed orbit of R_{α} of period $S(\gamma)$. Therefore:

$$
\begin{aligned}
\operatorname{vol}(M, \alpha) & =\int_{M} S^{n} \alpha_{0} \wedge d \alpha_{0}^{n-1} \geq(\min S)^{n} \int_{M} \alpha_{0} \wedge d \alpha_{0}^{n-1} \\
& =(\min S)^{n} \operatorname{vol}\left(M, \alpha_{0}\right) \geq T_{\min }(\alpha)^{n} \operatorname{vol}\left(M, \alpha_{0}\right)
\end{aligned}
$$

and hence $\rho_{\mathrm{sys}}(M, \alpha)=\frac{T_{\min }(\text { alpha })^{n}}{\operatorname{vol}(M, \alpha)} \leq \frac{1}{\operatorname{vol}\left(M, \alpha_{0}\right)}=\rho_{\mathrm{sys}}\left(M, \alpha_{0}\right)$.

Proof of Theorem 1 in a simple case

M closed ($2 n-1$)-dimensional manifold with Zoll contact form α_{0}. Normalization: $T_{\text {min }}\left(\alpha_{0}\right)=1$.
Assume that the contact form α of M has the form

$$
\alpha=S \alpha_{0}
$$

where $S: M \rightarrow(0,+\infty)$ is a function that is constant on the orbits of $R_{\alpha_{0}}$.
Since $d \alpha=d S \wedge \alpha_{0}+S d \alpha_{0}$, every closed orbit γ of $R_{\alpha_{0}}$ consisting of critical points of S is a closed orbit of R_{α} of period $S(\gamma)$. Therefore:

$$
\begin{aligned}
\operatorname{vol}(M, \alpha) & =\int_{M} S^{n} \alpha_{0} \wedge d \alpha_{0}^{n-1} \geq(\min S)^{n} \int_{M} \alpha_{0} \wedge d \alpha_{0}^{n-1} \\
& =(\min S)^{n} \operatorname{vol}\left(M, \alpha_{0}\right) \geq T_{\min }(\alpha)^{n} \operatorname{vol}\left(M, \alpha_{0}\right)
\end{aligned}
$$

and hence $\rho_{\mathrm{sys}}(M, \alpha)=\frac{T_{\min }(a / p h a)^{n}}{\operatorname{vol}(M, \alpha)} \leq \frac{1}{\operatorname{vol}\left(M, \alpha_{0}\right)}=\rho_{\mathrm{sys}}\left(M, \alpha_{0}\right)$.

A normal form for contact forms close to Zoll ones

A normal form for contact forms close to Zoll ones

Theorem 2. If α is C^{2}-close to the Zoll contact form α_{0} then there is a diffeomorphism $u: M \rightarrow M$ such that

$$
u^{*} \alpha=S \alpha_{0}+\eta+d f,
$$

where:

A normal form for contact forms close to Zoll ones

Theorem 2. If α is C^{2}-close to the Zoll contact form α_{0} then there is a diffeomorphism $u: M \rightarrow M$ such that

$$
u^{*} \alpha=S \alpha_{0}+\eta+d f,
$$

where:
(i) $S: M \rightarrow(0,+\infty)$ is constant on the orbits of $R_{\alpha_{0}}$;

A normal form for contact forms close to Zoll ones

Theorem 2. If α is C^{2}-close to the Zoll contact form α_{0} then there is a diffeomorphism $u: M \rightarrow M$ such that

$$
u^{*} \alpha=S \alpha_{0}+\eta+d f,
$$

where:
(i) $S: M \rightarrow(0,+\infty)$ is constant on the orbits of $R_{\alpha_{0}}$;
(ii) $f: M \rightarrow \mathbb{R}$;

A normal form for contact forms close to Zoll ones

Theorem 2. If α is C^{2}-close to the Zoll contact form α_{0} then there is a diffeomorphism $u: M \rightarrow M$ such that

$$
u^{*} \alpha=S \alpha_{0}+\eta+d f
$$

where:
(i) $S: M \rightarrow(0,+\infty)$ is constant on the orbits of $R_{\alpha_{0}}$;
(ii) $f: M \rightarrow \mathbb{R}$;
(iii) η is a one-form such that $\imath_{R_{\alpha}} \eta=0$;

A normal form for contact forms close to Zoll ones

Theorem 2. If α is C^{2}-close to the Zoll contact form α_{0} then there is a diffeomorphism $u: M \rightarrow M$ such that

$$
u^{*} \alpha=S \alpha_{0}+\eta+d f
$$

where:
(i) $S: M \rightarrow(0,+\infty)$ is constant on the orbits of $R_{\alpha_{0}}$;
(ii) $f: M \rightarrow \mathbb{R}$;
(iii) η is a one-form such that $\imath_{R_{\alpha_{0}}} \eta=0$;
(iv) $\imath_{R_{\alpha_{0}}} d \eta=F[d S]$, where $F: T^{*} M \rightarrow T^{*} M$ is an endomorphism lifting the identity.

A normal form for contact forms close to Zoll ones

Theorem 2. If α is C^{2}-close to the Zoll contact form α_{0} then there is a diffeomorphism $u: M \rightarrow M$ such that

$$
u^{*} \alpha=S \alpha_{0}+\eta+d f
$$

where:
(i) $S: M \rightarrow(0,+\infty)$ is constant on the orbits of $R_{\alpha_{0}}$;
(ii) $f: M \rightarrow \mathbb{R}$;
(iii) η is a one-form such that $\imath_{R_{\alpha_{0}}} \eta=0$;
(iv) $\imath_{R_{\alpha_{0}}} d \eta=F[d S]$, where $F: T^{*} M \rightarrow T^{*} M$ is an endomorphism lifting the identity.
Moreover, u is close to the identity and $S-1, f, \eta, F$ are small for $\alpha-\alpha_{0}$ small, in suitable norms.

A normal form for contact forms close to Zoll ones

Theorem 2. If α is C^{2}-close to the Zoll contact form α_{0} then there is a diffeomorphism $u: M \rightarrow M$ such that

$$
u^{*} \alpha=S \alpha_{0}+\eta+d f
$$

where:
(i) $S: M \rightarrow(0,+\infty)$ is constant on the orbits of $R_{\alpha_{0}}$;
(ii) $f: M \rightarrow \mathbb{R}$;
(iii) η is a one-form such that $\imath_{R_{\alpha_{0}}} \eta=0$;
(iv) $\imath_{R_{\alpha_{0}}} d \eta=F[d S]$, where $F: T^{*} M \rightarrow T^{*} M$ is an endomorphism lifting the identity.
Moreover, u is close to the identity and $S-1, f, \eta, F$ are small for $\alpha-\alpha_{0}$ small, in suitable norms.

Key fact: Any orbit γ of $R_{\alpha_{0}}$ consisting of critical points of S is a closed orbit of $R_{u^{*} \alpha}$ of period $S(\gamma) T_{\min }\left(\alpha_{0}\right)$.

The volume formula

The volume formula

Proposition. $\beta=S \alpha_{0}+\eta+d f$ with S, η, f as before.

The volume formula

Proposition. $\beta=S \alpha_{0}+\eta+d f$ with S, η, f as before. Then

$$
\operatorname{vol}(M, \beta)=\int_{M} p(x, S(x)) \alpha_{0} \wedge d \alpha_{0}^{n-1}
$$

where $p: M \times \mathbb{R} \rightarrow \mathbb{R}$ is polynomial in its second variable,

$$
p(x, s)=s^{n}+\sum_{j=1}^{n-1} p_{j}(x) s^{j}
$$

The volume formula

Proposition. $\beta=S \alpha_{0}+\eta+d f$ with S, η, f as before. Then

$$
\operatorname{vol}(M, \beta)=\int_{M} p(x, S(x)) \alpha_{0} \wedge d \alpha_{0}^{n-1}
$$

where $p: M \times \mathbb{R} \rightarrow \mathbb{R}$ is polynomial in its second variable,

$$
p(x, s)=s^{n}+\sum_{j=1}^{n-1} p_{j}(x) s^{j}
$$

with coefficients $p_{j}: M \rightarrow \mathbb{R}$ satisfying

$$
\int_{M} p_{j} \alpha_{0} \wedge d \alpha_{0}^{n-1}=0, \quad \forall j=1,2, \ldots, n-1 .
$$

The volume formula

Proposition. $\beta=S \alpha_{0}+\eta+d f$ with S, η, f as before. Then

$$
\operatorname{vol}(M, \beta)=\int_{M} p(x, S(x)) \alpha_{0} \wedge d \alpha_{0}^{n-1}
$$

where $p: M \times \mathbb{R} \rightarrow \mathbb{R}$ is polynomial in its second variable,

$$
p(x, s)=s^{n}+\sum_{j=1}^{n-1} p_{j}(x) s^{j}
$$

with coefficients $p_{j}: M \rightarrow \mathbb{R}$ satisfying

$$
\int_{M} p_{j} \alpha_{0} \wedge d \alpha_{0}^{n-1}=0, \quad \forall j=1,2, \ldots, n-1 .
$$

Moreover, p_{j} is C^{0}-small when η and F are small in suitable norms.

Proof of Theorem 1

Proof of Theorem 1

Normalization $T_{\text {min }}\left(\alpha_{0}\right)=1$.

Proof of Theorem 1

Normalization $T_{\text {min }}\left(\alpha_{0}\right)=1$. By Theorem 2, we can put α in normal form: $u^{*} \alpha=S \alpha_{0}+\eta+d f$.

Proof of Theorem 1

Normalization $T_{\text {min }}\left(\alpha_{0}\right)=1$. By Theorem 2, we can put α in normal form: $u^{*} \alpha=S \alpha_{0}+\eta+d f$. By the Proposition, we have

$$
\operatorname{vol}(M, \alpha)=\operatorname{vol}\left(M, u^{*} \alpha\right)=\int_{M} p(x, S(x)) \alpha_{0} \wedge d \alpha_{0}^{n-1}
$$

Proof of Theorem 1

Normalization $T_{\text {min }}\left(\alpha_{0}\right)=1$. By Theorem 2, we can put α in normal form: $u^{*} \alpha=S \alpha_{0}+\eta+d f$. By the Proposition, we have

$$
\operatorname{vol}(M, \alpha)=\operatorname{vol}\left(M, u^{*} \alpha\right)=\int_{M} p(x, S(x)) \alpha_{0} \wedge d \alpha_{0}^{n-1}
$$

By the form of the polynomial function p and the bounds on its coefficients, $s \mapsto p(x, s)$ is strictly increasing for s close to 1 .

Proof of Theorem 1

Normalization $T_{\text {min }}\left(\alpha_{0}\right)=1$. By Theorem 2, we can put α in normal form: $u^{*} \alpha=S \alpha_{0}+\eta+d f$. By the Proposition, we have

$$
\operatorname{vol}(M, \alpha)=\operatorname{vol}\left(M, u^{*} \alpha\right)=\int_{M} p(x, S(x)) \alpha_{0} \wedge d \alpha_{0}^{n-1}
$$

By the form of the polynomial function p and the bounds on its coefficients, $s \mapsto p(x, s)$ is strictly increasing for s close to 1 . Therefore:

$$
\int_{M} p(x, S(x)) \alpha_{0} \wedge d \alpha_{0}^{n-1} \geq \int_{M} p(x, \min S) \alpha_{0} \wedge d \alpha_{0}^{n-1}
$$

Proof of Theorem 1

Normalization $T_{\text {min }}\left(\alpha_{0}\right)=1$. By Theorem 2, we can put α in normal form: $u^{*} \alpha=S \alpha_{0}+\eta+d f$. By the Proposition, we have

$$
\operatorname{vol}(M, \alpha)=\operatorname{vol}\left(M, u^{*} \alpha\right)=\int_{M} p(x, S(x)) \alpha_{0} \wedge d \alpha_{0}^{n-1}
$$

By the form of the polynomial function p and the bounds on its coefficients, $s \mapsto p(x, s)$ is strictly increasing for s close to 1 . Therefore:

$$
\int_{M} p(x, S(x)) \alpha_{0} \wedge d \alpha_{0}^{n-1} \geq \int_{M} p(x, \min S) \alpha_{0} \wedge d \alpha_{0}^{n-1}
$$

Since all the coefficients p_{j} of p have integral zero, except for the coefficient of s^{n}, which is 1 ,

$$
\int_{M} p(x, \min S) \alpha_{0} \wedge d \alpha_{0}^{n-1}=(\min S)^{n} \operatorname{vol}\left(M, \alpha_{0}\right)
$$

Proof of Theorem 1

Normalization $T_{\text {min }}\left(\alpha_{0}\right)=1$. By Theorem 2, we can put α in normal form: $u^{*} \alpha=S \alpha_{0}+\eta+d f$. By the Proposition, we have

$$
\operatorname{vol}(M, \alpha)=\operatorname{vol}\left(M, u^{*} \alpha\right)=\int_{M} p(x, S(x)) \alpha_{0} \wedge d \alpha_{0}^{n-1}
$$

By the form of the polynomial function p and the bounds on its coefficients, $s \mapsto p(x, s)$ is strictly increasing for s close to 1 . Therefore:

$$
\int_{M} p(x, S(x)) \alpha_{0} \wedge d \alpha_{0}^{n-1} \geq \int_{M} p(x, \min S) \alpha_{0} \wedge d \alpha_{0}^{n-1}
$$

Since all the coefficients p_{j} of p have integral zero, except for the coefficient of s^{n}, which is 1 ,

$$
\begin{aligned}
\int_{M} p(x, \min S) \alpha_{0} \wedge d \alpha_{0}^{n-1} & =(\min S)^{n} \operatorname{vol}\left(M, \alpha_{0}\right) \\
& \geq T_{\min }(\alpha)^{n} \operatorname{vol}\left(M, \alpha_{0}\right)
\end{aligned}
$$

Proof of Theorem 1

Normalization $T_{\text {min }}\left(\alpha_{0}\right)=1$. By Theorem 2, we can put α in normal form: $u^{*} \alpha=S \alpha_{0}+\eta+d f$. By the Proposition, we have

$$
\operatorname{vol}(M, \alpha)=\operatorname{vol}\left(M, u^{*} \alpha\right)=\int_{M} p(x, S(x)) \alpha_{0} \wedge d \alpha_{0}^{n-1}
$$

By the form of the polynomial function p and the bounds on its coefficients, $s \mapsto p(x, s)$ is strictly increasing for s close to 1 . Therefore:

$$
\int_{M} p(x, S(x)) \alpha_{0} \wedge d \alpha_{0}^{n-1} \geq \int_{M} p(x, \min S) \alpha_{0} \wedge d \alpha_{0}^{n-1}
$$

Since all the coefficients p_{j} of p have integral zero, except for the coefficient of s^{n}, which is 1 ,

$$
\begin{aligned}
\int_{M} p(x, \min S) \alpha_{0} \wedge d \alpha_{0}^{n-1} & =(\min S)^{n} \operatorname{vol}\left(M, \alpha_{0}\right) \\
& \geq T_{\min }(\alpha)^{n} \operatorname{vol}\left(M, \alpha_{0}\right)
\end{aligned}
$$

and we conclude as in the simple case treated before.

Important ingredient in the proof of Theorem 2

Important ingredient in the proof of Theorem 2

Theorem (Bottkol, 1980). X_{0} smooth vector field on a closed manifold M all of whose orbits are closed with the same minimal period.

Important ingredient in the proof of Theorem 2

Theorem (Bottkol, 1980). X_{0} smooth vector field on a closed manifold M all of whose orbits are closed with the same minimal period. If the vector field X is C^{1}-close to X_{0} then there is a diffeomorphism $u: M \rightarrow M$ such that

$$
h u^{*} X=X_{0}-Q[V]
$$

where:

Important ingredient in the proof of Theorem 2

Theorem (Bottkol, 1980). X_{0} smooth vector field on a closed manifold M all of whose orbits are closed with the same minimal period. If the vector field X is C^{1}-close to X_{0} then there is a diffeomorphism $u: M \rightarrow M$ such that

$$
h u^{*} X=X_{0}-Q[V]
$$

where:
(i) $h: M \rightarrow \mathbb{R}$ is constant on the orbits of X_{0};

Important ingredient in the proof of Theorem 2

Theorem (Bottkol, 1980). X_{0} smooth vector field on a closed manifold M all of whose orbits are closed with the same minimal period. If the vector field X is C^{1}-close to X_{0} then there is a diffeomorphism $u: M \rightarrow M$ such that

$$
h u^{*} X=X_{0}-Q[V]
$$

where:
(i) $h: M \rightarrow \mathbb{R}$ is constant on the orbits of X_{0};
(ii) V is a vector field on M with $\left[V, X_{0}\right]=0$;

Important ingredient in the proof of Theorem 2

Theorem (Bottkol, 1980). X_{0} smooth vector field on a closed manifold M all of whose orbits are closed with the same minimal period. If the vector field X is C^{1}-close to X_{0} then there is a diffeomorphism $u: M \rightarrow M$ such that

$$
h u^{*} X=X_{0}-Q[V]
$$

where:
(i) $h: M \rightarrow \mathbb{R}$ is constant on the orbits of X_{0};
(ii) V is a vector field on M with $\left[V, X_{0}\right]=0$;
(iii) V is orthogonal to X_{0};

Important ingredient in the proof of Theorem 2

Theorem (Bottkol, 1980). X_{0} smooth vector field on a closed manifold M all of whose orbits are closed with the same minimal period. If the vector field X is C^{1}-close to X_{0} then there is a diffeomorphism $u: M \rightarrow M$ such that

$$
h u^{*} X=X_{0}-Q[V]
$$

where:
(i) $h: M \rightarrow \mathbb{R}$ is constant on the orbits of X_{0};
(ii) V is a vector field on M with $\left[V, X_{0}\right]=0$;
(iii) V is orthogonal to X_{0};
(iv) $Q: T M \rightarrow T M$ is a linear automorphism lifting the identity.

Important ingredient in the proof of Theorem 2

Theorem (Bottkol, 1980). X_{0} smooth vector field on a closed manifold M all of whose orbits are closed with the same minimal period. If the vector field X is C^{1}-close to X_{0} then there is a diffeomorphism $u: M \rightarrow M$ such that

$$
h u^{*} X=X_{0}-Q[V]
$$

where:
(i) $h: M \rightarrow \mathbb{R}$ is constant on the orbits of X_{0};
(ii) V is a vector field on M with $\left[V, X_{0}\right]=0$;
(iii) V is orthogonal to X_{0};
(iv) $Q: T M \rightarrow T M$ is a linear automorphism lifting the identity. Moreover, u is close to the identity and $h-1, V, Q$-id are small if $X-X_{0}$ is small, in suitable norms.

Important ingredient in the proof of Theorem 2

Theorem (Bottkol, 1980). X_{0} smooth vector field on a closed manifold M all of whose orbits are closed with the same minimal period. If the vector field X is C^{1}-close to X_{0} then there is a diffeomorphism $u: M \rightarrow M$ such that

$$
h u^{*} X=X_{0}-Q[V]
$$

where:
(i) $h: M \rightarrow \mathbb{R}$ is constant on the orbits of X_{0};
(ii) V is a vector field on M with $\left[V, X_{0}\right]=0$;
(iii) V is orthogonal to X_{0};
(iv) $Q: T M \rightarrow T M$ is a linear automorphism lifting the identity. Moreover, u is close to the identity and $h-1, V, Q$-id are small if $X-X_{0}$ is small, in suitable norms.
[Our proof uses ideas of E. Kerman (1999)]

Open problems

Open problems

How much convexity is needed in order to have global upper bounds for the systolic ratio?

Open problems

How much convexity is needed in order to have global upper bounds for the systolic ratio?

- Is the contact systolic ratio of dynamically convex contact forms on spheres bounded from above?

Open problems

How much convexity is needed in order to have global upper bounds for the systolic ratio?

- Is the contact systolic ratio of dynamically convex contact forms on spheres bounded from above?
- Is the metric systolic ratio of Riemannian metrics on S^{3} or $S^{2} \times S^{1}$ bounded from above?

Open problems

How much convexity is needed in order to have global upper bounds for the systolic ratio?

- Is the contact systolic ratio of dynamically convex contact forms on spheres bounded from above?
- Is the metric systolic ratio of Riemannian metrics on S^{3} or $S^{2} \times S^{1}$ bounded from above?

HAPPY MAY 1st!

