Relations d'équivalence

Rappel:

Soit
$$|E| = n < \infty$$
. Considérons $U := P(E)$
Soient A_1 et A_2 deux éléments de $U = P(E)$.

$$A_1 \sim A_2 \text{ ssi } |A_1| = |A_2|.$$

Une classe d'équivalence

$$\begin{pmatrix} E \\ i \end{pmatrix} := \{ A \subseteq E | |A| \neq i \} \subseteq P(E),$$

La collection des classes :

$$U/\sim=\left\{\binom{E}{0},\binom{E}{1},\binom{E}{2},\ldots,\binom{E}{n}\right\}\subseteq P(U)=P(P(E))$$

Chaque élément de U = P(E) est dans une unique classe d'équivalence. Et donc

$$P(E) = \bigcup_{i=0}^{n} \binom{E}{i}$$

est une partition de P(E):

c.-à-d. chaque $\binom{E}{i}$ non-vide, et $\binom{E}{i}$ et $\binom{E}{i}$ disjoints si $i \neq j$.

En conséquence :

$$\frac{|P(E)| = \sum_{i=0}^{n} |\binom{E}{i}|}{2} > \begin{cases} 1 + 3 + 3 + 4 \end{cases}$$

Pour
$$E = \{a, b, c\}, \ U = P(E) : \binom{E}{0} = \{\emptyset\}; \ \binom{E}{1} = \{\{a\}, \{b\}, \{c\}\};$$

$$\binom{E}{2} = \{\{b, c\}, \{a, c\}, \{a, b\}\}; \ \binom{E}{3} = \{E\};$$

$$\begin{array}{ccc}
(U) &= & \begin{pmatrix} E \\ 0 \end{pmatrix} \cup \begin{pmatrix} E \\ 1 \end{pmatrix} \cup \begin{pmatrix} E \\ 2 \end{pmatrix} \cup \begin{pmatrix} E \\ 3 \end{pmatrix}; \\
(U/\sim) &= & \{ \begin{pmatrix} E \\ 0 \end{pmatrix}, \begin{pmatrix} E \\ 1 \end{pmatrix}, \begin{pmatrix} E \\ 2 \end{pmatrix}, \begin{pmatrix} E \\ 3 \end{pmatrix} \}.
\end{array}$$

On a : $a \in \{a, b\}$, $\{a, b\} \in \mathcal{C}_2^E$, $(E_2) \in \mathcal{C}_2^E$. Mais : $\{a, b\} \subseteq E$, $(E_2) \subseteq \mathcal{C}_2$.

Soit *U* un ensemble.

 $F(u_1, u_2)$ une fonction propositionnelle avec univers du discours sur $U \times U$. Definissons un sous-ensemble $R = R_F \subseteq U \times U$ ainsi :

$$R := \{(u_1, u_2) \in U \times U | F(u_1, u_2) \text{ est vraie}\}.$$

Dans le sens inverse. Soit $R \subseteq U \times U$

Définissons une fonction propositionnelle $F^R(u_1, u_2)$ avec univers du discours sur $U \times U$ par

$$F^{R}(u_{1}, u_{2}) := "(u_{1}, u_{2}) \in \mathbb{R}$$
".

Si $G(u_1, u_2)$ une autre fonction propositionnelle avec univers du discours sur $U \times U$.

Alors $R_F = R_G$ si et seulement si F et G sont logiquement équivalentes. C.-à-d., pour chaque (u_1, u_2) on a $F(u_1, u_2)$ est vraie (c.-à-d.

 $(u_1, u_2) \in R_F$) si et seulement si $G(u_1, u_2)$ est vraie (c.-à-d.

 $(u_1, u_2) \in R_G$).

La fonction F et la fonction associée à R_F sont logiquement équivalentes.

Exemple:

E un ensemble fini. U = P(E). Une fonction propositionnelle sur $U \times U$:

$$(F(A_1, A_2) := "|A_1| = |A_2|"$$

Exemple:

 $U = \mathbb{Z}$. Une fonction propositionnelle sur $U \times U$:

F(n, m) := "La différence n - m est un nombre entier pair".

Si nous avons fixé une telle fonction F (ou un tel sous-ensemble R), nous allons écrire

$$\underbrace{u_1 \sim u_2}_{\text{et } u_1, u_2}$$
 si $\underbrace{(u_1, u_2) \in \mathcal{R}}_{\text{ou } F(u_1, u_2)}$ est vraie) et $u_1 \not\sim u_2$ si $\underbrace{(u_1, u_2) \notin \mathcal{R}}_{\text{ou } F(u_1, u_2)}$ est fausse) . (\sim est appelé la relation associée.)

Definition

Nous allons dire que \sim (ou F ou R) est une relation d'équivalence sur U si pour chaque u,v,w élements de U on a

- (i) $u \sim u$ (réflexive);
- (ii) si $u\sim v$ alors $v\sim u$ (symétrique);
- (iii) si $u \sim v$ et $v \sim w$ alors $u \sim w$ (transitive).
 - Dans ce cas nous allons dire que u est équivalent à v si $u \sim v$.

À la place du symbole aussi autres symboles sont souvent utilisés pour des relations d'équivalence, comme =.

Mais le petit règlement restera en force :

- (i) $u \equiv u$ (réflexive);
- (ii) si $u \equiv v$ alors $v \equiv u$ (symétrique); (iii) si $u \equiv v$ et $v \equiv w$ alors $u \equiv w$ (transitive).

Dans la suite nous fixons une relation d'équivalence \sim sur U.

Posons pour $u \in U$ le sous-ensemble

$$(C\ell(\underline{u})) = \{v \in U | \widehat{u} \sim v\} \subseteq U,$$

on dit que c'est la classe d'équivalence de u. C'est la collection de tous les éléments de U équivalents à u.

Chaque élément est contenu dans sa propre classe d'équivalence et si deux classes d'équivalence sont différentes, elles sont mêmes disjoints.

O

Lemme

Soient $u, v \in U$.

- (i) $u \in C\ell(u)$;
- (ii) $C\ell(u) \cap C\ell(v) \notin \emptyset$ si et seulement si $C\ell(u) = C\ell(v)$.

Démonstration.

- (i) $u \in C\ell(u)$ parce que $u \sim u$ (par réflexivité).
- (ii) Soit $\widehat{w} \in C\ell(u) \cap C\ell(v)$, c.-à-d., $u \sim \widehat{w}$ et $v \sim \widehat{w}$.

Par symétrie aussi $w \sim u$ et $w \sim v$

(1~ W/(~~)

Donc par transitivité on a aussi $u \sim v$, $v \sim u$.

 $Six \in C\ell(u)$ alors par définition $u \sim x$ et donc $x \sim u$.

Avec $u \sim v$ et transitivité il suit $x \sim v$ et $v \sim x$, alors $x \in C\ell(v)$.

Donc $C\ell(u) \subseteq C\ell(u) \cap C\ell(v) \subseteq C\ell(u)$.

Il suit $C\ell(u) = C\ell(u) \cap C\ell(v)$ et $C\ell(u) = C\ell(v)$.

Considérons la collection des classes d'équivalence différentes

$$U/\sim:=\{\underbrace{\mathsf{C}\ell(u)}|\ u\in U\}\subseteq \underbrace{P(U)}.$$

CILW EPLU)

Cet ensemble vient avec une fonction surjective

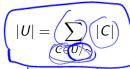
$$C\ell: U \to U/\sim$$

qui associe à u sa classe $C\ell(u)$ c'est la fonction "classification".

La partie gauche est la collection d'éléments qu'on veut classifier, la partie droite est la collection des classes.

La fonction $\underline{\mathsf{C}\ell}$ met chaque élément u dans la classe appropriée $\mathsf{C}\ell(u)$.

Si $|U| < \infty$ alors



parce que chaque élément est dans une unique classe (on ne compte pas double).

Vous comprenez?

Les fractions

Soit
$$U := \{(n, d) \in \mathbb{Z} \times \mathbb{Z} | d \neq 0\}$$
.
Posons $(n, d) \sim (n', d')$ si et seulement si $nd' = n'd$.

C'est une relation d'équivalence sur U.

Démonstration.

Soient (n_1, d_1) , (n_2, d_2) et (n_3, d_3) trois éléments de U, c.-à-d., n_1, n_2, n_3 trois entiers, et d_1, d_2, d_3 trois non-zéro entiers.

Il faut vérifier trois choses.

(i)
$$(n_1, d_1) \sim (n_1, d_1)$$
; c'est le cas car $d_1 n_1 = d_1 n_1$.

(ii) si
$$(n_1, d_1) \sim (n_2, d_2)$$
 alors $(n_2, d_2) \sim (n_1, d_1)$; c'est le cas car

$$n_1 d_2 = n_2 d_1$$
 implique que $n_2 d_1 = n_1 d_2$.

(Suite).

(iii) si $(n_1, d_1) \sim (n_2, d_2)$ et $(n_2, d_2) \sim (n_3, d_3)$ alors à montrer $(n_1, d_1) \sim (n_3, d_3)$.

Pour montrer ça, supposons que l'hypothèse est vraie, alors $n_1d_2 = n_2d_1$ et $n_2d_3 = n_3d_2$. Alors aussi $n_1d_2d_3 = n_2d_1d_3$ et $n_2d_3d_1 = n_3\overline{d_2d_1}$ et $n_1\overline{d_2d_3} = n_3\overline{d_2d_1}$. Donc $n_1\overline{d_2d_3} = n_3\overline{d_2d_1} = n_3\overline{d_2d_1}$.

Nous savons : si rs = 0 et $r \neq 0$ alors nécessairement s = 0 (r, s entiers).

Par hypothèse $d_2 \neq 0$ et $d_2(n_1d_3 - n_3d_1) = 0$. Donc nécessairement

 $(n_1d_3-n_3d_1)=0$, ou $n_1d_3=n_3d_1$, ou $(n_1,d_1)\sim (n_3,d_3)$.

Alors en effet, \sim est une relation d'équivalence sur U.

a cceptous

Nous connaissons déjà les classes d'équivalences!

Definition

Avec cette relation d'équivalence \sim sur U.

(i) Pour $(n, d) \in U$ (donc n, d sont deux entiers, dont $d \neq 0$) nous

définissons la fraction

$$\frac{n}{d} := \mathcal{C}\ell(n,d);$$

la classe d'équivalence de $(n, d) \in U$.

(ii) Nous définissons

$$\mathbb{Q} = U/\sim;$$

l'ensemble des classes d'équivalence.

En particulier $\frac{n_1}{d_1} = \frac{n_2}{d_2}$ si et seulement si (par définition) $n_1 d_2 = n_2 d_1$. Par exemple $(\frac{2}{5}) = (\frac{6}{15})$ car $(2 \cdot 15) = 6 \cdot 5 = 30$. Et $(\frac{2}{0})$ n'est pas définie!

Nous définissons l'addition et la multiplication :

$$\boxed{\frac{n_1}{d_1} + \frac{n_2}{d_2}} \stackrel{\frown}{:=} \frac{n_1 d_2 + n_2 d_1}{d_1 d_2}; \frac{n_1}{d_1} \cdot \frac{n_2}{d_2} := \frac{n_1 n_2}{d_1 d_2}.$$

If y a une fonction injective $\iota: \mathbb{Z} \to \mathbb{Q}$ avec $\iota(n) := \frac{n}{1}$.

Puis on identifie $n = \frac{n}{1}$ (malgré que n est un entier et pas une fraction).

Et cetera.

$$\frac{2}{2} = \frac{1}{15} =$$

16 / 30

Les classes d'entiers modulo m.

Soient d, n deux entiers. On dit que d divise n, et on écrit $d \mid n$ s'il existe un $q \in \mathbb{Z}$ tel que $\underline{n} = qd$.

Chaque nombre nature m donne une relation d'équivalence m appelé la relation modulo m:

$$n_1 = n_2$$
 si m divise $n_1 - n_2$.

Autre notation $n_1 \equiv n_2 \mod m$.

Si $n_1 \equiv_m n_2$ on dit " n_1 est congru à n_2 modulo m".

La classe de n est notée $C\ell_m(n)$ ou $C\ell(n)$ si m est fixé dans la discussion.

L'ensemble des classes \mathbb{Z}/\equiv_m est noté $\mathbb{Z}/m\mathbb{Z}$.

L'ensemble des classes
$$\mathbb{Z}/\equiv_m$$
 est note $\mathbb{Z}/m\mathbb{Z}$.
La fonction classification : $\mathbb{C}\ell_m:\mathbb{Z}\to\mathbb{Z}/m\mathbb{Z}$.

Donc on peut considérer $C\ell_m(n)$ comme un élément de $\mathbb{Z}/m\mathbb{Z}$ ou comme un certain sous-ensemble de \mathbb{Z} . Mais on ne peut pas le considérer comme un nombre entier.

On définit l'addition et la multiplication sur $\mathbb{Z}/m\mathbb{Z}$

$$\mathsf{C}\ell_m(n_1) + \mathsf{C}\ell_m(n_2) := \mathsf{C}\ell_m(n_1 + n_2)$$

et

$$\mathsf{C}\ell_m(n_1)\cdot\mathsf{C}\ell_m(n_2):=\mathsf{C}\ell_m(n_1\cdot n_2).$$

Exemple à revenir avec les détails!!

$$f: O \longrightarrow Z \qquad F(n) = (-1)^{n} + (-1)^{n}$$

Autre exemple :

Chaque fonction avec domaine U induit une relation d'équivalence sur U.

Soit $f: U \to V$ une fonction. Définissons $F(u_1, u_2) := "f(u_1) = f(u_2)"$ avec univers du discours $U \times U$. Alors F définit une relation d'équivalence sur U.

Classe d'équivalence de u est $C\ell(u) = \{u' \in U | f(u') = f(u)\}.$

Donc les classes d'équivalence sont exactement les pré-images non-vides $f^{-1}(v)$ où $v \in \text{Im}(f)$.

If y a une fonction $\overline{f}:(U/\sim)\to V$ définie par $\overline{f}(C\ell(u)):=f(u)$. Donc $f=\overline{f}\circ C\ell$.

Démonstration.

- (a) Une relation d'équivalence : Pour (i) : car f(u) = f(u); pour (ii) : car $f(u_1) = f(u_2)$ implique $f(u_2) = f(u_1)$; pour (iii) : Si $u_1 \sim u_2$ et $su_2 \sim u_3$ alors $f(u_1) = f(u_2)$ et $f(u_2) = f(u_3)$. Donc $f(u_1) = f(u_2) = f(u_3)$. D'où : $u_1 \sim u_3$.
- (b) Est ce que \overline{f} est en fait une fonction? Chaque élément de (U/\sim) est de la forme $\mathrm{C}\ell(u)$, mais u n'est pas unique. On a $\mathrm{C}\ell(u)=\mathrm{C}\ell(u')$ si par définition f(u)=f(u'). Donc $\overline{f}(\mathrm{C}\ell(u))=f(u)=f(u')=\overline{f}(\mathrm{C}\ell(u'))$ et la définition ne dépend pas du choix de u dans sa classe d'équivalence.

Par exemple, chaque relation d'équivalence \sim donne une fonction avec domaine U :

$$C\ell: U \to U/\sim$$
.

Mais la relation d'équivalence associée à cette fonction $C\ell$ coincide avec \sim . Il n'y a rien de nouveau.

Exemple:

Chaque partition de U donne une relation d'équivalence sur U.

Soit $U = \bigcup_{i \in I} A_i$ une partition de l'ensemble U.

C.-à-d. il existe un autre ensemble I et une fonction injective

 $F: I \to P(A)$, disons $A_i := F(i)$, telle que

- $A_i \neq \emptyset$ pour chaque $i \in I$;
- A_i et A_j sont disjoints si $i \neq j$ et
- pour chaque $u \in U$ il existe un (unique) $i \in I$ tel que $u \in A_i$.

Définissons

$$F(u, v) := "\exists i \in I [u \in A_i] \land [v \in A_i]"$$

avec $U \times U$ l'univers du discours. Alors F induit une relation d'équivalence $\sim \sup U$.

Dans cette situation encore :

Définissons la fonction

$$f:U\to I$$

telle que $f(u) = i \in I$ si et seulement si $f(u) \in A_i$. C'est une fonction.

La relation d'équivalence associée à f est la même que la relation d'équivalence associée à la partition et celui associé à F.

Les A_i sont les classes d'équivalences. Soit $a_i \in A_i$ (existe, car non-vide). Alors $C\ell(a_i) = A_i$.

Chaque $i \in I$ détermine une unique classe d'équivalence : on obtient une fonction bijective

$$\overline{f}:I\to U/\sim$$
.

Soit U un ensemble. Alors les partitions de U et les relations d'équivalence sur U sont presque "la même chose" : l'une donne l'autre et vice versa.

Chaque fonction avec domain U donne une relation d'équivalence. Chaque relation d'équivalence donne au moins la fonction $\mathrm{C}\ell:U\to U/\sim$.

Conclusion : Il y a beaucoup de relations d'équivalences sur U.

Si |U| = n. On a combien de partitions de U (où combien de relations d'équivalence sur U)? On peut les compter? On verra plus tard.

fm 13/10

24 / 30

Rappel:

Definition

Soient n, m deux entiers. On écrit $n \le m$ (ou $m \ge n$) s'il existe un $r \in \mathbb{N}$ tel que n + r = m.

Definition

Soient d, m deux entiers. On écrit d|m (ou $d \ge n$) s'il existe un $q \in \mathbb{Z}$ tel que qd = m.

Si $n \le m$ on dit "n est plus petit que ou égal à m", ou "m est plus grand que ou égal à n".

Si d|m on dit que "d divise m", ou "m est divisible par d".

Théorème

Soient a, b, c trois nombres entiers.

- (i) Si $a \le b$ et $b \le c$ alors $a \le c$.
- (ii) Si $a \le b$ alors $a + c \le b + c$.
- (iii) Si $a \le b$ et $c \in \mathbb{N}$ alors $ac \le bc$
- (iv) Si $a \le b$ alors $-b \le -a$.

Théorème

Soient a, b, c trois nombres entiers.

- (i) Si a|b et b|c alors a|c.
- (ii) Si a|b alors ac|bc et a|bc.
- (iii) Si a|b et a|c alors a|(b+c).

Démonstration.

- (i) Si $a \le b$ et $b \le c$ il existe $r, s \in \mathbb{N}$ tels que a + r = b et b + s = c. Donc a + (r + s) = b + s = c et $r + s \in \mathbb{N}$ donc $a \le c$.
- Si a|b et b|c il existe $r, s \in \mathbb{Z}$ tels que ar = b et bs = c. Donc a(rs)) = bs = c et $rs \in \mathbb{Z}$ donc a|c.
- (ii) Si $a \le b$ alors il existe $r \in \mathbb{N}$ tel que a + r = b. Donc (a + c) + r = b + c et $a + c \le b + c$.
- Si a|b alors il existe $r \in \mathbb{Z}$ tel que ar = b. Donc (ac)r = bc et ac|bc. Aussi a|ac donc par (i) : a|bc.

suite.

- (iii) Si $a \le b$ il existe $r \in \mathbb{N}$ tel que a + r = b. Si aussi $c \in \mathbb{N}$ alors $rc \in \mathbb{N}$ et ac + rc = (a + r)c = bc, donc $ac \le bc$.
- Si a|b et a|c alors il existe $r, s \in \mathbb{Z}$ tels que ar = b et as = c. Donc a(r+s) = ar + as = b + c et a|(b+c).
- (iv) Si $a \leq b$, il existe $r \in \mathbb{N}$ tel que a+r=b. Donc -b+r=-a et

Rappel: pour des entiers a, b, m:

$$a \equiv_m b$$
 si $m|(a-b)$.

Théorème

Soient a, b, c, d, m des nombres entiers.

Si
$$a \equiv_m b$$
 et $c \equiv_m d$, alors $(a + c) \equiv_m (b + d)$ et $(ac) \equiv_m (bd)$.

Ou si
$$C\ell_m(a) = C\ell_m(b)$$
 et $C\ell_m(c) = C\ell_m(d)$, alors

$$\mathsf{C}\ell_m(a+c) = \mathsf{C}\ell_m(b+d)$$
 et $\mathsf{C}\ell_m(ac) = \mathsf{C}\ell_m(bd)$.

29 / 30

Démonstration.

Si $a \equiv_m b$ et $c \equiv_m d$ alors il existe r, s entiers tels que mr = (a - b) et ms = (c - d).

Donc
$$m(r+s) = (a-b) + (c-d) = (a+c) - (b+d)$$
 et $(a+c) \equiv_m (b+d)$.

Et aussi a = b + mr et c = d + ms. Donc

$$ac - bd = (b + mr)(d + ms) - bd = m(rd + bs + mrs),$$

ce qui implique que $(ac) \equiv_m (bd)$.

