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Abstract: Gaussian graphical lasso is a tool for estimating sparse graphs using a Gaussian log-likelihood
with an �1 penalty on the inverse covariance matrix. This paper proposes a generalization to meta-elliptical
distributions. Conditional uncorrelatedness is characterized in meta-elliptical families. The proposed meta-
elliptical and re-weighted Kendall graphical lassos are computed from pseudo-observations which are func-
tions of ranks of observations. They are invariant to strictly increasing transformations of the variables
and do not assume the existence of moments. Simulations of receiver operating characteristic curves show
noticeable improvements (in comparison with graphical lassos designed for meta-Gaussian distributions)
for distributions which are not meta-Gaussian. These improvements are realized without ill effects when
the distribution is meta-Gaussian. Deterministic and random contaminations of data are used to verify the
robustness of the re-weighted Kendall graphical lasso. The Canadian Journal of Statistics 42: 185–203; 2014
© 2014 Statistical Society of Canada

Résumé: Le lasso graphique gaussien est un estimateur de graphe épars basé sur la log vraisemblance com-
portant une pénalité �1 sur l’inverse de la matrice de covariance. L’auteur propose une généralisation aux
distributions méta-elliptiques. La non-corrélation conditionnelle est caractérisée dans les familles méta-
elliptiques. Deux lassos graphiques sont proposés : le lasso méta-elliptique et le lasso de Kendall repondéré,
tous deux calculés à partir de pseudo-observations basées sur les rangs. Ils sont invariants aux transforma-
tions strictement monotones croissantes et ne présupposent l’existence d’aucun moment. Dans le cadre de
simulations, ils offrent une performance (en termes de courbe ROC) comparable aux lassos spécifiques aux
distributions méta-gaussiennes lorsque les données suivent cette distribution. Une amélioration notable est
cependant observée lorsque les données ne suivent pas la distribution méta-gaussienne. La robustesse du
lasso de Kendall repondéré est aussi illustrée au moyen de données contaminées de manière aléatoire ou
déterministe. La revue canadienne de statistique 42: 185–203; 2014 © 2014 Société statistique du Canada

1. INTRODUCTION

Some methods have been proposed for non-Gaussian and robust Gaussian graphical models.
Vogel & Fried (2011) assumed an elliptical distribution. The only elliptical distribution for which
components may be independent is the Gaussian distribution. Hence, they proposed the concept
of conditional uncorrelatedness, in lieu of conditional independence, to identify edges of a graph.
Estimation methods proposed to estimate the scatter matrix are the sample covariance, with a
kurtosis adjustment, and the robust Tyler’s M-estimator. Robust Gaussian graphical modelling in
Becker (2005) and Gottard & Pacillo (2010) is done by replacing the sample covariance matrix by
the re-weighted minimum covariance determinant estimator. This estimator is hard to compute in
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high dimensions. Miyamura & Kano (2006) proposed the use of an alternative M-type estimator.
Regardless of the estimator of the scatter or covariance matrix chosen, computations of partial
correlations are done via the well-known formula involving the inverse of the estimator. Hence,
they are applicable when the number of observations n is greater than the number of variables p.

Finegold & Drton (2011) used multivariate t distributions as model. The estimation method
is an iterative EM (expectation-maximization) algorithm in which a graphical lasso problem is
solved at each iteration. As in Vogel & Fried (2011), conditional uncorrelatedness is used to identify
edges. An alternative t distribution is also investigated for which, unfortunately, conditional
uncorrelatedness is no longer implied by the nullity of a certain parameter of partial correlation.
According to Finegold & Drton (2011), “simple transformations of the data may be effective at
minimizing the effect of outliers or contaminated data on a small scale.” They further wrote that
“a normal quantile transformation, in particular, appears to be effective in many cases.” They
did not, however, elaborate any further on this approach. For meta-Gaussian distributions, Liu,
Lafferty, & Wasserman (2009) proposed to input the Gaussian scores rank correlation matrix
into the Gaussian graphical lasso. Liu et al. (2012) replaced the Gaussian scores rank correlation
matrix with the back transformed matrix of Spearman’s or Kendall’s rank correlations for more
robustness and still high efficiency at meta-Gaussian distributions.

Another approach to graphical modelling is shrinkage of the sample covariance matrix; see
Ledoit & Wolf (2004), Chen et al. (2010) and Schäfer & Strimmer (2005). The shrinkage estimator
is usually a convex combination of the sample covariance (or correlation) matrix and a target in
the form of a multiple of the identity matrix. The shrinkage factor is determined optimally to
minimize the expected mean squared error. An advantage of shrinkage estimators for computing
partial correlations is their non-singularity when n ≤ p. However, they are based on the sample
covariance matrix which is a poorly efficient estimate of covariance for non-Gaussian models,
especially for distributions with heavy tails. Even in classical asymptotic theory (fixed p and
n → ∞), the efficiency of the sample covariance matrix relative to the maximum likelihood
estimator, obtained by Tyler (1983), is roughly 9% for p = 20 when the distribution is multivariate
t with ν = 5 degrees of freedom. This is due to the poor robustness properties of the sample
covariance matrix.

Yet another simple approach is to estimate a sparse graphical model by fitting a linear regres-
sion to each variable, using all remaining variables as predictors. The graph has the undirected
edge (i, j) if the estimated coefficient of variable i on j and the estimated coefficient of variable
j on i are non-zero. Meinshausen & Bühlmann (2006) proposed the lasso regression and they
established that asymptotically, this consistently estimates the edges of the graph. Yuan & Lin
(2007) showed that this simple approach can be viewed as an approximation to the exact max-
imization of the �1 penalized likelihood. Tenenhaus et al. (2010) adopted partial least squares
regression. These regression methods do not consider the positive definite constraint. Graphical
lasso is more efficient because of the inclusion of the positive definite constraint and the use of
likelihood (Yuan & Lin, 2007).

This paper proposes two graphical lassos adapted to meta-elliptical distributions. The uni-
variate marginal distribution functions are assumed continuous without any moment restrictions.
Non-edges of an undirected graphical model are interpreted in terms of conditional uncorre-
latedness assessed with a correlation measure invariant to strictly increasing transformations
such as Spearman’s rho or Kendall’s tau. Conditional uncorrelatedness is characterized with the
inverse of the linear correlation matrix. The estimator is obtained from an estimating equation
similar to the sub-gradient of the Gaussian graphical lasso. It can be computed by iterating the
Gaussian graphical lasso of Friedman, Hastie, & Tibshirani (2008) in a manner inspired by the
fixed point algorithm of Kent & Tyler (1991) used to estimate the scatter matrix of an elliptical
distribution, and without recourse to an EM algorithm. The computational burden of the two
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proposed graphical lassos is reduced to a feasible level by taking as an initial estimate the Kendall
graphical lasso of Liu et al. (2012) and performing only one re-weighting iteration.

The paper is structured as follows. The proposed graphical lassos are introduced in Section 2
with an example of closing prices from stocks in the S & P 500 market. Elliptical distributions are
reviewed in Section 3. Meta-elliptical distributions are reviewed in Section 4 and a characterization
is given to identify non-edges in undirected graphs. The meta-elliptical graphical lasso and the
re-weighted Kendall graphical lasso are motivated in Section 5 and their relations to the meta-
Gaussian graphical lasso of Liu, Lafferty, & Wasserman (2009) and the t graphical lasso of
Finegold & Drton (2011) are explained. Finally, a simulation of receiver operating characteristic
curves is done in Section 6. The gain in efficiency when the distribution is meta-elliptical is
achieved without ill effects when the distribution is meta-Gaussian. Simulations of the re-weighted
Kendall graphical lasso also show that it can be used as a safe replacement to the Kendall graphical
lasso of Liu et al. (2012). It requires roughly twice the amount of computations.

2. THE META-ELLIPTICAL AND THE RE-WEIGHTED KENDALL GRAPHICAL
LASSOS

Since all lasso estimators considered in this paper are for graphical models, the qualifier ‘graph-
ical’ will be omitted from now on in the expression graphical lasso. First, I briefly review the
Gaussian lasso. Assume the random vector X = (X(1), . . . , X(p)) follows a Gaussian distribution
with a positive definite correlation matrix R. Following Whittaker (1990), Cox & Wermuth (1996),
or Lauritzen (1996), each graphical model is associated with an undirected graph G = (V, E) with
vertex set V = {1, . . . , p}, and defined by requiring that for each non-edge (i, j) /∈ E, the vari-
ables X(i) and X(j) are conditionally independent given all remaining variables. This conditional
independence holds if and only if θij = 0, where θij is the element in position (i, j) of � = R−1.
Therefore, determining the edges of a graph is equivalent to determining the non-zero elements
of �. For an estimate θ̂ij , a false positive occurs when (i, j) /∈ E and θ̂ij �= 0; similarly, a true
positive is when (i, j) ∈ E and θ̂ij �= 0.

Consider a sample Xl = (X(1)
l , . . . , X

(p)
l ) (l = 1, . . . , n) of n independent observations from

the Gaussian distribution. The Gaussian lasso is the solution to the �1 penalized Gaussian log-
likelihood optimization of

min
��0

− log det � + tr(S�) + λ||�||1 (1)

over positive semidefinite matrices � � 0, where S is the sample covariance matrix. Here tr
denotes the trace and ||�||1 = ∑

i,j |θij| is the �1 norm. Larger values of the regularization pa-
rameter λ lead to more θij being estimated as zero. A slightly different problem in which the
diagonal elements of � are not penalized is obtained by substituting S − λI for S in problem
(1). For example, it may not be desirable to penalize diagonal elements when S is replaced by a
correlation matrix. This optimization problem can be solved with the algorithms dpglasso of
Mazumder & Hastie (2012a) and glasso of Friedman, Hastie, & Tibshirani (2008). However,
the latter occasionally fails to converge with warm starts which may happen when computing a
path of solutions over a grid of regularization parameters λ. Cross-validation using regression or
likelihood approaches can be used to select λ (Friedman, Hastie, & Tibshirani, 2008).

Problem (1) is a convex optimization problem in the variable � (Boyd & Vandenberghe,
2004). A necessary and sufficient condition for � to be a solution (Witten, Friedman, & Simon
(2011)) is that it satisfies

W − S − λ�(�) = 0, (2)
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where W = �−1, �(�) : p × p is a matrix whose (i, j) element is γij = sign(θij), if θij �= 0, and
γij ∈ [−1, 1], if θij = 0. Since θii > 0, then wii = sii + λ. Hence, if a correlation matrix R̂ is used
as input for S and diagonal elements are not penalized, then the output �−1 is a positive definite
correlation matrix.

In this paper, I propose the meta-elliptical lasso and a variant, the re-weighted Kendall lasso.
Let g be the known density generator of the meta-elliptical distribution introduced later in Def-
inition 1 of Section 4 and let F be the corresponding univariate distribution function given by
Equation (3). A weight function defined with the density generator is u(s) = −2g′(s)/g(s). The
meta-elliptical lasso estimator of � is the matrix �2 obtained as follows:

1. Compute pseudo-observations Ẑl with components

Ẑ
(i)
l = F−1

{
R

(i)
l /(n + 1)

}
,

where R
(i)
l is the rank of X

(i)
l among X

(i)
1 , . . . , X(i)

n .
2. Compute the back transformed Kendall correlation matrix R̂1 = (

sin(πτ̂ij/2)
)
, where τ̂ij is the

Kendall correlation computed from pseudo-observations.
3. Obtain �1 = arg min��0 − log det � + tr(R̂1�) + λ||�||1.
4. Compute the covariance matrix using re-weighted pseudo-observations

√
u(sl)Ẑl,

1
n

n∑
l=1

(
√

u(sl)Ẑl)(
√

u(sl)ẐT
l ) = 1

n

n∑
l=1

u(sl)ẐlẐ
T
l

= 1
n

n∑
l=1

u(ẐT
l �1Ẑl)ẐlẐ

T
l ,

where sl = ẐT
l �1Ẑl, and obtain the corresponding Pearson correlation matrix denoted R̂2.

5. Obtain �2 = arg min��0 − log det � + tr(R̂2�) + λ||�||1.

Some comments on this algorithm are in order. Components of pseudo-observations are elliptical
scores similar to better known Gaussian scores when F = �. Kendall correlations from pseudo-
observations Ẑl in Step 2 or from observations Xl are identical. The sine transformation in Step 2
is made because of the relation τij = (2/π) arcsin(rij) between Kendall correlations and linear
correlations for elliptical distributions; see Section 4 for details. The preliminary estimate �1 is
thus the Kendall lasso of Liu et al. (2012). Squared Mahalanobis distances for all observations
are then computed with �1 and used to re-weight pseudo-observations. The final estimate �2 is
obtained from the Gaussian lasso using the Pearson correlation matrix from re-weighted pseudo-
observations. As for the re-weighted Kendall lasso, the only difference is that, in Step 4 above,
Pearson correlations are replaced by back transformed Kendall correlations. The meta-elliptical
lasso has a greater efficiency at meta-elliptical distributions (over other lassos for meta-Gaussian
distributions) in terms of receiver operating characteristic curves. However, it is poorly robust due
to the use of Pearson correlations. The re-weighted Kendall lasso takes aim at greater efficiencies
at meta-elliptical distributions while being more robust.

2.1. Analysis of Stocks from the S & P 500 Market
As an application, consider the stockdata of the R package huge. It represents closing prices
from all stocks in the S & P 500 for all days that the market was open between January 1, 2003
and January 1, 2008. This gives 1,258 observations for the 452 stocks that remained in the S & P
500 during the entire time period. The data have been preprocessed by calculating the log-ratio of
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Kendall re−weighted Kendall

Kendall > re−weighted Kendall re−weighted Kendall > Kendall

Figure 1: Kendall and re-weighted Kendall lassos (top) with λ = 0.5 yielded, respectively, 2,346 and
1,731 edges for sparsity levels of 2.3% and 1.7%. Kendall > re-weighted Kendall (bottom) means edges are
present in Kendall’s graph but not in the other, and vice versa. [Colour figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com]

the price at time t to price at time t − 1. Hence, the data analysed has n = 1,257 observations and
p = 452 variables. I compare the Kendall lasso of Liu, Lafferty, & Wasserman (2009) with the re-
weighted Kendall lasso with the weight function u(s) = (1 + p)/(1 + s) of a multivariate Cauchy
distribution. The two lassos used a regularization parameter λ = 0.5 yielding 2,346 edges for the
Kendall lasso and 1,731 edges for the re-weighted Kendall lasso corresponding to sparsity levels
of about 2.3% and 1.7%, respectively. The two graphs on top of Figure 1 have 1,692 common
edges, but 654 edges in the Kendall graph are absent from the re-weighted Kendall graph, and
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39 edges in the re-weighted Kendall graph are absent from the Kendall graph. The graphs of
discordant edges are the two graphs at the bottom of Figure 1. The simulations in Section 6 show
that re-weighting does not damage the efficiency of the Kendall lasso when the distribution is
meta-Gaussian. However, a substantial gain of efficiency is possible by re-weighting when the
distribution has a Cauchy copula, or an intermediate t copula with small degrees of freedom. A
sensible practice may be to fit both lassos and pay additional attention to the discordant edges.

This application was done with glasso version 1.7 because, and contrary to dpglasso, it
includes thresholding of the entries of the correlation matrix. This strategy found in Mazumder
& Hastie (2012b) and Witten, Friedman, & Simon (2011) reduces the amount of computations to
solve Equation (2) by decomposing the graph into smaller graphs of connected components. The
graphs were produced with the package igraph version 0.6.5-2. I used the function cor.fk
of the pcaPP package which implements the algorithm of Knight (1966) to compute the Kendall
correlation matrix in O(p2n log n) operations, rather than O(p2n2) for the function cor of the
stats package.

Before embarking on meta-elliptical distributions as graphical models some basic properties
of elliptical distributions are now reviewed.

3. ELLIPTICAL DISTRIBUTIONS

An absolutely continuous random vector Z = (Z(1), . . . , Z(p)), with location parameter 0, is said
to be elliptically contoured with positive definite scatter matrix � if it admits a density of the form

h(z) = (det �)−1/2g
(
zT�−1z

)
.

A change of variables to polar coordinates establishes that h is a density if g is a non-negative
function satisfying ∫ ∞

0
rp−1g(r2) dr = � (p/2)

2πp/2 .

Examples of elliptical distributions are the Gaussian distribution, g(s) ∝ exp(−s/2), the t distri-
bution with ν degrees of freedom, g(s) ∝ (1 + s/ν)−(ν+p)/2, and the power exponential family,
g(s) ∝ exp(−sα/2), for α > 0.

If � = (σij), the quantity rij = σij/(σ1/2
ii σ

1/2
jj ) is defined as the linear correlation coefficient

between variables i and j. The variables Z(i)/σ
1/2
ii are then identically distributed with a common

distribution function (Fang, Fang, & Kotz, 2002)

F (z) = 1
2

+ π(p−1)/2

�
[
(p − 1)/2

] ∫ z

0

∫ ∞

s2
(t − s2)(p−1)/2−1g(t) dt ds, (3)

and their joint distribution is elliptical with density

h(z) = (det R)−1/2g
(
zTR−1z

)
, (4)

where R = (rij) is the linear correlation matrix. The cumulative distribution function correspond-
ing to the density h in Equation (4) is denoted H . For the Np(0, R) distribution, F = � corresponds
to a N(0, 1), and for the t distribution with ν degrees of freedom, location 0, and linear corre-
lation matrix R, denoted tp,ν(0, R), F = Fν corresponds to the univariate t distribution with ν

degrees of freedom. Hult & Lindskog (2002) emphasized that the linear correlation coefficient is
an extension of the usual definition in terms of variances and covariances. The linear correlation
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coefficient should be interpreted as a scalar measure of dependence and, as such, it should not
rely on finiteness of certain moments.

3.1. Conditional Distribution of Elliptical Distributions
Of importance to the concept of conditional uncorrelatedness is the fact that conditional distri-
butions of elliptical distributions are again elliptical. Assume (Z(1), . . . , Z(p)) is elliptical with
the density h in Equation (4). The conditional distribution of (Z(1), Z(2)), given all remaining
variables, is elliptical with location

δ = R12R
−1
22

(
z(3), . . . , z(p)

)T ≡ (δ1, δ2)T (5)

and scatter matrix

R11.2 = R11 − R12R
−1
22 R21 ≡

(
γ11 γ12

γ21 γ22

)
(6)

defined from the partitioned matrix

R =
(

R11 R12

R21 R22

)
.

For a fixed value of the conditioning variable, the standardized variables (Z(i) − δi)/γ
1/2
ii have the

same distribution function, denoted F̃ , for i = 1, 2. For example, theNp(0, R) distribution hasF =
F̃ = �, whereas the tp,ν(0, R) distribution has F = Fν and F̃ = Fν+p−2. The linear correlation
in this conditional distribution is the partial linear correlation denoted r12. Computationally, since
the conditional scatter matrix is the same as for Gaussian distributions, the partial linear correlation
is obtained by the same formula as the one for the partial Pearson correlation, specifically

r12 = − θ12

θ
1/2
11 θ

1/2
22

, (7)

where � = (θij) is the matrix R−1.
The reader should be reminded that this simple formula is a direct consequence of the expres-

sion for the inverse of a partitioned matrix. For later use, since

R11.2 =
(

θ11 θ12

θ21 θ22

)−1

∝
(

θ22 −θ12

−θ21 θ11

)
, (8)

the linear correlation computed from R11.2 is given by Equation (7). In general, rij =
−θij/(θ1/2

ii θ
1/2
jj ) is the partial linear correlation between Z(i) and Z(j).

4. META-ELLIPTICAL DISTRIBUTIONS

A distribution function C on the unit cube [0, 1]p with uniform marginal distributions is called a
copula. Sklar (1959) links an arbitrary multivariate distribution function K to a copula function via
the marginal distribution functions K1,. . . ,Kp. Suppose K is a multivariate distribution function
with univariate marginal distribution functions K1,. . . ,Kp. Then there is a copula C such that

K(x1, . . . , xp) = C
{
K1(x1), . . . , Kp(xp)

}
. (9)
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If K is continuous, then the copula C is unique and is

C(u1, . . . , up) = K
{

K−1
1 (u1), . . . , K−1

p (up)
}

,

for u = (u1, . . . , up) in (0, 1)p, where K−1
i (u) = inf {x : Ki(x) ≥ u} (i = 1, . . . , p). Conversely,

if C is a copula on [0, 1]p and K1, . . . , Kp are univariate distribution functions, then the function
K in Equation (9) is a multivariate distribution with univariate marginal distributions K1, . . . , Kp.

Models for multivariate analysis can be produced at will by specifying independently a copula,
which contains all the information concerning the dependence among variables, and the marginal
distributions. The copula associated with an elliptical distribution is termed an elliptical copula.

As a first example, the t copula with ν degrees of freedom and linear correlation matrix R is

Cp,ν,R(u1, . . . , up) = Hp,ν,R

{
F−1

ν (u1), . . . , F−1
ν (up)

}
,

where Hp,ν,R is the distribution function of the tp,ν(0, R) distribution, whose density is

h(z) = cp,ν(1 + zTR−1z/ν)−(ν+p)/2

for some constant cp,ν, and Fν is the univariate distribution function of the t distribution with ν

degrees of freedom.
A second example is the Gaussian copula

Cp,R(u1, . . . , up) = �p,R

{
�−1(u1), . . . , �−1(up)

}
, (10)

where �p,R is the distribution function of the Np(0, R) distribution.
Investigations on meta-elliptical distributions were initiated by Fang, Fang, & Kotz (2002)

and their dependence properties studied further by Abdous, Genest, & Rémillard (2005).

Definition 1. The random vector X = (X(1), . . . , X(p)) with continuous marginals Ki (i =
1, . . . , p) is meta-elliptically distributed with density generator g, and positive definite linear cor-
relation matrix R, if the joint distribution of the variables Z(i) = F−1 {

Ki(X(i))
}

(i = 1, . . . , p),
where F is given by Equation (3), is elliptical with density h given by Equation (4).

When h is the Np(0, R) density, the resulting distribution is the meta-Gaussian distribution due
to Kelly & Krzysztofowicz (1997). Liu, Lafferty, & Wasserman (2009) defined nonparanormal
distributions. The copula of a nonparanormal distribution with monotone functions is the Gaus-
sian copula. This means that meta-Gaussian and nonparanormal distributions constitute only one
family.

Results on Kendall’s tau and Spearman’s rho correlation coefficients in dimension two are
now presented. Without any condition on moments, they are

τ = 4E
{

H(Z(1), Z(2))
}

− 1

ρ = 12E
{

F (Z(1))F (Z(2))
}

− 3,

where F is the common marginal in H ; see Equations (3) and (4).
Let r be the linear correlation coefficient of a meta-elliptical distribution of dimension 2.

In Lindskog, McNeil, & Schmock (2003) and Fang, Fang, & Kotz (2002), the expression τ =
(2/π) arcsin(r) for Kendall’s tau is independent of the density generator g. Therefore, it holds
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in the general family of meta-elliptical distributions. Moreover, Kendall’s tau corresponds to
Blomqvist’s medial correlation (Abdous, Genest, & Rémillard, 2005). Spearman’s rho is more
cumbersome since it generally depends on both g and r. A closed-form expression for elliptical
distributions is not available, apart from some exceptions such as the meta-Gaussian distributions
for which ρ = (6/π) arcsin(r/2), and another distribution in Hult & Lindskog (2002).

4.1. Conditional Distribution of Meta-Elliptical Distributions
The next result establishes that conditional distributions in meta-elliptical distributions are meta-
elliptical.

Proposition 1. Assume (X(1), . . . , X(p)) follows a meta-elliptical distribution with continuous
marginalsKi (i = 1, . . . , p), density generatorg, and positive definite linear correlation matrixR.
Define Z(i) = F−1 {

Ki(X(i))
}

(i = 1, . . . , p), where F is the distribution function in Equation (3).
The following two statements hold.

1. Conditionally on (Z(3), . . . , Z(p)), the variables (Z(i) − δi)/γ
1/2
ii (i = 1, 2), where δi and γii

are defined in Equations (5) and (6), have the same distribution function, say F̃ .
2. Conditionally on (X(3), . . . , X(p)), the distribution of (X(1), X(2)) is meta-elliptical with the

linear correlation r12 in Equation (7), and marginal distribution functions

K̃i(x(i)) = F̃

[
F−1 {

Ki(x(i))
} − δi

γ
1/2
ii

]
(i = 1, 2). (11)

The partial Kendall/Spearman correlation between X(i) and X(j) is the Kendall/Spearman
correlation in the conditional distribution of (X(i), X(j)), given all remaining variables. It follows
immediately from Proposition 1 that τij = (2/π) arcsin(rij) is the partial Kendall’s tau correlation.
Moreover, if uncorrelatedness is interpreted in the sense of Kendall or Spearman, then X(i) and X(j)

are conditionally uncorrelated, given all remaining variables, if and only if τij = rij = θij = 0.
This statement is emphasized in the following corollary.

Corollary 1. Assume X = (X(1), . . . , X(p)) follows a meta-elliptical distribution. Then, X(i)

and X(j) are conditionally uncorrelated, given all remaining variables, in the sense of Kendall
or Spearman if and only if θij , the element in position (i, j) of R−1, vanishes.

For meta-Gaussian distributions since the Gaussian copula factorizes when the linear correlation
vanishes, the conditionally uncorrelated statement can be replaced by the stronger conditionally
independent expression. Proposition 1 has implications for the interpretation of non-edges in
undirected graphs. For example, Finegold & Drton (2011) and Vogel & Fried (2011) assumed
a t distribution with finite second moments in order to interpret conditional uncorrelatedness in
terms of partial Pearson correlations. Proposition 1 states that conditional uncorrelatedness can
be interpreted without assuming any moment. Therefore, one can even assume, for example, a
Cauchy distribution.

Meta-elliptical distributions provide a big leap in generality over meta-Gaussian distributions.
However, independence among marginals in meta-elliptical distributions is only possible in the
sub-family of meta-Gaussian distributions. Hence, one is forced to replace the conditional inde-
pendence between two variables by the weaker notion of conditional uncorrelatedness, except
when the meta-elliptical distribution is meta-Gaussian. As graphical models, meta-elliptical dis-
tributions are also much more general than elliptical distributions in Finegold & Drton (2011). All
marginals of an elliptical distribution have the same distribution apart from location and scatter
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parameters. This restriction does not hold for meta-elliptical distributions since the marginals are
arbitrary.

5. MOTIVATION FOR THE META-ELLIPTICAL LASSO

The meta-elliptical lasso introduced in Section 2 is now motivated. Assume X = (X(1), . . . , X(p))
follows a meta-elliptical distribution with known density generator g, unknown positive definite
linear correlation matrix R, and continuous marginals Ki (i = 1, . . . , p). The joint distribution of
Z(i) = F−1 {

Ki(X(i))
}

, where F is given by Equation (3), is elliptical with density h in Equation
(4). Therefore, when marginals Ki are known and n ≥ p, efficient estimation of R for elliptical
distributions is made possible by Kent & Tyler (1991) .

5.1. Efficient Estimator with Known Marginals and n ≥ p

In the classical asymptotic theory, an efficient estimation of � and R in terms of Fisher’s infor-
mation, provided by the solution to the scale-only problem of Kent & Tyler (1991), is obtained
from the fixed point algorithm

�−1
m+1 = 1

n

n∑
l=1

u(ZT
l �mZl)ZlZ

T
l (m = 1, 2, . . .), (12)

where the function u(s) = −2g′(s)/g(s) acts as a weight function in this iterative re-weighted
estimate. Kent & Tyler (1991) also showed that if n ≥ p, u(s) ≥ 0 and u(s) is continuous and
non-increasing, and su(s) is strictly increasing and bounded, then there exists a unique solution
to

�−1 = 1
n

n∑
l=1

u(ZT
l �Zl)ZlZ

T
l .

Moreover, the fixed point algorithm in Equation (12) converges to the solution regardless of the
initial positive definite matrix �1 selected.

For example, the weight function of the multivariate t distribution in dimension p with ν

degrees of freedom is u(s) = (ν + p)/(ν + s).

5.2. The Case of Unknown Marginals
When marginals Ki are unknown, one must resort to pseudo-observations

Ẑ
(i)
l = F−1

{
R

(i)
l /(n + 1)

}
(l = 1, . . . , n; i = 1, . . . , p).

The fixed point algorithm is then the Equation (12) with the unobservable variables Zl =
(Z(1)

l , . . . , Z
(p)
l ) replaced by the pseudo-observations Ẑl = (Ẑ(1)

l , . . . , Ẑ
(p)
l ). However, if n < p,

the weighted covariance matrix of Equation (12) becomes singular after the first iteration. For
high dimensional problems and sparse matrix �, it is proposed to solve the estimating equation

�−1 − 1
n

n∑
l=1

u(ẐT
l �Ẑl)ẐlẐ

T
l − λ�(�) = 0 (13)
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by a fixed point algorithm. Let �1 be the initial value. Until convergence, for m = 1, 2, . . .

compute

R̂m+1 = 1
n

n∑
l=1

u(ẐT
l �mẐl)ẐlẐ

T
l (14)

and find the solution �m+1 to

�−1
m+1 − R̂m+1 − λ�(�m+1) = 0. (15)

The solution �m+1 to Equation (15) is recognized as the minimizer of the Gaussian lasso prob-
lem with R̂m+1 used as input. Iterations stop when weights have stabilized between successive
iterations.

It is not known whether the fixed point algorithm defined by Equations (14) and (15) always
converges. However, if it converges, it provides a solution to Equation (13). In simulations, the
solution to Equation (13), over a sequence of decreasing values of regularization parameters λ,
could require 30 iterations for the first value, and only 2 or 3 iterations for later values using warm
starts. This heavy computational burden, compared to the Kendall lasso in Liu et al. (2012), may
be reduced by using as an initial estimate the solution �1 of the Kendall lasso and, afterwards,
performing only one re-weighting iteration. Because Equation (14) is not a correlation matrix,
it should be noted that the matrix �−1

m+1 which solves Equation (15) is not guaranteed to be
a correlation matrix. The meta-elliptical lasso (resp. re-weighted Kendall lasso) proposed in
Section 2 uses the re-weighted Pearson (resp. back transformed Kendall) correlation matrix in
Step 4 of the algorithm which guarantees a correlation matrix at the output.

It should be stated that the five-step algorithm in Section 2 really consists of two big steps:

(a) Obtain as an initial estimate �1 the Kendall lasso of Liu et al. (2012).
(b) Obtain a refined estimate �2 by re-weighting.

This two-step algorithm (a) and (b) does not exactly implement the fixed point iteration (14) and
(15); it is nonetheless motivated by the fixed point iteration.

5.3. Relation to the Meta-Gaussian Lasso
Consider the Step 1 of the meta-elliptical lasso of Section 2 with F = �. The pseudo-observations
reduce to Gaussian scores which could be Winsorized as suggested by Liu, Lafferty, & Wasserman
(2009)

Ẑ
(i)
l = �−1

{
Tδn

[
R

(i)
l /(n + 1)

]}
,

where

Tδn (x) = δn I(x < δn) + x I(δn ≤ x ≤ 1 − δn) + (1 − δn) I(x > 1 − δn)

and δn = 1/(4n1/4√π log n) is a truncation parameter to achieve the desired rate of convergence in
the high dimensional setting. The choice δn = 1/(n + 1) corresponds to no Winsorization. If Step 2
is replaced by the computation of the Pearson correlation matrix, then Step 3 computes the meta-
Gaussian lasso of Liu, Lafferty, & Wasserman (2009). Next, for meta-Gaussian distributions, the
density generator g(s) = exp(−s/2) yields the weight function u(s) = 1. In this case, re-weighting
has no effect.
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5.4. Relation to the EM Algorithm for the t Lasso
The fixed point algorithm defined by Equations (14) and (15) is related to the EM algorithm of
Finegold & Drton (2011) who assumed that Z = (Z(1), . . . , Z(p)) follows a t distribution with
ν degrees of freedom, location vector μ and positive definite inverse scatter matrix �. For our
purpose, the location vector is assumed known, μ = 0. Their t lasso is the solution to the (non-
convex) optimization problem

min
��0

− log det � − 2
n

n∑
l=1

log g(ZT
l �Zl) + λ||�||1,

where g(s) ∝ (1 + s/ν)−(ν+p)/2.
The distribution for Z is a Gaussian mixture obtained by assuming Z given τ is distributed as

Np(0, �−1/τ) and τ is distributed as Gamma(ν/2, ν/2). Since the optimization cannot be done
by solving a sub-gradient, they proposed a modified EM algorithm in which τ1, . . . , τn are treated
as missing variables. The E-step is

τm+1,l = u(ZT
l �mZl) = (ν + p)/(ν + ZT

l �mZl) (l = 1, . . . , n)

and the M-step seeks the solution �m+1 to

min
��0

− log det � + tr

{
1
n

n∑
l=1

τm+1,lZlZ
T
l �

}
+ λ||�||1. (16)

Equation (15) is simply the sub-gradient of the convex Gaussian lasso in Equation (16) in which
observations Zl are replaced by pseudo-observations Ẑl.

6. SIMULATION STUDY

All simulations were run with dpglasso package version 1.0. The figures are best visualized in
colour. Simulations compare receiver operating characteristic (ROC) curves which is a graphical
plot of true positive rates versus false positive rates as the regularization parameter λ varies. Each
ROC curve is an average over 100 trials. The sparse matrix � was generated using the procedure
described in Finegold & Drton (2011):

1. θij , i > j, are independently distributed variables taking values −1, 0, and 1 with probability
0.01, 0.98, and 0.01;

2. θij = θji, i < j;
3. θii = 1 + h, where h is the number of non-zero elements in the ith row of �.

Step 3 ensures a positive definite matrix since it is strictly diagonally dominant. The diagonal
elements are then reduced by a common factor to strengthen partial correlations. This factor is as
large as possible while maintaining positive definiteness.

6.1. Simulation 1
The first simulation shows the effect of three transformations of marginals. The simulated data fol-
low one of six meta-elliptical distributions obtained by a combination of one among three marginal
transformations applied to one among two distributions (multivariate Gaussian, Np(0, R), and
multivariate Cauchy, tp,1(0, R)). The three transformations are the identity which means no trans-
form is done, in which case the simulated distribution of the data is truly Gaussian or Cauchy, the
cumulative distribution function (cdf) which yields uniform marginals, and the power function
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sign(x)|x|3 taken from Liu, Lafferty, & Wasserman (2009). In each case, the same transformation
is applied to all p marginals. The first two lassos are the Kendall lasso and the Spearman lasso.
When the distribution is meta-Gaussian, they are compared to the meta-Gaussian lasso without
Winsorization (δn = 1/(n + 1)) and the Gaussian lasso. On the other hand, when the distribution
is meta-Cauchy, they are compared to the meta-Cauchy lasso and the Cauchy lasso. The meta-
Cauchy lasso is a special case of the meta-elliptical lasso of Section 2 with u(s) = (1 + p)/(1 + s),
and the Cauchy lasso is a special case of the t lasso for the same choice of the weight function u.
For the Cauchy lasso and the meta-Cauchy lasso, only one re-weighting iteration of the algorithm
is performed after starting with the initial estimate �1 produced by the Kendall lasso.

Kendall, Spearman, meta-Cauchy, and meta-Gaussian lassos are computed from ranks which
are invariant to monotone transformations of marginals. Hence, their ROC curves at a given
distribution remain the same regardless of the applied transformation. Only ROC curves of the
Gaussian lasso and the Cauchy lasso are affected. For meta-Gaussian distributions, Figure 2
confirms the findings of Liu et al. (2012). These findings are that Kendall, Spearman and meta-
Gaussian lassos are nearly as efficient as the Gaussian lasso when the distribution is truly Gaussian.
The performance of the Gaussian lasso can be poor for distributions which are meta-Gaussian,
but not Gaussian. A similar conclusion is obtained for meta-Cauchy distributions; the perfor-
mance of the Cauchy lasso can be poor when the distribution is meta-Cauchy, but not Cauchy.
The meta-Cauchy lasso is nearly as efficient as the Cauchy lasso when the distribution is truly
Cauchy. None of the simulations reported earlier in the literature considered distributions other
than meta-Gaussian or t, apart from some contaminated versions thereof. Figure 2 reveals a new
and interesting fact: the meta-Cauchy lasso outperforms the Kendall/Spearman lasso when the
distribution is meta-Cauchy.

6.2. Simulation 2
Given the poor performance of the Gaussian lasso and the Cauchy lasso for some transforma-
tions of marginals, the second simulation reported in Figure 3 considered only lassos based on
ranks which are invariant to such transformations. Instead of transforming marginals, the ef-
fect of some contaminated data is now investigated. As in the first simulation, two distributions
(multivariate Gaussian, Np(0, R), and multivariate Cauchy, tp,1(0, R)) are simulated. The first
distribution has univariate N(0, 1) marginals, whereas the second has univariate Cauchy marginals
with much longer tails. The monotone transformation �−1[F1(x)] (without any effect on invari-
ant lassos), where F1 is the cdf of a univariate Cauchy distribution, is applied to the marginals
of the multivariate Cauchy resulting in a meta-Cauchy distribution with N(0, 1) marginals. Out-
liers will thus be of the same magnitude for both distributions. Deterministic contaminated data
as in Liu et al. (2012) consist of replacing 
nr� observations by a vector (5, −5, 5, −5, . . .)
of length p, where r = 0, 0.01 or 0.05 is the contamination level. Four invariant lassos are
compared: the Kendall lasso and the Spearman lasso as in the first simulation, the Winsorized
meta-Gaussian lasso and the new re-weighted Kendall lasso described in Section 2 with weight
function u(s) = (1 + p)/(1 + s). For contaminated meta-Gaussian distributions, Liu et al. (2012)
found that the Winsorized meta-Gaussian lasso performs better than the non-Winsorized version.
The simulation for meta-Gaussian distributions confirms the findings of Liu et al. (2012): the
Kendall/Spearman lasso is nearly as good as the (Winsorized) meta-Gaussian lasso when there is
no contamination. However, the Kendall lasso and, to a lesser extent, the Spearman lasso outper-
form the meta-Gaussian lasso in presence of contamination. Interestingly, the re-weighted Kendall
lasso and the Kendall lasso have almost identical curves, which means that re-weighting did not
have ill effects for meta-Gaussian distributions. For meta-Cauchy distributions the findings are
very different. The re-weighted Kendall lasso outperforms all three other lassos when there is no
(r = 0) or small (r = 0.01) contamination. At the higher level (r = 0.05) of contamination, the
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Figure 2: ROC curves for the identity (left), cdf (middle), and power transformations (right) for meta-
Gaussian (top) and meta-Cauchy (bottom) distributions. Here n = 100 and p = 100. The lassos are: Kendall
and Spearman from Liu et al. (2012); meta-Gaussian with δn = 1/(n + 1) from Liu, Lafferty, & Wasserman
(2009); meta-Cauchy of Section 2; Gaussian; Cauchy of Finegold & Drton (2011). [Colour figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com]

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs



2014 GRAPHICAL LASSOS 199

0.0 0.1 0.2 0.3 0.4 0.5

0.0

0.2

0.4

0.6

0.8

1.0

FP

T
P

meta−Gaussian

r=0

Kendall
Spearman
reweighted Kendall
meta−Gaussian

0.0 0.1 0.2 0.3 0.4 0.5

0.0

0.2

0.4

0.6

0.8

1.0

FP

T
P

meta−Gaussian

r=0.01

Kendall
Spearman
reweighted Kendall
meta−Gaussian

0.0 0.1 0.2 0.3 0.4 0.5

0.0

0.2

0.4

0.6

0.8

1.0

FP

T
P

meta−Gaussian

r=0.05

Kendall
Spearman
reweighted Kendall
meta−Gaussian

0.0 0.1 0.2 0.3 0.4 0.5

0.0

0.2

0.4

0.6

0.8

1.0

FP

T
P

meta−Cauchy

r=0

Kendall
Spearman
reweighted Kendall
meta−Gaussian

0.0 0.1 0.2 0.3 0.4 0.5

0.0

0.2

0.4

0.6

0.8

1.0

FP

T
P

meta−Cauchy

r=0.01

Kendall
Spearman
reweighted Kendall
meta−Gaussian

0.0 0.1 0.2 0.3 0.4 0.5

0.0

0.2

0.4

0.6

0.8

1.0

FP

T
P

meta−Cauchy

r=0.05

Kendall
Spearman
reweighted Kendall
meta−Gaussian

Figure 3: ROC curves for deterministic contamination of r = 0 (left), r = 0.01 (middle) and r = 0.05
(right) for meta-Gaussian (top) and meta-Cauchy (bottom) distributions. Here n = 100 and p = 100. The
lassos are: Kendall and Spearman from Liu et al. (2012); Winsorized meta-Gaussian from Liu, Lafferty, &
Wasserman (2009); re-weighted Kendall of Section 2 with u(s) = (1 + p)/(1 + s). [Colour figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com]

Kendall lasso performs closer but still not as well as the re-weighted Kendall lasso. It should be
remarked at this point that it would be difficult in practice to distinguish between meta-Gaussian
and meta-Cauchy distributions when both have the same marginals. Goodness-of-fit tests for
copulas are available in Genest & Rémillard (2008) but are only feasible in large n and small p
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Figure 4: ROC curves for random contamination of r = 0.05 (left), r = 0.1 (middle), and r = 0.2 (right)
for meta-Gaussian (top) and meta-Cauchy (bottom) distributions. Here n = 100 and p = 100. The lassos are:
Kendall and Spearman from Liu et al. (2012); Winsorized meta-Gaussian from Liu, Lafferty, & Wasserman
(2009); re-weighted Kendall of Section 2 with u(s) = (1 + p)/(1 + s). [Colour figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com]

situations. Instead of guessing which copula best fits the data in order to select the best lasso, a
more pragmatic approach is to choose the lasso which performs best under the largest family of
copulas. The meta-Cauchy (ν = 1) and meta-Gaussian (ν → ∞) distributions considered in Fig-
ures 3 and 4 are the limiting cases of the family of meta-t distributions. The re-weighted Kendall
lasso is thus expected to perform well under all intermediate meta-t distributions.
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6.3. Simulation 3
The last simulation reported in Figure 4 is identical to the second except that the contamination
is now random. Random contamination is more realistic and not as severe as deterministic con-
tamination which can really hurt a non-robust lasso. Three levels of random contamination r = 0,
r = 0.1 or r = 0.2 are now considered. A number 
nr� of entries of each variable are selected at
random (according to a uniform distribution) and replaced by either 5 or −5 with equal probability.
The re-weighted Kendall lasso of Section 2 with weight function u(s) = (1 + p)/(1 + s) performs
as well as Kendall/Spearman lasso and outperforms the (Winsorized) meta-Gaussian lasso un-
der contaminated meta-Gaussian distributions. For contaminated meta-Cauchy distributions, the
re-weighted Kendall lasso performs slightly better than the Kendall lasso and outperforms the
Spearman lasso and the (Winsorized) meta-Gaussian lasso.

7. CONCLUSION

The Kendall lasso of Liu et al. (2012) assumed a meta-Gaussian distribution for the observations.
Since goodness-of-fit for a meta-Gaussian distribution is never tested in high dimensional settings,
the following question arises: How does the Kendall lasso performs if the distribution of the data is
not meta-Gaussian, or some contaminated versions thereof? This question motivated the study of
graphical lassos adapted to observations following a meta-elliptical distribution. It was established
in Corollary 1 that non-edges in meta-elliptical graphs can be interpreted in terms of conditional
uncorrelatedness between two variables, given all other variables. In terms of receiver operating
characteristic curves, the re-weighted Kendall lasso introduced in Section 2 provides substantial
gains in efficiency when the distribution is meta-elliptical, but not meta-Gaussian. Moreover, it
suffers only marginal losses in efficiency when the distribution is meta-Gaussian. The re-weighted
Kendall lasso can thus be used as a safe replacement to the Kendall lasso, and it only requires
roughly twice the amount of computation.

In the original submission, the fixed point algorithm was initialized with the identity matrix
and was iterated until convergence. This made the algorithm slow because computation time
is roughly proportional to the number of iterates. Although convergence was not a problem, a
comment of a referee on the infeasibility of the algorithm in high dimensional settings prompted a
modified approach consisting of two steps: (a) start with a good preliminary estimate, the Kendall
lasso, and (b) perform only one re-weighting iteration. This approach has been very successful.

APPENDIX

Proof of Proposition 1. The conditional distribution function

pr(X(1) ≤ x(1), X(2) ≤ x(2) | X(k) = x(k), k �= 1, 2)

is equal to

pr(Z(1) ≤ z(1), Z(2) ≤ z(2) | Z(k) = z(k), k �= 1, 2),

where z(i) = F−1 {
Ki(x(i))

}
. The latter is the distribution function of an elliptical distribution

with location δ in Equation (5) and scatter matrix R11.2. Since the linear correlation in R11.2 is
r12, the copula is an elliptical copula with linear correlation r12. Upon using Equations (5) and
(6), the conditional distribution function of Z(i) is

F̃

[
z(i) − δi

γ
1/2
ii

]
(i = 1, 2).

�
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