Homework 5 Math 16210-Section 51

Due: Tuesday March 10th

Exercise 1. 1. Prove that if $f:[a,b] \to \mathbb{R}$ is a continuous function such that $\int_a^b |f| = 0$ then f = 0.

2. Find all continuous functions $f: [0,1] \to [0,1]$ such that $\int_0^1 f(t) dt = \int_0^1 f(t)^2 dt$.

Exercise 2. Let $a, b \in \mathbb{R}$ with a < b and $f : [a, b] \to \mathbb{R}$. Suppose that there exists $x \in [a, b]$ such that $f(x) \neq 0$ and that there exists $n \in \mathbb{N}$ such that for all $k \leq n$, $\int_a^b t^k f(t) dt = 0$. We want to prove that there exists n + 1 distinct points in [a, b] where f vanishes and changes sign.

1. Study the case n = 0 and n = 1.

2. Prove the statement for all n.

Exercise 3. Let $f : [0,1] \to \mathbb{R}$ be a continuous function. For all $x \in \mathbb{R}$ we define $g(x) = \int_0^1 f(t) e^{tx} dt$. Prove that g is continuous on \mathbb{R} .

Exercise 4. Let $f:[0,1] \to \mathbb{R}$ be a strictly increasing function such that f(0) = 0 and f(1) = 1. Prove that $\lim_{n \to +\infty} \int_0^1 (f(t))^n dt = 0$

Exercise 5. Find the limits of the following sequences

1.
$$u_n = n\left(\frac{1}{(n+1)^2} + \dots + \frac{1}{(n+n)^2}\right).$$

3. $u_n = \frac{1}{n}\prod_{k=1}^n (k+n)^{1/n}$
2. $u_n = \sqrt[n]{\left(1 + \left(\frac{1}{n}\right)^2\right)\left(1 + \left(\frac{2}{n}\right)^2\right)\dots\left(1 + \left(\frac{n}{n}\right)^2\right)}.$
4. $u_n = \sum_{p=n}^{2n} \frac{1}{p}.$

Exercise 6. Let $f:[a,b] \to \mathbb{R}$ be continuous and $g: \mathbb{R} \to \mathbb{R}$ be continuous and convex. Show that

$$g\left(\frac{1}{b-a}\int_{a}^{b}f(t)\mathrm{d}t\right)\leqslant\frac{1}{b-a}\int_{a}^{b}g(f(t))\mathrm{d}t$$

Exercise 7. Let $f : [a, b] \to \mathbb{R}$ be $C^1([a, b])$. We define

$$R_n(f) \coloneqq \frac{b-a}{n} \sum_{k=0}^{n-1} f\left(a + \frac{k(b-a)}{n}\right) \text{ and } M_1 \coloneqq \sup\{|f'(x)| \mid x \in [a,b]\}.$$

1. Prove that

$$\int_{a}^{b} |f(t) - f(\alpha)| \mathrm{d}t \leqslant M_1 \frac{(\beta - \alpha)^2}{2}$$

2. For all $n \ge 1$, show that

$$\left|\int_{a}^{b} f(t) \mathrm{d}t - R_{n}(f)\right| \leqslant \frac{M_{1}(b-a)^{2}}{2n}.$$

3. Find an approximate value of $\int_0^1 e^{-x^2} dx$ with an error less than 10^{-1} .

Georg Friedrich Bernhard Riemann (1826–1866)

Johan Ludvig William Valdemar Jensen (1859–1925)