Homework 5 Math 16210-Section 51

Due: Tuesday March 10th

Exercise 1. 1. Prove that if $f:[a, b] \rightarrow \mathbb{R}$ is a continuous function such that $\int_{a}^{b}|f|=0$ then $f=0$.
2. Find all continuous functions $f:[0,1] \rightarrow[0,1]$ such that $\int_{0}^{1} f(t) \mathrm{d} t=\int_{0}^{1} f(t)^{2} \mathrm{~d} t$.

Exercise 2. Let $a, b \in \mathbb{R}$ with $a<b$ and $f:[a, b] \rightarrow \mathbb{R}$. Suppose that there exists $x \in[a, b]$ such that $f(x) \neq 0$ and that there exists $n \in \mathbb{N}$ such that for all $k \leqslant n, \int_{a}^{b} t^{k} f(t) \mathrm{d} t=0$. We want to prove that there exists $n+1$ distinct points in $[a, b]$ where f vanishes and changes sign.

1. Study the case $n=0$ and $n=1$.
2. Prove the statement for all n.

Exercise 3. Let $f:[0,1] \rightarrow \mathbb{R}$ be a continuous function. For all $x \in \mathbb{R}$ we define $g(x)=\int_{0}^{1} f(t) \mathrm{e}^{t x} \mathrm{~d} t$. Prove that g is continuous on \mathbb{R}.
Exercise 4. Let $f:[0,1] \rightarrow \mathbb{R}$ be a strictly increasing function such that $f(0)=0$ and $f(1)=1$. Prove that $\lim _{n \rightarrow+\infty} \int_{0}^{1}(f(t))^{n} \mathrm{~d} t=0$
Exercise 5. Find the limits of the following sequences

1. $u_{n}=n\left(\frac{1}{(n+1)^{2}}+\cdots+\frac{1}{(n+n)^{2}}\right)$.
2. $u_{n}=\sqrt[n]{\left(1+\left(\frac{1}{n}\right)^{2}\right)\left(1+\left(\frac{2}{n}\right)^{2}\right) \ldots\left(1+\left(\frac{n}{n}\right)^{2}\right)}$.
3. $u_{n}=\frac{1}{n} \prod_{k=1}^{n}(k+n)^{1 / n}$.
4. $u_{n}=\sum_{p=n}^{2 n} \frac{1}{p}$.

Exercise 6. Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous and $g: \mathbb{R} \rightarrow \mathbb{R}$ be continuous and convex. Show that

$$
g\left(\frac{1}{b-a} \int_{a}^{b} f(t) \mathrm{d} t\right) \leqslant \frac{1}{b-a} \int_{a}^{b} g(f(t)) \mathrm{d} t
$$

Exercise 7. Let $f:[a, b] \rightarrow \mathbb{R}$ be $C^{1}([a, b])$. We define

$$
R_{n}(f):=\frac{b-a}{n} \sum_{k=0}^{n-1} f\left(a+\frac{k(b-a)}{n}\right) \quad \text { and } \quad M_{1}:=\sup \left\{\left|f^{\prime}(x)\right| \mid x \in[a, b]\right\} .
$$

1. Prove that

$$
\int_{a}^{b}|f(t)-f(\alpha)| \mathrm{d} t \leqslant M_{1} \frac{(\beta-\alpha)^{2}}{2}
$$

2. For all $n \geqslant 1$, show that

$$
\left|\int_{a}^{b} f(t) \mathrm{d} t-R_{n}(f)\right| \leqslant \frac{M_{1}(b-a)^{2}}{2 n}
$$

3. Find an approximate value of $\int_{0}^{1} \mathrm{e}^{-x^{2}} \mathrm{~d} x$ with an error less than 10^{-1}.

Georg Friedrich Bernhard Riemann (1826-1866)

Johan Ludvig William Valdemar Jensen
(1859-1925)

