

Homework 4 Math 16210-Section 50

Due: Tuesday March 3rd

Jean Gaston Darboux (1842–1917)

Exercise 1. Let f be defined on a interval containing 0 which is continuous on I. We suppose also that

$$\lim_{x\to 0}\frac{f(2x)-f(x)}{x}=0.$$

Prove that f is differentiable at 0.

Exercise 2. Let $f : \mathbb{R} \to \mathbb{R}$ be differentiable such that f(0) = 0. Show that $\lim_{n\to\infty} \sum_{k=1}^n f\left(\frac{k}{n^2}\right)$ exists and compute it.

Exercise 3. 1. Show that for all x > 0 we have $\frac{1}{x+1} < \ln(1+x) - \ln(x) < \frac{1}{x}$.

2. Compute for all $k \in \mathbb{N} \setminus \{1\}$, $\lim_{n \to \infty} \sum_{p=n+1}^{kn} \frac{1}{p}$.

Exercise 4. Let $n \in \mathbb{N}$ and $f: I \to \mathbb{R}$ be a function differentiable n times and such that its n-th derivative $f^{(n)}$ is continuous. We suppose that f vanishes at n + 1 distinct points in I: there exist x_0, \ldots, x_n distinct points in I such that $f(x_i) = 0$.

- 1. Show that the n-th derivative of f vanishes at, at least, one point in I.
- **2.** Let $\alpha \in \mathbb{R}$. Show that the (n-1)-th derivative of $f' + \alpha f$ vanishes at, at least, one point in *I*. *Hint: One can introduce an auxiliary function*

Exercise 5. Let $n \in \mathbb{N}$ and let $f : [a, b] \to \mathbb{R}$ be such that $f, f', f'', \ldots, f^{(n)}$ are continuous on [a, b] and $f^{(n+1)}$ exists on (a, b). Prove that if $x_0 \in [a, b]$, then for any $x \in [a, b]$ there exists a c between x_0 and x such that

$$f(x) = f(x_0) + (x - x_0)f'(x_0) + \frac{(x - x_0)^2}{2}f''(x_0) + \dots + \frac{(x - x_0)^n}{n!}f^{(n)}(x_0) + \frac{(x - x_0)^{n+1}}{(n+1)!}f^{(n+1)}(c).$$

Exercise 6. Prove that we have for all $x \in \mathbb{R}$,

$$\arctan(e^x) = \arctan\left(\tanh\left(\frac{x}{2}\right)\right) + \frac{\pi}{4}, \text{ we recall } \tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}.$$

Exercise 7. Let *I* be an open interval of \mathbb{R} and *f* be differentiable on *I*. We want to prove that the intermediate value theorem applies to f' (even if f' is not continuous!).

1. Let $(a,b) \in I^2$ such that f'(a) < f'(b) and $z \in (f'(a), f'(b))$. Show that there exists $\alpha > 0$ such that for all $h \in (0, \alpha)$ we have

$$\frac{1}{h}(f(a+h) - f(a)) < z < \frac{1}{h}(f(b+h) - f(b))$$

2. Show that there exist h > 0 and $y \in I$ such that

$$y+h \in I$$
 and $\frac{1}{h}(f(y+h)-f(y)) = z$

- **3.** Prove that there exists $x \in I$ such that z = f'(x) and that f'(I) is an interval.
- **4.** Let $f(x) = x^2 \sin\left(\frac{1}{x}\right)$ on (0, 1] and f(0) = 0. Show that f is differentiable on [0, 1]. Is f' continuous on [0, 1]? Find f'([0, 1]), what can you conclude?

Exercise 8. Let $f : \mathbb{R} \to \mathbb{R}$ be infinitely many times differentiable and bounded.

- **1.** Show that if $f^{(k)}$ admits finitely many zeros then we have $\lim_{x\to\pm\infty} f^{(p)}(x) = 0$ for all $p \in \{1, \ldots, k-1\}$.
- **2.** Prove that, in this case, for $k \ge 2$, $f^{(k)}$ vanishes at, at least, k-1 points.

Exercise 9. Let $f : [a, b] \to [a, b]$ be a differentiable function such that there exists $k \in (0, 1)$ such that for all $x \in [a, b], |f'(x)| \leq k$. Prove that there exists a unique $\gamma \in [a, b]$ such that $f(\gamma) = \gamma$.