

Michel Rolle (1652-1719)

Exercise 1. Let f be defined on a interval containing 0 which is continuous on I. We suppose also that

$$
\lim _{x \rightarrow 0} \frac{f(2 x)-f(x)}{x}=0
$$

Prove that f is differentiable at 0 .
Exercise 2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable such that $f(0)=0$. Show that $\lim _{n \rightarrow \infty} \sum_{k=1}^{n} f\left(\frac{k}{n^{2}}\right)$ exists and compute it.
Exercise 3. 1. Show that for all $x>0$ we have $\frac{1}{x+1}<\ln (1+x)-\ln (x)<\frac{1}{x}$.
2. Compute for all $k \in \mathbb{N} \backslash\{1\}, \lim _{n \rightarrow \infty} \sum_{p=n+1}^{k n} \frac{1}{p}$.

Exercise 4. Let $n \in \mathbb{N}$ and $f: I \rightarrow \mathbb{R}$ be a function differentiable n times and such that its n-th derivative $f^{(n)}$ is continuous. We suppose that f vanishes at $n+1$ distinct points in I : there exist x_{0}, \ldots, x_{n} distinct points in I such that $f\left(x_{i}\right)=0$.

1. Show that the n-th derivative of f vanishes at, at least, one point in I.
2. Let $\alpha \in \mathbb{R}$. Show that the $(n-1)$-th derivative of $f^{\prime}+\alpha f$ vanishes at, at least, one point in I. Hint: One can introduce an auxiliary function
Exercise 5. Let $n \in \mathbb{N}$ and let $f:[a, b] \rightarrow \mathbb{R}$ be such that $f, f^{\prime}, f^{\prime \prime}, \ldots, f^{(n)}$ are continuous on $[a, b]$ and $f^{(n+1)}$ exists on (a, b). Prove that if $x_{0} \in[a, b]$, then for any $x \in[a, b]$ there exists a c between x_{0} and x such that

$$
f(x)=f\left(x_{0}\right)+\left(x-x_{0}\right) f^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} f^{\prime \prime}\left(x_{0}\right)+\cdots+\frac{\left(x-x_{0}\right)^{n}}{n!} f^{(n)}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{n+1}}{(n+1)!} f^{(n+1)}(c) .
$$

Exercise 6. Prove that we have for all $x \in \mathbb{R}$,

$$
\arctan \left(\mathrm{e}^{x}\right)=\arctan \left(\tanh \left(\frac{x}{2}\right)\right)+\frac{\pi}{4}, \quad \text { we recall } \tanh (x)=\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{\mathrm{e}^{x}+\mathrm{e}^{-x}}
$$

Exercise 7. Let I be an open interval of \mathbb{R} and f be differentiable on I. We want to prove that the intermediate value theorem applies to f^{\prime} (even if f^{\prime} is not continuous!).

1. Let $(a, b) \in I^{2}$ such that $f^{\prime}(a)<f^{\prime}(b)$ and $z \in\left(f^{\prime}(a), f^{\prime}(b)\right)$. Show that there exists $\alpha>0$ such that for all $h \in(0, \alpha)$ we have

$$
\frac{1}{h}(f(a+h)-f(a))<z<\frac{1}{h}(f(b+h)-f(b)) .
$$

2. Show that there exist $h>0$ and $y \in I$ such that

$$
y+h \in I \quad \text { and } \quad \frac{1}{h}(f(y+h)-f(y))=z
$$

3. Prove that there exists $x \in I$ such that $z=f^{\prime}(x)$ and that $f^{\prime}(I)$ is an interval.
4. Let $f(x)=x^{2} \sin \left(\frac{1}{x}\right)$ on $(0,1]$ and $f(0)=0$. Show that f is differentiable on $[0,1]$. Is f^{\prime} continuous on $[0,1]$? Find $f^{\prime}([0,1])$, what can you conclude?

Exercise 8. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be infinitely many times differentiable and bounded.

1. Show that if $f^{(k)}$ admits finitely many zeros then we have $\lim _{x \rightarrow \pm \infty} f^{(p)}(x)=0$ for all $p \in\{1, \ldots, k-1\}$.
2. Prove that, in this case, for $k \geqslant 2, f^{(k)}$ vanishes at, at least, $k-1$ points.

Exercise 9. Let $f:[a, b] \rightarrow[a, b]$ be a differentiable function such that there exists $k \in(0,1)$ such that for all $x \in[a, b],\left|f^{\prime}(x)\right| \leqslant k$. Prove that there exists a unique $\gamma \in[a, b]$ such that $f(\gamma)=\gamma$.

