Homework 3 Math 16210-Section 50

Due: Tuesday February 18th

Exercise 1. With the (ε, δ) definition of the limit, prove that $\lim _{x \rightarrow 1} x^{3}=1$.

Exercise 2. Show that if a function $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous at $x_{0} \in \mathbb{R}$ then $|f|$ is continuous at x_{0}. Is the converse true?

Exercise 3. On Thomae's function. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
f(x)= \begin{cases}0 & \text { if } x \text { is irrational or } x=0 \\ \frac{1}{q} & \text { if } x=\frac{p}{q} \text { with } p \wedge q=1 \text { and } q \geqslant 1 .\end{cases}
$$

Note that $p \wedge q=1$ means that p and q are coprime numbers. Prove that f is only continuous on $\mathbb{R} \backslash \mathbb{Q}$ and 0 . We should use the fact that both \mathbb{Q} and $\mathbb{R} \backslash \mathbb{Q}$ are dense in \mathbb{R}.

Exercise 4. Find all continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
\forall(x, y) \in \mathbb{R}^{2}, \quad f(x+y)=f(x)+f(y) .
$$

Exercise 5. On the continuity points of a function. This exercise is a follow-up on Exercise 1. of the previous sheet.

We consider the function $\psi_{\mathbb{Q}}: \mathbb{R} \rightarrow\{-1,1\}$ defined by for $x \in \mathbb{R}$,

$$
\psi_{\mathbb{Q}}(x)=2 \mathbb{1}_{\mathbb{Q}}(x)-1= \begin{cases}1 & \text { if } x \in \mathbb{Q} \\ -1 & \text { otherwise }\end{cases}
$$

For a given function $f: \mathbb{R} \rightarrow \mathbb{R}$ we denote

$$
\Gamma(f)=\{x \in \mathbb{R} \mid f \text { is continuous at } x\} \quad \text { and } \quad Z(f)=\{x \in \mathbb{R} \mid f(x)=0\} .
$$

1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function. Prove that we have $\Gamma(\psi f)=Z(f)$ (ψf is simply defined by $(\psi f)(x)=\psi(x) f(x))$.
2. The goal of this question it to prove that for every closed set F, there exists a function g such that $\Gamma(g)=F$.
a. We recall the definition of the distance to a set

$$
d(x, F)=\inf _{y \in F}|x-y|
$$

Using Homework 2., prove that $x \mapsto d(x, F)$ is continuous. If $x \in F$, give $d(x, F)$.
b. Using Question 1. Construct a function $g: \mathbb{R} \rightarrow \mathbb{R}$ such that we have $\Gamma(g)=F$.
3. Let $\Omega \subset \mathbb{R}$ be an open set. We define the characteristic function χ_{Ω} by, for $x \in \mathbb{R}$,

$$
\chi_{\Omega}(x)= \begin{cases}0 & \text { if } x \in \Omega \\ 1 & \text { if } x \in \Omega^{c}\end{cases}
$$

Prove that $\Gamma\left(\psi \chi_{\Omega}\right)=\Omega$.
4. The goal of this question is to prove that if $S \subset \mathbb{R}$ is a G_{δ} (a countable intersection of open sets) then there exists a function f such that $\Gamma(f)=S$. We suppose that S is a G_{δ},
a. Prove the existence of a sequence of open sets $\left(\Omega_{n}\right)_{n \in \mathbb{N}}$ such that

$$
\Omega_{1}=\mathbb{R}, \quad \forall n \in \mathbb{N}, \Omega_{n+1} \subset \Omega_{n}, \text { and } \quad S=\bigcap_{n \in \mathbb{N}} \Omega_{n}
$$

b. We define $f: \mathbb{R} \rightarrow \mathbb{R}$ in the following way: for all $x \in \mathbb{R}$, either $x \in S$ and we set $f(x)=0$ or there exists an $n \in \mathbb{N}$ such that $x \in \Omega_{n} \backslash \Omega_{n+1}$ and we set $f(x)=2^{-n}$. Show that $\Gamma(\psi f)=S$.
5. Finally, the goal of this question is to prove that if $f: \mathbb{R} \rightarrow \mathbb{R}$ is any function then $\Gamma(f)$ is a G_{δ}. Let f be such a function.
a. For any $k \in \mathbb{N}$, we denote

$$
\mathcal{O}_{k}=\left\{(\alpha, \beta) \subset \mathbb{R} \mid \alpha, \beta \in \mathbb{Q} \text { and } \beta-\alpha<2^{-k}\right\} .
$$

Note that here (α, β) denotes the interval, thus \mathcal{O}_{k} is a set of intervals of \mathbb{R}. Prove that for every fixed k, \mathcal{O}_{k} is countable and that every open set of \mathbb{R} is the union of some elements of \mathcal{O}_{k}. To do so, see that we have, for every open set $U \subset \mathbb{R}$,

$$
U=\bigcup_{\substack{V \in \mathcal{O}_{k} \\ V \subset U}} V
$$

b. Prove that

$$
\Gamma(f)=\bigcap_{k \in \mathbb{N}} \bigcup_{\Omega \in \mathcal{O}_{k}} \operatorname{Int}\left(f^{-1}(\Omega)\right)
$$

c. Using the previous question, prove that $\Gamma(f)$ is a G_{δ}.

In this exercise you proved the interesting result that a set S is the set of continuity points of a function if, and only if, S is a G_{δ}. With this theorem, you can try to prove that there does not exist any function f such that $\Gamma(f)=\mathbb{Q}$. If you are brave and want to prove it, you will need Baire's theorem (look it up or ask me or don't).

Carl Johannes Thomae (1840-1921)

René-Louis Baire (1874-1932)

