Homework 2 Math 16210-Section 50

Due: Tuesday February 4th

Exercise 1. On F_{σ} and G_{δ} . We say that a set is a F_{σ} if it is the countable union of closed sets and a G_{δ} if it is the countable intersection of open sets.

- **1.** Show that if $S \subset \mathbb{R}$ is a F_{σ} then its complement is a G_{δ} and reciprocally.
- **2.** Give an example of a subset of \mathbb{R} which is a F_{σ} but which is neither closed nor open.
- **3.** Show that the countable union of F_{σ} sets is also a F_{σ} . What analogous property do we have involving G_{δ} ?
- **4.** Let $A \subset \mathbb{R}$ be nonempty. We define for $x \in \mathbb{R}$,

$$d(x,A) = \inf_{a \in A} |x-a|.$$

a. Show that we have for every $x, y \in \mathbb{R}$,

$$|\mathbf{d}(x,A) - \mathbf{d}(y,A)| \le |x-y|$$

b. For $\varepsilon > 0$, we denote

$$A^{\varepsilon} = \{ x \in \mathbb{R} \mid \mathbf{d}(x, A) \leq \varepsilon \}.$$

Give $\bigcap_{\varepsilon > 0} A^{\varepsilon}$.

- **5.** Let $f: X \to \mathbb{R}$. Show that if f is continuous then for any $U \subset \mathbb{R}$ open, $f^{-1}(U)$ is a F_{σ} .
- **6.** Show that every closed subset of \mathbb{R} is a G_{δ} and every open subset is a F_{σ} .

Exercise 2. Let f, g be two continuous functions from X to \mathbb{R} .

- **1.** Show that the set $\{x \in \mathbb{R} \mid f(x) = g(x)\}$ is closed in X.
- **2.** Show that if there exists a set A dense in X such that f(a) = g(a) for all $a \in A$ then f = g.

Exercise 3. Let $K \subset \mathbb{R}$ be a compact set and $f: K \to \mathbb{R}$ be a locally bounded function on K: for all $x \in K$, there exists a region R_x with $x \in R_x$ and $M_x > 0$ such that, for all $y \in R_x$, we have $|f(y)| \leq M_x$.

- **1.** Show that f is bounded on K.
- **2.** Give an example of $X \subset \mathbb{R}$ and $f: X \to \mathbb{R}$ such that f is locally bounded on X but not bounded.

Exercise 4. Let $K \subset \mathbb{R}$ be a compact set and $F \subset \mathbb{R}$ be a closed set such that $K \cap F = \emptyset$.

- **1.** Show that there exists an open set U such that $K \subset U$ and $\overline{U} \cap F = \emptyset$.
- **2.** We now suppose that F is compact. Show that there exists an open set V such that $F \subset V$ and $U \cap V = \emptyset$.

Exercise 5. On the Hausdorff distance. Let \mathcal{K} be the set of all nonempty compact subsets of \mathbb{R} .

- **1.** Let $A \in \mathcal{K}$ and $\alpha, \beta > 0$, show that $A^0 = A$, $A^{\alpha} = \bigcap_{r > \alpha} A^r$, and $(A^{\alpha})^{\beta} \subset A^{\alpha+\beta}$ where the notation A^{α} was introduced in **Exercise 1.**
- **2.** For $A, B \in \mathcal{K}$, we denote $\sigma(A, B) = \inf\{\alpha \mid B \subset A^{\alpha}\}$. Show that for all $A, B, C \in \mathcal{K}$, we have

$$\sigma(A, B) \leqslant \sigma(A, C) + \sigma(C, B).$$

3. For $A, B \in \mathcal{K}$, we denote $h(A, B) = \max(\sigma(A, B), \sigma(B, A))$. Show that h is a distance on \mathcal{K} : for $A, B, C \in \mathcal{K}$ we have

$$h(A,B) = 0 \Rightarrow A = B$$
, $h(A,B) = h(B,A)$, and $h(A,B) \leq h(A,C) + h(C,B)$.

- 4. We denote \mathcal{H}_s to be the set of the nonempty sets of \mathbb{R} which have at most s elements.
 - **a.** Show that we have $H_s \subset \mathcal{K}$.
 - **b.** We can define an open set with respect to h in the following sense: \mathcal{A} is open if and only if for very $A \in \mathcal{A}$ there exists $\varepsilon > 0$ such that $B_{\varepsilon}(A) := \{B \in \mathcal{K} \mid h(A, B) < \varepsilon\} \subset \mathcal{A}$. This is similar to the characterization we gave for open sets last quarter: a set is open if, and only if, for every point in the set there exists a region containing the point included in the set.

Show that \mathcal{H}_s is closed i.e. the complement of an open set.

c. Construct a bijection from \mathcal{H}_2 to the half-plane $P = \{(x, y) \in \mathbb{R}^2 \mid x \leq y\}.$

Émile Borel (1871–1956)

Felix Hausdorff (1868–1942)