Homework 1 Math 16210-Section 50

Due: Tuesday January 21st

Exercise 1. Do the Appendix of Script 7: The Real Numbers are an Ordered Field from Definition 7.30 to Theorem 7.46.

Exercise 2. Let F be a field such that $F \subset \mathbb{Q}$. Show that $F = \mathbb{Q}$.

Exercise 3. Let $\alpha \in \mathbb{N}$ such that $\sqrt{\alpha} \notin \mathbb{Q}$. We denote

$$\mathbb{Q}[\sqrt{\alpha}] = \{a + b\sqrt{\alpha} \mid (a, b) \in \mathbb{Q}^2\}.$$

1. Show that $(\mathbb{Q}[\sqrt{\alpha}], +, \times)$ is a field where + and \times are the usual operations in \mathbb{R} .

Let $(\mathbb{F}, +_{\mathbb{F}}, \cdot_{\mathbb{F}})$ and $(\mathbb{K}, +_{\mathbb{K}}, \cdot_{\mathbb{K}})$ be two fields. A *field homomorphism* is a function $\Phi : \mathbb{F} \to \mathbb{K}$ such that for all $a, b \in \mathbb{F}$, $\Phi(a + w b) = \Phi(a) + w \Phi(b) \qquad \Phi(a + w b) = \Phi(a) \cdot w \Phi(b)$

$$\Psi(a +_{\mathbb{F}} b) = \Psi(a) +_{\mathbb{K}} \Psi(b), \quad \Psi(a \cdot_{\mathbb{F}} b) = \Psi(a) \cdot_{\mathbb{K}} \Psi(b)$$

 $\Phi(1_{\mathbb{F}}) = 1_{\mathbb{K}} \text{ and } \Phi(0_{\mathbb{F}}) = 0_{\mathbb{K}}.$

A bijective field homomorphism is called a *field isomorphism*.

2. Let $\alpha, \beta \in \mathbb{N}$ such that $\sqrt{\alpha}$ and $\sqrt{\beta}$ are irrationnal. Give a necessary and sufficient condition on α and β such that there exists a field isomorphism $\Phi : \mathbb{Q}[\sqrt{\alpha}] \to \mathbb{Q}[\sqrt{\beta}]$.

Exercise 4. For $a, b \in \mathbb{R}$, we define

$$a \top b = a + b - 1$$
 and $a * b = ab - a - b + 2$.

Find a function $\Phi : \mathbb{R} \to \mathbb{R}$ such that Φ is a field isomorphism from $(\mathbb{R}, +, \times)$ to $(\mathbb{R}, \top, *)$ (we do not ask to prove that $(\mathbb{R}, \top, *)$ is a field). What are the identity elements for \top and *?

Exercise 5. Let \mathbb{K} be a finite field (a field with a finite number of elements), we denote $\mathbb{K}^* = \mathbb{K} \setminus \{0_{\mathbb{K}}\}$.

- 1. Construct two examples of finite fields.
- **2.** Compute, for these two examples, $\prod_{x \in \mathbb{K}^*} x$.
- **3.** Compute this quantity for any finite field.

Évariste Galois (1811–1832)

Leopold Kronecker (1823–1891)