Homework 8 Math 16310-Section 50

Due: Tuesday June 2nd

Exercise 1. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be \mathcal{C}^1 . Compute the derivative of the following functions

1.
$$g(x,y) = f(y,x)$$

2. $g(x) = f(x,x)$
3. $g(x,y) = f(y,f(x,x))$
4. $g(x) = f(x,f(x,x))$.

Exercise 2. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be given by

$$f(x,y) = \begin{cases} xy\frac{x^2 - y^2}{x^2 + y^2} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{otherwise.} \end{cases}$$

- **1.** Is f continuous on \mathbb{R}^2 ?
- **2.** Is $f \mathcal{C}^1$ on \mathbb{R}^2 ?
- **3.** Is f differentiable on \mathbb{R}^2 ?

Exercise 3. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be an application \mathcal{C}^1 on \mathbb{R}^2 and $r \in \mathbb{R}$. We say that f is (positively) homogeneous of degree r if

$$\forall (x,y) \in \mathbb{R}^2, \, \forall t > 0, \, f(tx,ty) = t^r f(x,y).$$

- **1.** Give an example of an homogeneous function of degree 3.
- **2.** Show that if f is homogeneous of degree r then its partial derivatives are homogeneous of degree r-1.
- **3.** Show that if f is homogeneous of degree r then

$$\forall (x,y) \in \mathbb{R}^2, \, x\partial_1 f(x,y) + y\partial_2 f(x,y) = rf(x,y)$$

4. We want to show the other implication, we suppose that f follows the previous identity (called the Euler identity) and we want to show that f is homogeneous of degree r. Consider $\varphi(t) = f(tx, ty)$, by differentiating the function $t \mapsto t^{-r}\varphi(t)$, show that f is homogeneous of degree r.

Exercise 4. Let $p, q \in \mathbb{N}$. We define the function $f : \mathbb{R}^2 \to \mathbb{R}$ by

$$f(x,y) = \begin{cases} \frac{x^p y^q}{x^2 - xy + y^2} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{otherwise.} \end{cases}$$

- **1.** For which p, q is f continuous? Is f differentiable for p + q = 2? Hint : One can first prove that $|xy| \leq x^2 - xy + y^2$.
- **2.** We suppose that p + q = 3, prove that f is not differentiable at (0, 0). Hint: One can reason by contradiction.

Exercise 5. Bonus Exercise. Find all functions $f : \mathbb{R}^2 \to \mathbb{R}$ C^1 such that

$$\partial_1 f(x, y) - 3\partial_2 f(x, y) = 0.$$

Hint: One can use the change of variables $(x, y) \mapsto (ax + by, cx + dy)$ *.*

