Homework 8 Math 16310-Section 50

Due: Tuesday June 2nd

Exercise 1. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be \mathcal{C}^{1}. Compute the derivative of the following functions

1. $g(x, y)=f(y, x)$
2. $g(x)=f(x, x)$
3. $g(x, y)=f(y, f(x, x))$
4. $g(x)=f(x, f(x, x))$.

Exercise 2. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be given by

$$
f(x, y)= \begin{cases}x y \frac{x^{2}-y^{2}}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { otherwise }\end{cases}
$$

1. Is f continuous on \mathbb{R}^{2} ?
2. Is $f \mathcal{C}^{1}$ on \mathbb{R}^{2} ?
3. Is f differentiable on \mathbb{R}^{2} ?

Exercise 3. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be an application \mathcal{C}^{1} on \mathbb{R}^{2} and $r \in \mathbb{R}$. We say that f is (positively) homogeneous of degree r if

$$
\forall(x, y) \in \mathbb{R}^{2}, \forall t>0, f(t x, t y)=t^{r} f(x, y)
$$

1. Give an example of an homogeneous function of degree 3 .
2. Show that if f is homogeneous of degree r then its partial derivatives are homogeneous of degree $r-1$.
3. Show that if f is homogeneous of degree r then

$$
\forall(x, y) \in \mathbb{R}^{2}, x \partial_{1} f(x, y)+y \partial_{2} f(x, y)=r f(x, y)
$$

4. We want to show the other implication, we suppose that f follows the previous identity (called the Euler identity) and we want to show that f is homogeneous of degree r. Consider $\varphi(t)=f(t x, t y)$, by differentiating the function $t \mapsto t^{-r} \varphi(t)$, show that f is homogeneous of degree r.
Exercise 4. Let $p, q \in \mathbb{N}$. We define the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by

$$
f(x, y)= \begin{cases}\frac{x^{p} y^{q}}{x^{2}-x y+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { otherwise }\end{cases}
$$

1. For which p, q is f continuous? Is f differentiable for $p+q=2$?

Hint : One can first prove that $|x y| \leqslant x^{2}-x y+y^{2}$.
2. We suppose that $p+q=3$, prove that f is not differentiable at $(0,0)$.

Hint: One can reason by contradiction.
Exercise 5. Bonus Exercise. Find all functions $f: \mathbb{R}^{2} \rightarrow \mathbb{R} C^{1}$ such that

$$
\partial_{1} f(x, y)-3 \partial_{2} f(x, y)=0
$$

Hint: One can use the change of variables $(x, y) \mapsto(a x+b y, c x+d y)$.

Carl Gustav Jacob Jacobi
(1804-1851)
(

Leonhard Euler
(1707-1783)
$+$

