Homework 7 Math 16310-Section 50

Due: Tuesday May 26th

Exercise 1. Do the following functions have a limit at 0 and, if so, what is the limit?

$$1. f(x, y, z) = \frac{xy + yz}{x^2 + 2y^2 + 3z^2}$$

$$2. f(x, y) = \frac{1 - \cos(xy)}{xy^2}$$

$$3. f(x, y) = \left(\frac{x^2 + y^2 - 1}{x} \sin x, \frac{\sin(x^2) + \sin(y^2)}{\sqrt{x^2 + y^2}}\right)$$

$$4. f(x, y) = \frac{x^{\alpha}y^{\beta}}{x^2 + y^2} \text{ for } \alpha, \beta > 0.$$

Exercise 2. Let $C \subset \mathbb{R}^2$ be such that for all $x, y \in C$ and $t \in [0, 1]$ we have $tx + (1 - t)y \in C$ (we say that C is a *convex* subset of \mathbb{R}^2) and $f : C \to \mathbb{R}$ be a continuous function.

- **1.** Prove that f(C) is an interval.
- **2.** Let *I* be an interval of \mathbb{R} and $h: I \to \mathbb{R}$ be a continuous injection. Show that *h* is strictly monotone by using the function f(x, y) = h(x) h(y).

Exercise 3. Let A be a non-empty bounded subset of \mathbb{R}^n . We say that a function $f : A \to \mathbb{R}^n$ is *Lipschitz* continuous if there exists $k \in \mathbb{R}_+$ such that for all $x, y \in A$, $||f(x) - f(y)|| \leq k||x - y||$. We denote \mathcal{L} to be the set of all Lipschitz continuous function from A to \mathbb{R}^n .

- 1. Show that a function in \mathcal{L} is bounded.
- **2.** For $f \in \mathcal{L}$, we define

$$K_f = \{ k \in \mathbb{R}_+ \mid \forall (x, y) \in A^2, \, \|f(x) - f(y)\| \le k \|x - y\| \}.$$

Prove that $c(f) \coloneqq \inf K_f$ exists and that $c(f) \in K_f$.

- **3.** Let $a \in A$ and $N_a : \mathcal{L} \to \mathbb{R}_+$ be defined by $N_a(f) = c(f) + ||f(a)||$. Show that $N_a(f)$ follows the same properties as in Theorem 18.10:
 - $\forall f \in \mathcal{L}, N_a(f) \ge 0 \text{ and } N_a(f) = 0 \Rightarrow \forall x \in A, f(x) = 0$
 - $\forall f, g \in \mathcal{L}, N_a(f+g) \leq N_a(f) + N_a(g).$
 - $\forall f \in \mathcal{L} \text{ and } \lambda \in \mathbb{R}, N_a(\lambda f) = |\lambda| N_a(f).$
- 4. Let $a, b \in A$, prove that there exists two real numbers c, C > 0 such that

$$\forall f \in \mathcal{L}, \quad cN_a(f) \leqslant N_b(f) \leqslant CN_a(f).$$

Exercise 4. Bonus Exercise. We define the function $f : \mathbb{R}^n \to \mathbb{R}^n$ by

$$f(x) = \frac{1}{\max(1, \|x\|)}x.$$

- **1.** Prove that f is 2-Lipschitz continuous: $\forall x, y \in \mathbb{R}^n$, $||f(x) f(y)|| \leq 2||x y||$.
- **2.** Prove that f is 1-Lipschitz continuous: $\forall x, y \in \mathbb{R}^n$, $||f(x) f(y)|| \leq ||x y||$.

Rudolf Otto Sigismund Lipschitz (1832–1903) 😰 (

Hermann Günther Grassmann (1809–1877) 😰 (