Homework 7 Math 16310-Section 50

Due: Tuesday May 26th

Exercise 1. Do the following functions have a limit at $\mathbf{0}$ and, if so, what is the limit?

1. $f(x, y, z)=\frac{x y+y z}{x^{2}+2 y^{2}+3 z^{2}}$
2. $f(x, y)=\frac{1-\cos (x y)}{x y^{2}}$
3. $f(x, y)=\left(\frac{x^{2}+y^{2}-1}{x} \sin x, \frac{\sin \left(x^{2}\right)+\sin \left(y^{2}\right)}{\sqrt{x^{2}+y^{2}}}\right)$
4. $f(x, y)=\frac{x^{\alpha} y^{\beta}}{x^{2}+y^{2}}$ for $\alpha, \beta>0$.

Exercise 2. Let $C \subset \mathbb{R}^{2}$ be such that for all $x, y \in C$ and $t \in[0,1]$ we have $t x+(1-t) y \in C$ (we say that C is a convex subset of \mathbb{R}^{2}) and $f: C \rightarrow \mathbb{R}$ be a continuous function.

1. Prove that $f(C)$ is an interval.
2. Let I be an interval of \mathbb{R} and $h: I \rightarrow \mathbb{R}$ be a continuous injection. Show that h is strictly monotone by using the function $f(x, y)=h(x)-h(y)$.
Exercise 3. Let A be a non-empty bounded subset of \mathbb{R}^{n}. We say that a function $f: A \rightarrow \mathbb{R}^{n}$ is Lipschitz continuous if there exists $k \in \mathbb{R}_{+}$such that for all $x, y \in A,\|f(x)-f(y)\| \leqslant k\|x-y\|$. We denote \mathcal{L} to be the set of all Lipschitz continuous function from A to \mathbb{R}^{n}.
3. Show that a function in \mathcal{L} is bounded.
4. For $f \in \mathcal{L}$, we define

$$
K_{f}=\left\{k \in \mathbb{R}_{+} \mid \forall(x, y) \in A^{2},\|f(x)-f(y)\| \leqslant k\|x-y\|\right\} .
$$

Prove that $c(f):=\inf K_{f}$ exists and that $c(f) \in K_{f}$.
3. Let $a \in A$ and $N_{a}: \mathcal{L} \rightarrow \mathbb{R}_{+}$be defined by $N_{a}(f)=c(f)+\|f(a)\|$. Show that $N_{a}(f)$ follows the same properties as in Theorem 18.10:

- $\forall f \in \mathcal{L}, N_{a}(f) \geqslant 0$ and $N_{a}(f)=0 \Rightarrow \forall x \in A, f(x)=0$
- $\forall f, g \in \mathcal{L}, N_{a}(f+g) \leqslant N_{a}(f)+N_{a}(g)$.
- $\forall f \in \mathcal{L}$ and $\lambda \in \mathbb{R}, N_{a}(\lambda f)=|\lambda| N_{a}(f)$.

4. Let $a, b \in A$, prove that there exists two real numbers $c, C>0$ such that

$$
\forall f \in \mathcal{L}, \quad c N_{a}(f) \leqslant N_{b}(f) \leqslant C N_{a}(f)
$$

Exercise 4. Bonus Exercise. We define the function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ by

$$
f(x)=\frac{1}{\max (1,\|x\|)} x
$$

1. Prove that f is 2-Lipschitz continuous: $\forall x, y \in \mathbb{R}^{n}, \quad\|f(x)-f(y)\| \leqslant 2\|x-y\|$.
2. Prove that f is 1-Lipschitz continuous: $\forall x, y \in \mathbb{R}^{n}, \quad\|f(x)-f(y)\| \leqslant\|x-y\|$.

Rudolf Otto Sigismund Lipschitz
(1832-1903)

Hermann Günther Grassmann
(1809-1877)
(

