Homework 6 Math 16310-Section 50

Due: Tuesday May 19th

Exercise 1. 1. Let x, y, z be three real numbers such that $2x^2 + y^2 + 5z^2 \le 1$. Show that $(x + y + z)^2 \le \frac{17}{10}$.

- **2.** Let $x_1, \ldots, x_n \in \mathbb{R}^n$ such that $x_k > 0$ for each $k \in \{1, \ldots, n\}$ and $x_1 + \cdots + x_n = 1$. Show that $\sum_{k=1}^n \frac{1}{x_k} \ge n^2$.
- **3.** We recall that $\binom{n}{k} = \frac{n!}{k!(n-k)!}$, study whether $\sum_{n=1}^{\infty} u_n$ converges or not with $u_n = \frac{1}{n^2(\sqrt{2})^n} \sum_{k=0}^n \sqrt{\binom{n}{k}}$.

Exercise 2. Let x, y, p, q be four strictly positive real numbers such that $\frac{1}{p} + \frac{1}{q} = 1$. Let $a_1, \ldots, a_n, b_1, \ldots, b_n$ be 2n strictly positive real numbers.

1. Prove that for all $t \in [0,1]$ we have $\ln((1-t)x + ty) \ge (1-t)\ln(x) + t\ln(y)$ and prove that

$$xy \leqslant \frac{1}{p}x^p + \frac{1}{q}y^q$$

- **2.** Prove that $\sum_{i=1}^{n} a_i b_i \leq (\sum_{i=1}^{n} a_i^p)^{\frac{1}{p}} (\sum_{i=1}^{n} b_i^q)^{\frac{1}{q}}$. *Hint: one can first study the case* $\sum_{i=1}^{n} a_i^p = \sum_{i=1}^{n} b_i^q = 1$.
- **3.** We now suppose that $p \ge 1$. Prove that $(\sum_{i=1}^{n} (a_i + b_i)^p)^{\frac{1}{p}} \le (\sum_{i=1}^{n} a_i^p)^{\frac{1}{p}} + (\sum_{i=1}^{n} b_i^p)^{\frac{1}{p}}$
- **4.** We define $||x||_p = (|x_1|^p + \dots + |x_n|^p)^{\frac{1}{p}}$. Show that $||\cdot||_p$ follows the properties of Theorem 18.10.

Exercise 3. Let A be a bounded non-empty set of \mathbb{R}^n . The goal of the exercise is to prove the existence and uniqueness of a closed ball of minimal radius containing A.

- **1.** Define $D = \{r > 0 \mid A \text{ is contained in a ball of radius } r\}$. Prove that D admits an infimum which we denote r_0 .
- **2.** For $n \ge 1$, set $r_n = r_0 + \frac{1}{n}$. Show that there exists $x_n \in \mathbb{R}^n$ such that $A \subset \overline{B}(x_n, r_n)$.
- **3.** Show that (x_n) is bounded and deduce the existence of the minimal radius.
- **4.** In this exercise, $\|\cdot\|$ denotes the usual Euclidean norm.
 - **a.** Prove that for all $x, y \in \mathbb{R}^n$,

$$||x + y||^{2} + ||x - y||^{2} = 2(||x||^{2} + ||y||^{2})$$

b. Prove that the ball is unique.

Challenge (Not graded): If we define the diameter of A as $d \coloneqq \sup_{x,y \in A} ||x - y||$ and r the minimal radius, prove that

$$r \leqslant d \sqrt{\frac{n}{2(n+1)}}$$

Exercise 4. Bonus Exercise. Let $u_1, \ldots, u_n \in \mathbb{R}^n$ and C > 0. We suppose that

$$\forall (\varepsilon_1, \dots, \varepsilon_n) \in \{-1, 1\}^n, \left\| \sum_{i=1}^n \varepsilon_i u_i \right\| \leqslant C.$$

Prove that $\sum_{i=1}^{n} \|u_i\|^2 \leq C^2$.

Hermann Minkowski (1864–1909)

Heinrich Wilhelm Ewald Jung (1876–1953)