Homework 2 Math 16310-Section 50

Due: Tuesday April 28th

Exercise 1. Let $(p_k)_{k \ge 1}$ be the ordered sequence of prime numbers. The goal of the exercise is to find the nature of the series $\sum_{k \ge 1} \frac{1}{p_k}$. For $n \ge 1$, we denote $V_n = \prod_{k=1}^n \frac{1}{1 - \frac{1}{p_k}}$.

- 1. Show that the sequence (V_n) is convergent if, and only if, the sequence $(\ln V_n)$ is convergent.
- 2. Show that the sequence (V_n) is convergent if, and only if, the series $\sum_{k \ge 1} \frac{1}{p_k}$ is convergent.
- **3.** Prove that

$$V_n = \prod_{k=1}^n \left(\sum_{j \ge 0} \frac{1}{p_k^j} \right).$$

and that $V_n \ge \sum_{j=1}^n \frac{1}{j}$.

- 4. What is the nature of the series $\sum_{k \ge 1} \frac{1}{p_k}$?
- **5.** For $\alpha \in \mathbb{R}$, what is the nature of the series $\sum_{k \ge 1} \frac{1}{p_i^{\alpha}}$.

Exercise 2. We consider two sequence of real numbers (u_n) and (v_n) . We are interested in the convergence of the series $\sum_{n \ge 0} u_n v_n$. For $n \ge 0$, we denote $S_n = \sum_{k=0}^n u_k$.

1. Show that for all $(p,q) \in \mathbb{N}^2$ such that $p \leq q$ we have

$$\sum_{k=p}^{q} u_k v_k = S_q v_q - S_{p-1} v_p + \sum_{k=p}^{q-1} S_k (v_k - v_{k+1})$$

- **2.** Show that if the sequence (S_n) is bounded, if $v_n \in \mathbb{R}_+$ for all $n \ge 0$ and if (v_n) is decreasing such that $v_n \xrightarrow[n \to \infty]{} 0$ then the series $\sum_{n \ge 0} u_n v_n$ is convergent.
- **3.** Show that the series $\sum_{n \ge 1} \frac{\sin(n\theta)}{\sqrt{n}}$ converges for all $\theta \in \mathbb{R}$. *Hint: Recall that* $\Im(e^{in\theta}) = \sin(n\theta)$.

Exercise 3. The goal of this exercise is to compute $\sum_{n \ge 1} \frac{1}{n^2}$.

1. Let f be a C^1 function on $[0, \pi]$ (the function is continuous, differentiable and its derivative is continuous). Show that

$$\int_0^{\pi} f(t) \sin\left(\frac{(2n+1)t}{2}\right) dt \xrightarrow[n \to \infty]{} 0$$

2. We denote $A_n(t) = \frac{1}{2} + \sum_{k=1}^n \cos(kt)$. Prove that for all $t \in (0, \pi]$ we have

$$A_n(t) = \frac{\sin((2n+1)t/2)}{2\sin(t/2)}.$$

Hint: Recall that $\Re(e^{ikt}) = \cos(kt)$.

3. Find two real numbers a and b such that for all $n \ge 1$,

$$\int_0^{\pi} (at^2 + bt) \cos(nt) dt = \frac{1}{n^2}.$$

and then see that

$$\int_0^{\pi} (at^2 + bt) A_n(t) = \sum_{k=1}^n \frac{1}{k^2} - \frac{\pi^2}{6}.$$

4. Using Question 1., prove that $\sum_{k=1}^{n} \frac{1}{k^2} \xrightarrow[n \to \infty]{} \frac{\pi^2}{6}$.

Exercise 4. Bonus exercise. Let (a_n) be a sequence of positive real numbers such that $\sum_{n \ge 1} a_n$ converges. **1.** Prove that

$$\sum_{n \ge 1} \frac{a_1 + 2a_2 + \dots + na_n}{n(n+1)} \text{ converges and that } \sum_{n \ge 1} \frac{a_1 + 2a_2 + \dots + na_n}{n(n+1)} = \sum_{n \ge 1} a_n.$$

2. Show that

$$\frac{1}{(n!)^{1/n}} \leqslant \frac{\mathbf{e}}{n+1}.$$

3. Prove that

$$\sum_{n=1}^{\infty} (a_1 \dots a_n)^{1/n} \leqslant e \sum_{n=1}^{\infty} a_n$$

Tage Gillis Torsten Carleman (1892–1949)