Homework 2 Math 16310-Section 50

Due: Tuesday April 28th

Exercise 1. Let $\left(p_{k}\right)_{k \geqslant 1}$ be the ordered sequence of prime numbers. The goal of the exercise is to find the nature of the series $\sum_{k \geqslant 1} \frac{1}{p_{k}}$. For $n \geqslant 1$, we denote $V_{n}=\prod_{k=1}^{n} \frac{1}{1-\frac{1}{p_{k}}}$.

1. Show that the sequence $\left(V_{n}\right)$ is convergent if, and only if, the sequence $\left(\ln V_{n}\right)$ is convergent.
2. Show that that the sequence $\left(V_{n}\right)$ is convergent if, and only if, the series $\sum_{k \geqslant 1} \frac{1}{p_{k}}$ is convergent.
3. Prove that

$$
V_{n}=\prod_{k=1}^{n}\left(\sum_{j \geqslant 0} \frac{1}{p_{k}^{j}}\right)
$$

and that $V_{n} \geqslant \sum_{j=1}^{n} \frac{1}{j}$.
4. What is the nature of the series $\sum_{k \geqslant 1} \frac{1}{p_{k}}$?
5. For $\alpha \in \mathbb{R}$, what is the nature of the series $\sum_{k \geqslant 1} \frac{1}{p_{k}^{\alpha}}$.

Exercise 2. We consider two sequence of real numbers $\left(u_{n}\right)$ and $\left(v_{n}\right)$. We are interested in the convergence of the series $\sum_{n \geqslant 0} u_{n} v_{n}$. For $n \geqslant 0$, we denote $S_{n}=\sum_{k=0}^{n} u_{k}$.

1. Show that for all $(p, q) \in \mathbb{N}^{2}$ such that $p \leqslant q$ we have

$$
\sum_{k=p}^{q} u_{k} v_{k}=S_{q} v_{q}-S_{p-1} v_{p}+\sum_{k=p}^{q-1} S_{k}\left(v_{k}-v_{k+1}\right)
$$

2. Show that if the sequence $\left(S_{n}\right)$ is bounded, if $v_{n} \in \mathbb{R}_{+}$for all $n \geqslant 0$ and if $\left(v_{n}\right)$ is decreasing such that $v_{n} \xrightarrow[n \rightarrow \infty]{ } 0$ then the series $\sum_{n \geqslant 0} u_{n} v_{n}$ is convergent.
3. Show that the series $\sum_{n \geqslant 1} \frac{\sin (n \theta)}{\sqrt{n}}$ converges for all $\theta \in \mathbb{R}$.

Hint: Recall that $\Im\left(\mathrm{e}^{\mathrm{i} n \theta}\right)=\sin (n \theta)$.
Exercise 3. The goal of this exercise is to compute $\sum_{n \geqslant 1} \frac{1}{n^{2}}$.

1. Let f be a C^{1} function on $[0, \pi]$ (the function is continuous, differentiable and its derivative is continuous). Show that

$$
\int_{0}^{\pi} f(t) \sin \left(\frac{(2 n+1) t}{2}\right) \mathrm{d} t \xrightarrow[n \rightarrow \infty]{ } 0
$$

2. We denote $A_{n}(t)=\frac{1}{2}+\sum_{k=1}^{n} \cos (k t)$. Prove that for all $t \in(0, \pi]$ we have

$$
A_{n}(t)=\frac{\sin ((2 n+1) t / 2}{2 \sin (t / 2)}
$$

Hint: Recall that $\Re\left(\mathrm{e}^{\mathrm{i} k t}\right)=\cos (k t)$.
3. Find two real numbers a and b such that for all $n \geqslant 1$,

$$
\int_{0}^{\pi}\left(a t^{2}+b t\right) \cos (n t) \mathrm{d} t=\frac{1}{n^{2}}
$$

and then see that

$$
\int_{0}^{\pi}\left(a t^{2}+b t\right) A_{n}(t)=\sum_{k=1}^{n} \frac{1}{k^{2}}-\frac{\pi^{2}}{6} .
$$

4. Using Question 1., prove that $\sum_{k=1}^{n} \frac{1}{k^{2}} \xrightarrow[n \rightarrow \infty]{ } \frac{\pi^{2}}{6}$.

Exercise 4. Bonus exercise. Let $\left(a_{n}\right)$ be a sequence of positive real numbers such that $\sum_{n \geqslant 1} a_{n}$ converges.

1. Prove that

$$
\sum_{n \geqslant 1} \frac{a_{1}+2 a_{2}+\cdots+n a_{n}}{n(n+1)} \text { converges and that } \sum_{n \geqslant 1} \frac{a_{1}+2 a_{2}+\cdots+n a_{n}}{n(n+1)}=\sum_{n \geqslant 1} a_{n} .
$$

2. Show that

$$
\frac{1}{(n!)^{1 / n}} \leqslant \frac{\mathrm{e}}{n+1}
$$

3. Prove that

$$
\sum_{n=1}^{\infty}\left(a_{1} \ldots a_{n}\right)^{1 / n} \leqslant \mathrm{e} \sum_{n=1}^{\infty} a_{n}
$$

Niels Henrik Abel (1802-1829)

팦물

Tage Gillis Torsten Carleman (1892-1949) 들

