Homework 2 Math 16310-Section 50

Due: Tuesday April 21st

Exercise 1. Let $\left(u_{n}\right)$ and $\left(v_{n}\right)$ be the two sequences defined by for $n \geqslant 1$,

$$
u_{n}=\sum_{k=0}^{n} \frac{1}{k!}, \quad v_{n}=u_{n}+\frac{1}{n \times n!} .
$$

1. Show that $\left(u_{n}\right)$ is increasing, $\left(v_{n}\right)$ is decreasing and that $\left|u_{n}-v_{n}\right| \xrightarrow[n \rightarrow \infty]{ } 0$.
2. Prove that $\left(u_{n}\right)$ and $\left(v_{n}\right)$ both converge to the same limit. We denote e their common limit.
3. Prove that for all $n \in \mathbb{N}, n!u_{n}<n!e<n!u_{n}+\frac{1}{n}$.
4. Prove that e is an irrational number.

Exercise 2. Add. Ex. 14 from Script 15. A Cauchy sequence (of rational numbers) is a sequence (a_{n}) with $a_{n} \in \mathbb{Q}$ such that, given an $\epsilon \in \mathbb{Q}$ with $\epsilon>0$, there is some $N \in \mathbb{N}$ such that for all $n, m \geq N$ we have $\left|a_{n}-a_{m}\right|<\epsilon$.

1. Prove that any sequence of rationals that converges in \mathbb{Q} is a Cauchy sequence.
2. Prove that any Cauchy sequences are bounded.
3. Prove that if $\left(x_{n}\right)$ and $\left(y_{n}\right)$ are Cauchy sequences then so are $\left(x_{n}+y_{n}\right)$ and $\left(x_{n} y_{n}\right)$.
4. Prove that the set of Cauchy sequences of rationals has additive and multiplicative identities, additive inverses, but many Cauchy sequences fail to have multiplicative inverses.
5. Define X to be the set of all Cauchy sequences of rational numbers. Then we define an equivalence relation on X by $\left(a_{n}\right) \sim\left(b_{n}\right)$ if $\lim _{n \longrightarrow \infty}\left|a_{n}-b_{n}\right|=0$. Prove that this is indeed an equivalence relation. We let \mathcal{R} denote the set of equivalences classes of Cauchy sequences of rationals and define addition and multiplication in \mathcal{R} by

$$
\begin{aligned}
{\left[\left(a_{n}\right)\right]+\left[\left(b_{n}\right)\right] } & =\left[\left(a_{n}+b_{n}\right)\right] \\
{\left[\left(a_{n}\right)\right]\left[\left(b_{n}\right)\right] } & =\left[\left(a_{n} b_{n}\right)\right] .
\end{aligned}
$$

Note that we can view \mathbb{Q} as a subset of \mathcal{R} by identifying a rational number q with the equivalence class of the constant sequence, $[(q, q, q, \ldots .)$.$] .$
6. Prove that \mathcal{R} forms a field that satisfies Axioms 1-3. Note: The field axioms should all be very routine, except for FA8.
7. We say that an equivalence class $\left[\left(a_{n}\right)\right]$ is positive and write $\left[\left(a_{n}\right)\right]>0$, if there is some $N \in \mathbb{N}$ and $\epsilon \in \mathbb{Q}, \epsilon>0$, such that $a_{n}>\epsilon$ for all $n \geq N$. We say that $\left[\left(a_{n}\right)\right]>\left[\left(b_{n}\right)\right]$ if $\left[\left(a_{n}-b_{n}\right)\right]>0$. Prove that $<$ is well-defined and that \mathcal{R} is an ordered field with this ordering.
8. Does every nonempty bounded subset of \mathcal{R} have a supremum?

Hint : Let X be a bounded subset of \mathcal{R}. Consider

$$
Y=\{q \in \mathbb{Q} \mid(q, q, q, \cdots)] \text { is not an upper bounded of } X\} \text {. }
$$

Construct a suitable sequence $\left(q_{n}\right)$ of points in Y. Lemma 6.10 should be helpful.
9. Does \mathcal{R} satisfy Axiom 4?
10. Does \mathcal{R} satisfy Axiom 5 ?
11. What can you say about \mathcal{R} ?

Exercise 3. Bonus exercise. Let f be the function defined in \mathbb{R} by $f(x)=x-x^{2}$ and $\left(u_{n}\right)$ be the sequence defined by $u_{0} \in(0,1)$ and $u_{n+1}=f\left(u_{n}\right)$.

1. Study the function f.
2. Show that for all $n \geqslant 0,0<u_{n}<\frac{1}{n+1}$.
3. Prove that the sequence $\left(v_{n}\right)$ defined by $v_{n}=n u_{n}$ for $n \geqslant 0$ is increasing.
4. Prove that $\left(v_{n}\right)$ converges to some limit $\ell \in(0,1]$ (we do not ask to find ℓ yet).
5. Define $w_{n}=n\left(v_{n+1}-v_{n}\right)$. Show that $\left(w_{n}\right)$ converges to $\ell(1-\ell)$.
6. Let $\left(t_{n}\right)$ be another sequence such that there exists $n_{0} \geqslant 1$ such that for all $n \geqslant n_{0}$ we have

$$
t_{n+1}-t_{n} \geqslant \frac{a}{n}
$$

for some $a>0$. Show that $t_{2 n}-t_{n} \geqslant \frac{a}{2}$ and that $\left(t_{n}\right)$ diverges.
7. Show that if $\ell \neq 1$, the sequence $\left(v_{n}\right)$ follows the same inequality that $\left(t_{n}\right)$ in the previous question. Find the value of ℓ.

Jean-Baptiste Joseph Fourier (1768-1830)
-

Hugues Charles Robert Méray
(1835-1911)
\|

