Homework 2 Math 16310-Section 50

Due: Tuesday April 21st

Exercise 1. Let (u_n) and (v_n) be the two sequences defined by for $n \ge 1$,

$$u_n = \sum_{k=0}^n \frac{1}{k!}, \quad v_n = u_n + \frac{1}{n \times n!}.$$

- **1.** Show that (u_n) is increasing, (v_n) is decreasing and that $|u_n v_n| \xrightarrow[n \to \infty]{} 0$.
- 2. Prove that (u_n) and (v_n) both converge to the same limit. We denote e their common limit.
- **3.** Prove that for all $n \in \mathbb{N}$, $n!u_n < n!e < n!u_n + \frac{1}{n}$.
- 4. Prove that e is an irrational number.

Exercise 2. Add. Ex. 14 from Script 15. A Cauchy sequence (of rational numbers) is a sequence (a_n) with $a_n \in \mathbb{Q}$ such that, given an $\epsilon \in \mathbb{Q}$ with $\epsilon > 0$, there is some $N \in \mathbb{N}$ such that for all $n, m \ge N$ we have $|a_n - a_m| < \epsilon$.

- 1. Prove that any sequence of rationals that converges in \mathbb{Q} is a Cauchy sequence.
- 2. Prove that any Cauchy sequences are bounded.
- **3.** Prove that if (x_n) and (y_n) are Cauchy sequences then so are $(x_n + y_n)$ and $(x_n y_n)$.
- 4. Prove that the set of Cauchy sequences of rationals has additive and multiplicative identities, additive inverses, but many Cauchy sequences fail to have multiplicative inverses.
- 5. Define X to be the set of all Cauchy sequences of rational numbers. Then we define an equivalence relation on X by $(a_n) \sim (b_n)$ if $\lim_{n \to \infty} |a_n b_n| = 0$. Prove that this is indeed an equivalence relation. We let \mathcal{R} denote the set of equivalences classes of Cauchy sequences of rationals and define addition and multiplication in \mathcal{R} by

$$[(a_n)] + [(b_n)] = [(a_n + b_n)]$$

$$[(a_n)][(b_n)] = [(a_n b_n)].$$

Note that we can view \mathbb{Q} as a subset of \mathcal{R} by identifying a rational number q with the equivalence class of the constant sequence, [(q, q, q,)].

- 6. Prove that \mathcal{R} forms a field that satisfies Axioms 1-3. Note: The field axioms should all be very routine, except for FA8.
- 7. We say that an equivalence class $[(a_n)]$ is *positive* and write $[(a_n)] > 0$, if there is some $N \in \mathbb{N}$ and $\epsilon \in \mathbb{Q}, \epsilon > 0$, such that $a_n > \epsilon$ for all $n \ge N$. We say that $[(a_n)] > [(b_n)]$ if $[(a_n b_n)] > 0$. Prove that < is well-defined and that \mathcal{R} is an ordered field with this ordering.
- 8. Does every nonempty bounded subset of \mathcal{R} have a supremum? Hint : Let X be a bounded subset of \mathcal{R} . Consider

 $Y = \{q \in \mathbb{Q} \mid (q, q, q, \cdots)\} \text{ is not an upper bounded of } X\}.$

Construct a suitable sequence (q_n) of points in Y. Lemma 6.10 should be helpful.

- **9.** Does \mathcal{R} satisfy Axiom 4?
- 10. Does \mathcal{R} satisfy Axiom 5?
- **11.** What can you say about \mathcal{R} ?

Exercise 3. Bonus exercise. Let f be the function defined in \mathbb{R} by $f(x) = x - x^2$ and (u_n) be the sequence defined by $u_0 \in (0, 1)$ and $u_{n+1} = f(u_n)$.

- **1.** Study the function f.
- **2.** Show that for all $n \ge 0$, $0 < u_n < \frac{1}{n+1}$.
- **3.** Prove that the sequence (v_n) defined by $v_n = nu_n$ for $n \ge 0$ is increasing.
- **4.** Prove that (v_n) converges to some limit $\ell \in (0, 1]$ (we do not ask to find ℓ yet).
- **5.** Define $w_n = n(v_{n+1} v_n)$. Show that (w_n) converges to $\ell(1 \ell)$.
- **6.** Let (t_n) be another sequence such that there exists $n_0 \ge 1$ such that for all $n \ge n_0$ we have

$$t_{n+1} - t_n \geqslant \frac{a}{n}$$

for some a > 0. Show that $t_{2n} - t_n \ge \frac{a}{2}$ and that (t_n) diverges.

7. Show that if $\ell \neq 1$, the sequence (v_n) follows the same inequality that (t_n) in the previous question. Find the value of ℓ .

Jean-Baptiste Joseph Fourier (1768–1830)

Hugues Charles Robert Méray (1835–1911)