Homework 1 Math 16310-Section 50

Due: Tuesday April 14th

Exercise 1. Let $f:[a, b] \rightarrow \mathbb{R}$ be $C^{2}([a, b])$. We define $I:=\int_{a}^{b} f(t) \mathrm{d} t$ and $I_{\text {med }}:=(b-a) f\left(\frac{a+b}{2}\right)$. Denote $M_{2}:=\max \left\{\left|f^{\prime \prime}(x)\right| \mid x \in[a, b]\right\}$.

1. Let $\Delta(x):=\int_{c-x}^{c+x} f(t) \mathrm{d} t-2 x f(c)$ where $c=\frac{a+b}{2}$. Show that for all $x \in\left[0, \frac{b-a}{2}\right],\left|\Delta^{\prime \prime}(x)\right| \leqslant 2 x M_{2}$.
2. Prove that $\left|I-I_{\text {med }}\right| \leqslant M_{2} \frac{(b-a)^{3}}{24}$.
3. For all $n \geqslant 1$, denote $I_{\text {med }, n}=\frac{b-a}{n} \sum_{k=0}^{n-1} f\left(\frac{x_{k}+x_{k+1}}{2}\right)$ with $x_{k}=a+k \frac{b-a}{n}$. Show that

$$
\left|\int_{a}^{b} f(t) \mathrm{d} t-I_{\operatorname{med}, n}\right| \leqslant \frac{(b-a)^{3}}{24 n^{2}} M_{2}
$$

Note that the convergence is faster than in Exercise 7 of last homework since $\frac{1}{n^{2}}$ goes faster to zero than $\frac{1}{n}$.
Exercise 2. Show that the following sequences converge or not. If so, give the limit.

$$
\text { 1. } u_{n}=\left(2 \sin \left(\frac{1}{n}\right)+\frac{3}{4} \cos (n)\right)^{n} . \quad \text { 2. } \quad v_{n}=\cos \left(\left(n+\frac{1}{n}\right) \pi\right) \text {. }
$$

3. $w_{n}=\sin \left((3+\sqrt{5})^{n} \pi\right)$. Hint: one can first show that $(3+\sqrt{5})^{n}+(3-\sqrt{5})^{n}$ is an even integer.

Exercise 3. Let $\left(u_{n}\right)_{n \geqslant 1}$ be a sequence of real numbers. We denote $S_{n}=\frac{u_{1}+\cdots+u_{n}}{n}$.

1. Show that if $\left(u_{n}\right)$ converges to 0 then $\left(S_{n}\right)$ converges to 0 .
2. Show that if $\left(u_{n}\right)$ converges to $\ell \in \mathbb{R} \cup\{+\infty,-\infty\}$ then $\left(S_{n}\right)$ converges to ℓ.
3. Is the converse true?

Exercise 4. For $n \in \mathbb{N} \cup\{0\}$ we define $W_{n}=\int_{0}^{\frac{\pi}{2}} \sin ^{n}(x) \mathrm{d} x$.

1. Show that for all $n \in \mathbb{N} \cup\{0\}, W_{n}=\int_{0}^{\frac{\pi}{2}} \cos ^{n}(x) \mathrm{d} x$.
2. Show that $\left(W_{n}\right)$ is decreasing.
3. Show that for all $n \in \mathbb{N} \cup\{0\}$ we have $(n+2) W_{n+2}=(n+1) W_{n}$. and
4. Show that for all $p \in \mathbb{N} \cup\{0\}$,

$$
W_{2 p}=\frac{(2 p)!\pi}{2^{2 p+1}(p!)^{2}} \quad \text { and } \quad W_{2 p+1}=\frac{2^{2 p}(p!)^{2}}{(2 p+1)!}
$$

5. Show that $(n+1) W_{n+1} W_{n}=\frac{\pi}{2}$. and that $\frac{W_{n+1}}{W_{n}} \xrightarrow[n \rightarrow \infty]{ } 1$.
6. Show that $\sqrt{\frac{2 n}{\pi}} W_{n} \xrightarrow[n \rightarrow \infty]{ } 1$ we also write $W_{n} \sim_{+\infty} \sqrt{\frac{\pi}{2 n}}$.

Exercise 5. Bonus exercise. Let $\left(u_{n}\right)_{n \geqslant 0}$ and $\left(v_{n}\right)_{n \geqslant 0}$ be two sequences converging respectively to u and v. Show that $\left(\frac{1}{n+1} \sum_{k=0}^{n} u_{k} v_{n-k}\right)$ converges to $u v$.

Ernesto Cesàro (1859-1906)

John Wallis (1616-1703) 보중

