Homework 1 Math 16110-Section 50

Due: Tuesday October 8th

Exercise 1. Don't worry, the proof is false. We are going to show by induction that every MATH-16110 student will have the same GPA. We define the following proposition

 $P(n) = \{n \text{ students will have the same GPA} \}.$

- Firstly, P(1) is true since we have only one student.
- Suppose now that P(n) is true and consider n + 1 students written s_1, \ldots, s_{n+1} . By the induction hypothesis: s_2, \ldots, s_{n+1} will have the same GPA s_1, \ldots, s_n will have the same GPA.

In particular, s_1 and s_{n+1} will have the same GPA. We can then conclude that s_1, \ldots, s_{n+1} will have the same GPA or, in other words, P(n+1) is true.

1. Explain what is wrong in this proof.

Exercise 2. A harder induction. Consider the partial harmonic sum

$$H_n = \sum_{k=1}^n \frac{1}{k}.$$

1. Show that for $n \in \mathbb{N}$ we can write

 $H_n = \frac{p_n}{q_n}$ with p_n an odd integer and q_n an even integer.

Exercise 3. On set equations. Let $A, B \subset E$. Solve the two following equations of unknown $X \subset E$ **1.** $A \cup X = B$.

2. $A \cap X = B$.

Exercise 4. On the powerset. Let E be a finite set, we denote $\mathcal{P}(E)$ the set of subsets of E,

$$\mathcal{P}(E) = \{A, A \subset E\}$$

- **1.** Write out the elements of $\mathcal{P}(\{a, b\})$ and $\mathcal{P}(\{a, b, c\})$.
- **2.** Show by induction that for E a set with n elements, the number of elements of $\mathcal{P}(E)$ is 2^n .
- **3.** Give the number of elements of $\mathcal{P}(\mathcal{P}(\{a, b, c\}))$.
- 4. We are interested in the number of subsets \mathcal{T} of $\mathcal{P}(\{a, b, c\})$ with the following properties:
 - (i) $\emptyset \in \mathcal{T}$ and $\{a, b, c\} \in \mathcal{T}$
 - (*ii*) For all $A, B \in \mathcal{T}, A \cap B \in \mathcal{T}$.
 - (*iii*) For all $A, B \in \mathcal{T}, A \cup B \in \mathcal{T}$.

Give the total number of distinct subsets \mathcal{T} of $\mathcal{P}(\{a, b, c\})$ verifying the three properties above.

Exercise 5. On the Zermelo-Fraenkel definition of \mathbb{N} . We want to give a set theoretic definition of the natural numbers \mathbb{N} . As seen in Script 0, we need to give a "special element" 1 and a "successor function" $S : \mathbb{N} \to \mathbb{N}$,

$$1 = \emptyset \in \mathbb{N}, \quad S(n) = n \cup \{n\} \text{ for } n \in \mathbb{N}.$$

- 1. Write 2 = S(1), 3 = S(S(1)) and 4 = S(S(S(1))).
- 2. We suppose that Peano axioms I, II, III and V hold. The goal of this question is to show Axiom IV.

a. Show that if $n \in \mathbb{N}$ and $m \in n$ then $m \subseteq n$.

- **b.** Show that if $n \in \mathbb{N}$ and $m \in n$ then $n \not\subseteq m$.
- c. Show Axiom IV.

Ernst Zermel

Abraham Fraenkel