Homework 1 Math 16110-Section 50

Due: Tuesday October 8th

Exercise 1. Don't worry, the proof is false. We are going to show by induction that every MATH-16110 student will have the same GPA. We define the following proposition

$$
P(n)=\{n \text { students will have the same GPA }\}
$$

- Firstly, $P(1)$ is true since we have only one student.
- Suppose now that $P(n)$ is true and consider $n+1$ students written s_{1}, \ldots, s_{n+1}.

By the induction hypothesis: s_{2}, \ldots, s_{n+1} will have the same GPA

$$
s_{1}, \ldots, s_{n} \text { will have the same GPA. }
$$

In particular, s_{1} and s_{n+1} will have the same GPA. We can then conclude that s_{1}, \ldots, s_{n+1} will have the same GPA or, in other words, $P(n+1)$ is true.

1. Explain what is wrong in this proof.

Exercise 2. A harder induction. Consider the partial harmonic sum

$$
H_{n}=\sum_{k=1}^{n} \frac{1}{k} .
$$

1. Show that for $n \in \mathbb{N}$ we can write

$$
H_{n}=\frac{p_{n}}{q_{n}} \quad \text { with } p_{n} \text { an odd integer and } q_{n} \text { an even integer. }
$$

Exercise 3. On set equations. Let $A, B \subset E$. Solve the two following equations of unknown $X \subset E$

1. $A \cup X=B$.
2. $A \cap X=B$.

Exercise 4. On the powerset. Let E be a finite set, we denote $\mathcal{P}(E)$ the set of subsets of E ,

$$
\mathcal{P}(E)=\{A, A \subset E\}
$$

1. Write out the elements of $\mathcal{P}(\{a, b\})$ and $\mathcal{P}(\{a, b, c\})$.
2. Show by induction that for E a set with n elements, the number of elements of $\mathcal{P}(E)$ is 2^{n}.
3. Give the number of elements of $\mathcal{P}(\mathcal{P}(\{a, b, c\}))$.
4. We are interested in the number of subsets \mathcal{T} of $\mathcal{P}(\{a, b, c\})$ with the following properties:
(i) $\emptyset \in \mathcal{T}$ and $\{a, b, c\} \in \mathcal{T}$
(ii) For all $A, B \in \mathcal{T}, A \cap B \in \mathcal{T}$.
(iii) For all $A, B \in \mathcal{T}, A \cup B \in \mathcal{T}$.

Give the total number of distinct subsets \mathcal{T} of $\mathcal{P}(\{a, b, c\})$ verifying the three properties above.
Exercise 5. On the Zermelo-Fraenkel definition of \mathbb{N}. We want to give a set theoretic definition of the natural numbers \mathbb{N}. As seen in Script 0, we need to give a "special element" 1 and a "successor function" $S: \mathbb{N} \rightarrow \mathbb{N}$,

$$
1=\emptyset \in \mathbb{N}, \quad S(n)=n \cup\{n\} \quad \text { for } n \in \mathbb{N} .
$$

1. Write $2=S(1), 3=S(S(1))$ and $4=S(S(S(1)))$.
2. We suppose that Peano axioms I, II, III and V hold. The goal of this question is to show Axiom IV.
a. Show that if $n \in \mathbb{N}$ and $m \in n$ then $m \subseteq n$.
b. Show that if $n \in \mathbb{N}$ and $m \in n$ then $n \nsubseteq m$.
c. Show Axiom IV.

