Homework 8 Math 16110-Section 50

Due: Tuesday November 26th

Exercise 1. Let A and B be two nonempty bounded subsets of \mathbb{R} and $x \in \mathbb{R}$. We denote

$$\begin{aligned} -A &= \{ -a \mid a \in A \}, \quad A + B = \{ a + b \mid a \in A, \ b \in B \}, \\ x + A &= \{ x + a \mid a \in A \}, \quad \text{and} \quad AB &= \{ ab \mid a \in A, \ b \in B \} \end{aligned}$$

- 1. Show that $\sup(-A) = -\inf(A)$.
- 2. Show that $\sup(A + B) = \sup(A) + \sup(B)$.
- **3.** Show that $\sup(x + A) = x + \sup(A)$.
- 4. Do we have $\sup(AB) = \sup(A) \sup(B)$? What assumptions can we add for this equality to be true?

Exercise 2. 1. Show that for all real numbers $x_i, x_j > 0$ we have

$$\frac{x_i}{x_j} + \frac{x_j}{x_i} = \frac{x_i^2 + x_j^2}{x_i x_j} \ge 2.$$

2. Let $n \in \mathbb{N}$. Find

$$\inf\left\{ (x_1 + \dots + x_n) \left(\frac{1}{x_1} + \dots + \frac{1}{x_n} \right) \mid x_1, \dots, x_n > 0 \right\}$$

Exercise 3. On the Heine-Borel property. An open cover of a set X is a collection of open sets whose union contains X as a subset. In other words,

$$C = \{U_{\alpha} \mid \alpha \in A\}$$
 is an open cover of $X \iff X \subseteq \bigcup_{\alpha \in A} U_{\alpha}$ and U_{α} 's are open sets.

We call a cover a finite cover is there is a finite number of open sets U_{α} .

In \mathbb{R} , we call a set S compact if we can extract a finite subcover from any open cover of S: If there exists $C = \{U_{\alpha} \mid \alpha \in A\}$ such that $S \subseteq \bigcup_{\alpha \in A} U_{\alpha}$ with U_{α} open sets then there exist $n \in \mathbb{N}$ and $\alpha_1, \ldots, \alpha_n \in A$ such that $S \subseteq \bigcup_{i=1}^n U_{\alpha_i}$.

The goal of the exercise is to prove that a segment $[a, b] = \{a\} \cup \underline{ab} \cup \{b\} \subset \mathbb{R}$ is compact.

1. Let [a, b] be a segment and $C = \{U_{\alpha} \mid \alpha \in A\}$ be an open cover of [a, b].

Show that $m = \sup \{x \in [a, b] \mid [a, x] \text{ is covered by a finite number of open sets } U_j\}$ exists.

- **2.** Show that there exists $i \in A$ such that $m \in U_i$.
- **3.** Finish by proving that $m \ge b$.

Exercise 4. Countable partition of [0, 1]. The goal of the exercise is to prove that [0, 1] is not the countable disjoint union of nonempty closed sets. Suppose that we can and denote

$$[0,1] = \bigcup_{n \ge 0} F_n$$
 where F_n are nonempty pairwise disjoint closed sets

For Question 2. of this exercise, you need to remember Exercise 1. from Homework 6. and see that every open set of [0, 1] can be written as a union of disjoint regions (even countable union). Each of these open intervals is called a *connected component* of the open set.

- **1.** Prove that if we can construct a sequence of regions (I_n) of [0,1] such that
 - (i) $I_n \subset \overline{I_n} \subset I_{n-1}$,
 - (*ii*) $I_n \cap F_n = \emptyset$

we obtain a contradiction.

- **2.** We can suppose without loss of generality that 0 and 1 are in F_0 .
 - **a.** Prove that $[0,1] \setminus F_0$ is a nonempty open set and define I_0 to be one of its connected component.
 - **b.** Define k_1 to be the smallest $k \in \mathbb{N}$ such that $I_0 \cap F_k \neq \emptyset$. Prove that $I_0 \setminus F_{k_1}$ is a nonempty open set and prove that we can construct a region $I_1 \subset I_0 \setminus F_{k_1}$ such that $\overline{I_1} \subset I_0$.
 - **c.** Finish the construction of the sequence $(I_n)_{n \ge 0}$ by induction and obtain the result.

Eduard Heine (1821–1881)

Fun fact: É. Borel is my academic great-great-great-grandfather:

É. Borel \rightarrow G. Valiron \rightarrow L. Schwartz \rightarrow A. S. Üstünel \rightarrow P. Bourgade \rightarrow L. Benigni