Homework 8 Math 16110-Section 50

Due: Tuesday November 26th

Exercise 1. Let A and B be two nonempty bounded subsets of \mathbb{R} and $x \in \mathbb{R}$. We denote

$$
\begin{aligned}
-A & =\{-a \mid a \in A\}, \quad A+B=\{a+b \mid a \in A, b \in B\}, \\
x+A & =\{x+a \mid a \in A\}, \quad \text { and } \quad A B=\{a b \mid a \in A, b \in B\}
\end{aligned}
$$

1. Show that $\sup (-A)=-\inf (A)$.
2. Show that $\sup (A+B)=\sup (A)+\sup (B)$.
3. Show that $\sup (x+A)=x+\sup (A)$.
4. Do we have $\sup (A B)=\sup (A) \sup (B)$? What assumptions can we add for this equality to be true?

Exercise 2. 1. Show that for all real numbers $x_{i}, x_{j}>0$ we have

$$
\frac{x_{i}}{x_{j}}+\frac{x_{j}}{x_{i}}=\frac{x_{i}^{2}+x_{j}^{2}}{x_{i} x_{j}} \geqslant 2 .
$$

2. Let $n \in \mathbb{N}$. Find

$$
\inf \left\{\left.\left(x_{1}+\cdots+x_{n}\right)\left(\frac{1}{x_{1}}+\cdots+\frac{1}{x_{n}}\right) \right\rvert\, x_{1}, \ldots, x_{n}>0\right\}
$$

Exercise 3. On the Heine-Borel property. An open cover of a set X is a collection of open sets whose union contains X as a subset. In other words,

$$
C=\left\{U_{\alpha} \mid \alpha \in A\right\} \text { is an open cover of } X \Longleftrightarrow X \subseteq \bigcup_{\alpha \in A} U_{\alpha} \text { and } U_{\alpha} \text { 's are open sets. }
$$

We call a cover a finite cover is there is a finite number of open sets U_{α}.
In \mathbb{R}, we call a set S compact if we can extract a finite subcover from any open cover of S : If there exists $C=\left\{U_{\alpha} \mid \alpha \in A\right\}$ such that $S \subseteq \bigcup_{\alpha \in A} U_{\alpha}$ with U_{α} open sets then there exist $n \in \mathbb{N}$ and $\alpha_{1}, \ldots, \alpha_{n} \in A$ such that $S \subseteq \bigcup_{i=1}^{n} U_{\alpha_{i}}$.

The goal of the exercise is to prove that a segment $[a, b]=\{a\} \cup \underline{a b} \cup\{b\} \subset \mathbb{R}$ is compact.

1. Let $[a, b]$ be a segment and $C=\left\{U_{\alpha} \mid \alpha \in A\right\}$ be an open cover of $[a, b]$.

Show that $m=\sup \left\{x \in[a, b] \mid[a, x]\right.$ is covered by a finite number of open sets $\left.U_{j}\right\}$ exists.
2. Show that there exists $i \in A$ such that $m \in U_{i}$.
3. Finish by proving that $m \geqslant b$.

Exercise 4. Countable partition of $[0,1]$. The goal of the exercise is to prove that $[0,1]$ is not the countable disjoint union of nonempty closed sets. Suppose that we can and denote

$$
[0,1]=\bigcup_{n \geqslant 0} F_{n} \text { where } F_{n} \text { are nonempty pairwise disjoint closed sets. }
$$

For Question 2. of this exercise, you need to remember Exercise 1. from Homework 6. and see that every open set of $[0,1]$ can be written as a union of disjoint regions (even countable union). Each of these open intervals is called a connected component of the open set.

1. Prove that if we can construct a sequence of regions $\left(I_{n}\right)$ of $[0,1]$ such that
(i) $I_{n} \subset \overline{I_{n}} \subset I_{n-1}$,
(ii) $I_{n} \cap F_{n}=\emptyset$
we obtain a contradiction.
2. We can suppose without loss of generality that 0 and 1 are in F_{0}.
a. Prove that $[0,1] \backslash F_{0}$ is a nonempty open set and define I_{0} to be one of its connected component.
b. Define k_{1} to be the smallest $k \in \mathbb{N}$ such that $I_{0} \cap F_{k} \neq \emptyset$. Prove that $I_{0} \backslash F_{k_{1}}$ is a nonempty open set and prove that we can construct a region $I_{1} \subset I_{0} \backslash F_{k_{1}}$ such that $\overline{I_{1}} \subset I_{0}$.
c. Finish the construction of the sequence $\left(I_{n}\right)_{n \geqslant 0}$ by induction and obtain the result.

Eduard Heine (1821-1881)

Émile Borel (1871-1956)

Fun fact: É. Borel is my academic great-great-great-grandfather:
É. Borel \rightarrow G. Valiron \rightarrow L. Schwartz \rightarrow A. S. Üstünel \rightarrow P. Bourgade \rightarrow L. Benigni

