Homework 7 Math 16110-Section 50

Due: Tuesday November 19th

Exercise 1. On Fréchet's definition of continuity. Let C_1 and C_2 be two continua and $f : C_1 \to C_2$. We say that f is continuous if, and only if,

For all open sets $V \subset \mathcal{C}_2$, $f^{-1}(V) \subset \mathcal{C}_1$ is open.

- **1.** Prove that f is continuous if, and only if, for all closed sets $F \subset \mathcal{C}_2$, $f^{-1}(F) \subset \mathcal{C}_1$ is closed.
- **2.** Prove that f is continuous if, and only if, for all regions $R \subset C_1$, $f^{-1}(R) \subset C_1$ is open.
- **3.** Prove that f is continuous if, and only if, for all $a \in C_2$ the sets $\{x \in C_1 \mid f(x) < a\}$ and $\{x \in C_1 \mid f(x) > a\}$ are open.
- **4.** Prove that f is continuous if, and only if, for all $A \subset C_1$, $f(\overline{A}) \subset \overline{f(A)}$.
- **5.** Prove that f is continuous if, and only if, for all $B \subset \mathcal{C}_2$, $\overline{f^{-1}(B)} \subset f^{-1}(\overline{B})$.
- **6.** Prove that f is continuous if, and only if, for all $C \in C_2$, $\operatorname{Fr}(f^{-1}(C)) \subset f^{-1}(\operatorname{Fr}(C))$.

7. Find examples where the last three inclusions are strict.

Exercise 2. On Cauchy's definition of continuity. We recall the definition of the absolute value of $x \in \mathbb{R}$,

$$|x| = \begin{cases} x & \text{if } x \ge 0, \\ -x & \text{if } x < 0. \end{cases}$$

1. Prove that for a region $R = \underline{ab} \subset \mathbb{R}$ we have

$$R = \{x \in \mathbb{R} \mid a < x < b\} = \left\{x \in \mathbb{R} : \left|x - \frac{a+b}{2}\right| < \frac{b-a}{2}\right\}.$$

2. Prove that $f : \mathbb{R} \to \mathbb{R}$ is continuous if, and only if, for all $a \in \mathbb{R}$,

for every $\varepsilon > 0$, there exists $\delta > 0$ such that for all $x \in \mathbb{R}$, $|x - a| < \delta \Rightarrow |f(x) - f(a)| < \varepsilon$.

Exercise 3. On coverings of segments. For a region $R = \underline{ab} \subset \mathbb{R}$, we denote $\mu(R) = b - a$ its length. We suppose that for every real number x we give a region R_x such that $\mu(R_x) \leq c$ for some fixed c > 0 (independent of x). We also denote $[a, b] = \underline{ab} \cup \{a\} \cup \{b\}$. We suppose that we can find a finite number m of real numbers y_i such that

 $[a,b] \subset \bigcup_{i=1}^{m} R_{y_i}$ (this will probably be proved in a future homework).

Prove that we can find a finite number of real numbers x_1, \ldots, x_n such that

$$[a,b] \subset \bigcup_{i=1}^{n} R_{x_i}$$
 and $\sum_{i=1}^{n} \mu(R_{x_i}) \leq 2(b-a) + c.$

Augustin Louis Cauchy (1789–1857)

S.

René Maurice Fréchet (1878–1973)

Fun fact: R. M. Fréchet is my academic great-great-great-great-great-grandfather: R. M. Fréchet \rightarrow R. Fortet \rightarrow J. Neveu \rightarrow P. Priouret \rightarrow M. Yor \rightarrow P. Bourgade \rightarrow L. Benigni