Homework 6 Math 16110-Section 50

Due: Tuesday November 12th

Exercise 1. Let U be an open set of a continuum C. We define a relation on the elements of U by

$$
x \mathcal{R} y \Longleftrightarrow \begin{cases}x y & \text { if } x \leqslant y \\ \underline{y x} \subset U & \text { if } x>y\end{cases}
$$

1. Show that \mathcal{R} is an equivalence relation. We denote $[x]$ the equivalence class of x.
2. Show that if $a, b \in[x]$ with $a<b$ then we have for every $y \in C, y \in \underline{a b} \Rightarrow y \in[x]$.
3. Show that $[x]$ is open.
4. Show that U can be written as the union of disjoint open sets following the property from Question 2.

Exercise 2. Let $A \subset C$ with C a continuum. We say that $x \in A$ is an interior point of A if there is a region R such that $x \in R \subset A$. We let $\AA=\{a \in A \mid a$ is an interior point of $A\}$.

1. Let $A=\underline{a b}$, for $a, b \in C$ and $a<b$. Find \AA.
2. Show that A is open if, and only if, $A=\AA$.
3. Show that \AA is open.
4. Let A, B two subsets of C.
a. Show that if $A \subset B$ then $\AA \subset B^{\circ}$ and $\bar{A} \subset \bar{B}$.
b. Show that $(A \cap B)^{\circ}=\AA \cap \AA$ and that $\AA \cup \AA \subset(A \cup B)^{\circ}$. Is the other inclusion also true?
c. Compare $\overline{A \cap B}$ and $\bar{A} \cap \bar{B}$, then $\overline{A \cup B}$ and $\bar{A} \cup \bar{B}$.

Exercise 3. Let C be a continuum.

1. Show that if A, B are subsets of C such that $A \subset B$ then, if B is closed, $\bar{A} \subset B$.
2. Show that if A, B are subsets of C such that $A \subset B$ then, if A is open, $A \subset B^{\circ}$
3. Let $A \subset C$ and $\mathscr{F}_{A}=\{B \subset C \mid B$ is a closed set containing $A\}$. Show that $\bar{A}=\bigcap_{B \in \mathscr{F}_{A}} B$.
4. Formulate and prove a result analogous to the previous question for \AA.

Exercise 4. Let A be a subset of a continuum C. We define the frontier of A as $\operatorname{Fr}(A)=\bar{A} \backslash \AA=\bar{A} \cap \overline{E \backslash A}$.

1. Show that $\operatorname{Fr}(A)=\operatorname{Fr}(C \backslash A)$.
2. Show that A is closed if, and only if, $\operatorname{Fr}(A) \subset A$.
3. Show that A is open if, and only if, $\operatorname{Fr}(A) \cap A=\emptyset$.
4. Show that if A is closed then $\operatorname{Fr}(\operatorname{Fr}(A))=\operatorname{Fr}(A)$.

Exercise 5. Find an example of a continuum C and a subset A such that $A, \bar{A}, \stackrel{\circ}{A}, \bar{A}, \stackrel{\circ}{A}$ are pairwise distinct.

Karl Weierstrass (1815-1897)

René-Louis Baire
(1874-1932)
K. Weierstrass introduced the notion of limit points while R.-L. Baire first gave the definition of an open set. Note that the actual term "open" was coined later by H.-L. Lebesgue.

