Homework 6 Math 16110-Section 50

Due: Tuesday November 12th

Exercise 1. Let U be an open set of a continuum C. We define a relation on the elements of U by

$$x\mathcal{R}y \iff \left\{\begin{array}{ll} \underline{xy} \subset U & \text{if } x \leqslant y \\ \underline{yx} \subset U & \text{if } x > y \end{array}\right.$$

- **1.** Show that \mathcal{R} is an equivalence relation. We denote [x] the equivalence class of x.
- **2.** Show that if $a, b \in [x]$ with a < b then we have for every $y \in C$, $y \in \underline{ab} \Rightarrow y \in [x]$.
- **3.** Show that [x] is open.

4. Show that U can be written as the union of disjoint open sets following the property from Question 2. Exercise 2. Let $A \subset C$ with C a continuum. We say that $x \in A$ is an *interior* point of A if there is a region R such that $x \in R \subset A$. We let $\mathring{A} = \{a \in A \mid a \text{ is an interior point of } A\}$.

- **1.** Let $A = \underline{ab}$, for $a, b \in C$ and a < b. Find \mathring{A} .
- **2.** Show that A is open if, and only if, $A = \mathring{A}$.
- **3.** Show that \mathring{A} is open.
- **4.** Let A, B two subsets of C.
 - **a.** Show that if $A \subset B$ then $\mathring{A} \subset \mathring{B}$ and $\overline{A} \subset \overline{B}$.
 - **b.** Show that $(A \cap B)^{\circ} = \mathring{A} \cap \mathring{B}$ and that $\mathring{A} \cup \mathring{B} \subset (A \cup B)^{\circ}$. Is the other inclusion also true?
 - **c.** Compare $\overline{A \cap B}$ and $\overline{A} \cap \overline{B}$, then $\overline{A \cup B}$ and $\overline{A} \cup \overline{B}$.

Exercise 3. Let C be a continuum.

- **1.** Show that if A, B are subsets of C such that $A \subset B$ then, if B is closed, $\overline{A} \subset B$.
- **2.** Show that if A, B are subsets of C such that $A \subset B$ then, if A is open, $A \subset \mathring{B}$
- **3.** Let $A \subset C$ and $\mathscr{F}_A = \{B \subset C \mid B \text{ is a closed set containing } A\}$. Show that $\overline{A} = \bigcap_{B \in \mathscr{F}_A} B$.

4. Formulate and prove a result analogous to the previous question for \mathring{A} .

Exercise 4. Let A be a subset of a continuum C. We define the frontier of A as $Fr(A) = \overline{A} \setminus A = \overline{A} \cap \overline{E \setminus A}$.

- **1.** Show that $Fr(A) = Fr(C \setminus A)$.
- **2.** Show that A is closed if, and only if, $Fr(A) \subset A$.
- **3.** Show that A is open if, and only if, $Fr(A) \cap A = \emptyset$.
- **4.** Show that if A is closed then Fr(Fr(A)) = Fr(A).

Exercise 5. Find an example of a continuum C and a subset A such that $A, \overline{A}, A, \overline{A}, \overline{A}, \overline{A}$ are pairwise distinct.

