Homework 4 Math 16110-Section 50

Due: Tuesday October 29th

The goal of this homework is to prove Zorn's lemma (or Kuratowski–Zorn's lemma) which actually has a lot of applications you will most likely see in further mathematical adventures. We first give a definition of an order, a total order and a well-ordered set. The definition of ordering we give here is slightly different than in the script as we consider reflexive ordering: we always have $x \leq x$.

Definition 1. An order is a binary relation \leq on some set X which follows the three following properties:

- (i) (Reflexivity) For every $x \in X, x \leq x$.
- (*ii*) (Antisymmetry) For every $x, y \in X$, if $x \leq y$ and $y \leq x$ then x = y.
- (*iii*) (Transitivity) For every $x, y, z \in X$, if $x \leq y$ and $y \leq z$ then $x \leq z$.

 (X, \leq) is called an *ordered set*. Besides, if for all $x, y \in X$, we have either $x \leq y$ or $y \leq x$ then we call (X, \leq) a *totally ordered set*. In other words, any couple of elements of X are comparable.

1. Consider $\mathcal{P}(\{0,1\}) = \{\emptyset, \{0,1\}, \{0\}, \{1\}\}$. Show that $(\mathcal{P}(\{0,1\}), \subset)$ is an ordered set but not a totally ordered set.

Definition 2. (X, \leq) is a *well-ordered set* if (X, \leq) is a totally ordered set and if every non-empty subset of X has a least element with respect to \leq .

For instance we saw in Script 0 that \mathbb{N} with the usual ordering is well-ordered (via the well-ordering principle).

2. We define the following relation $\leq_{\mathbb{Z}}$ on the integers, where \leq is the usual ordering,

 $x \leq_{\mathbb{Z}} y \iff (|x| < |y| \text{ or } (|x| = |y| \text{ and } x \leq y)).$

- **a.** Prove that $(\mathbb{Z}, \leq_{\mathbb{Z}})$ is a well-ordered set.
- **b.** Give the least element of $\{2n \mid n \in \mathbb{Z} \setminus \{0\}\}$.

As we saw in Definition 1, a set could be an *ordered set* but not a *totally ordered set*. However, a set always has subsets that are totally-ordered and we call them *chains*.

Definition 3. Let (X, \leq) be an ordered set. A *chain* is a totally ordered subset of (E, \leq) .

3. Let (X, \leq) be an ordered set. Prove that \emptyset and $\{x\}$ for $x \in X$ are chains of X.

We are now ready to state Zorn's lemma. The goal of the exercise is now to prove it.

Lemma 4 (Zorn's lemma). Let (X, \leq) be an ordered set whose every well-ordered chain has an upper bound then (X, \leq) has a maximal element: there exists $m \in X$ such that for all $x \in X$ ($m \leq x \Rightarrow m = x$).

Before starting the proof of the lemma, we give another definition.

Definition 5. Let (X, \leq) be an ordered set. An *initial segment* of (X, \leq) is a subset I of X such that if $x \in I$ then $\{y \in X \mid y < x\} \subset I$.

For instance $(-\infty, 2)$ is an initial segment of \mathbb{R} with the usual ordering and $\{1, 2, 3\}$ is an initial segment of \mathbb{N} with the usual ordering.

- **4.** Let (X, \leq) be an ordered set and I_1 and I_2 be two initial segments of (X, \leq) . Show that $I_1 \cap I_2$ and $I_1 \cup I_2$ are also initial segments of (X, \leq) .
- **5.** Let (C, \leq) be a well-ordered set. Prove that for every initial segment I of (C, \leq) such that $I \neq C$, there exists a unique $x \in C$ such that $I = \{y \in C \mid y < x\}$.

- 6. Let (X, \leq) be an ordered set and \mathscr{C} a set of well-ordered chains of (X, \leq) with the following property For all chains $C, D \in \mathscr{C}$, either C is an initial segment of D or D is an initial segment of C. (0.1)
 - **a.** Show that every element of $\mathscr C$ is an initial segment of $\bigcup_{C \in \mathscr C} C$.
 - **b.** Show that $\bigcup_{C \in \mathscr{C}} C$ is a well-ordered chain of (X, \leq) .

For a set X we consider a function $f : \mathcal{P}(X) \to X$ such that for every $A \in \mathcal{P}(X)$ we have $f(A) \in A$. In other words, this is a function f which "chooses" an element out of every subset of X^1 .

- 7. From the function f, construct a function g defined on every well-ordered chain of (X, \leq) which has a strict upper bound, and such that g(C) is a strict upper bound of C (a strict upper bound of C is an upper bound m of C such that $m \notin C$).
- 8. Given this function g, we define a g-chain as a well-ordered chain C of (X, \leq) such that:

For all
$$x \in C$$
, $x = g(\{y \in C \mid y < x\})$.

- **a.** Prove that if C is a g-chain which has a strict upper bound then $C \cup \{g(C)\}$ is also a g-chain.
- b. Show that if C and D are two g-chains then one is an initial segment of the other.
 Hint: One could consider C to be the set of all the well-ordered chains that are initial segments of both C and D and study ⋃_{E∈C} E
- **9.** We are now ready to prove Zorn's lemma. We suppose the hypothesis of the lemma true in this question. We will combine most of the previous questions to obtain the result.
 - **a.** Using Question 8., show that the sets of g-chains follows the property (0.1).
 - **b.** Using Question 6., show that the reunion of all the *g*-chains of (X, \leq) is also a *g*-chain.
 - c. Prove Zorn's lemma.

Max August Zorn (1906–1993)

Kazimierz Kuratowski (1896–1980)

 $^{^{1}}$ The existence of such a function actually cannot be proved in all generality, this is called the *axiom of choice*