Homework 3 Math 16110-Section 50

Due: Tuesday October 22th

Exercise 1. Let E and F be two sets and $f: E \to F$. Show that the two following propositions are equivalent

(i) For all subsets A and B of E,

$$f(A \cap B) = \emptyset \Longrightarrow f(A) \cap f(B) = \emptyset.$$

(ii) f is injective.

Exercise 2. Let $f : E \to F$. Show that f is bijective if and only if, for all $A \subset E$ we have $f(E \setminus A) = F \setminus f(A)$. **Exercise 3.** We define a relation \mathcal{R} on \mathbb{R}^2 by

$$(x, y)\mathcal{R}(x', y') \iff$$
 There exist $a, b > 0$ such that $x' = ax$ and $y' = by$.

1. Show that \mathcal{R} is a relation.

- **2.** Give the equivalence classes of A = (1, 0), B = (0, -1), C = (1, 1).
- **3.** Give all the equivalence classes of the relation \mathcal{R} .

Exercise 4. Let *E* be a set and $A \subset E$. We recall the definition of the symmetric difference Δ , for $B, C \subset E$,

$$B\Delta C = (B \setminus C) \cup (C \setminus B).$$

We define a relation \mathcal{R} on $\mathcal{P}(E)$ by

$$B\mathcal{R}C \Longleftrightarrow B\Delta C \subset A.$$

1. Show that \mathcal{R} is a relation.

2. Let $B \subset E$. Show that the equivalence class of B is

$$[B] = \{ (B \cap (E \setminus A)) \cup K; K \subset A \}$$

Exercise 5. Let *E* be a non-empty set and $\mathcal{A} \subset \mathcal{P}(E)$ such that

For all $X, Y \in \mathcal{A}$, there exists $Z \in \mathcal{A}, Z \subset (X \cap Y)$.

We define the relation \mathcal{R} on $\mathcal{P}(E)$ by

$$B\mathcal{R}C \iff$$
 There exists $X \in \mathcal{A}, X \cap B = X \cap C$.

- 1. Show that \mathcal{R} is a relation.
- **2.** Find the equivalence classes of \emptyset and E.

Gottlob Frege

Bertrand Russel