Homework 3 Math 16110-Section 50

Due: Tuesday October 22th

Exercise 1. Let E and F be two sets and $f: E \rightarrow F$. Show that the two following propositions are equivalent
(i) For all subsets A and B of E,

$$
f(A \cap B)=\emptyset \Longrightarrow f(A) \cap f(B)=\emptyset .
$$

(ii) f is injective.

Exercise 2. Let $f: E \rightarrow F$. Show that f is bijective if and only if, for all $A \subset E$ we have $f(E \backslash A)=F \backslash f(A)$.
Exercise 3. We define a relation \mathcal{R} on \mathbb{R}^{2} by

$$
(x, y) \mathcal{R}\left(x^{\prime}, y^{\prime}\right) \Longleftrightarrow \text { There exist } a, b>0 \text { such that } x^{\prime}=a x \text { and } y^{\prime}=b y
$$

1. Show that \mathcal{R} is a relation.
2. Give the equivalence classes of $A=(1,0), B=(0,-1), C=(1,1)$.
3. Give all the equivalence classes of the relation \mathcal{R}.

Exercise 4. Let E be a set and $A \subset E$. We recall the definition of the symmetric difference Δ, for $B, C \subset E$,

$$
B \Delta C=(B \backslash C) \cup(C \backslash B)
$$

We define a relation \mathcal{R} on $\mathcal{P}(E)$ by

$$
B \mathcal{R} C \Longleftrightarrow B \Delta C \subset A
$$

1. Show that \mathcal{R} is a relation.
2. Let $B \subset E$. Show that the equivalence class of B is

$$
[B]=\{(B \cap(E \backslash A)) \cup K ; K \subset A\}
$$

Exercise 5. Let E be a non-empty set and $\mathcal{A} \subset \mathcal{P}(E)$ such that

$$
\text { For all } X, Y \in \mathcal{A} \text {, there exists } Z \in \mathcal{A}, Z \subset(X \cap Y) \text {. }
$$

We define the relation \mathcal{R} on $\mathcal{P}(E)$ by

$$
B \mathcal{R} C \Longleftrightarrow \text { There exists } X \in \mathcal{A}, X \cap B=X \cap C
$$

1. Show that \mathcal{R} is a relation.
2. Find the equivalence classes of \emptyset and E.

Gottlob Frege

Bertrand Russel

