Georg Cantor

Homework 2

 Math 16110-Section 50Due: Tuesday October 15th

Exercise 1. On Cantor's theorem. Let A be any set. We recall the definition of the powerset

$$
\mathcal{P}(A)=\{B, B \subset A\} .
$$

1. Show that there is no bijection between A and $\mathcal{P}(A)$.

Hint: For a function $f: A \rightarrow \mathcal{P}(A)$, consider the set $\{a \in A, a \notin f(a)\}$.
2. Show that there is no injective function from $\mathcal{P}(\mathbb{N})$ to \mathbb{N}.

Exercise 2. Beware of countability. Let $n \in \mathbb{N}$

1. Show that $\{0,1\}^{2}$ is finite countable, that $\{0,1\}^{n}$ is finite countable but that $\{0,1\}^{\mathbb{N}}$ is uncountable.

Exercise 3. Constructing some bijections.

1. Construct a bijection from \mathbb{N} to \mathbb{Z}.
2. Construct a bijection from $\{1 / n, n \geqslant 1\}$ to $\{1 / n, n \geqslant 2\}$.
3. By using the previous question, construct a bijection from $[0,1]$ to $[0,1)$. Hint: You can write $[0,1]=\{1 / n, n \geqslant 1\} \cup A$ for some set A.

Exercise 4. Function on the powerset. Let E be a set, we denote $\mathcal{P}(E)$ the set of his subsets as in Exercise 1. Consider A and B two subsets of E. We define

$$
\begin{array}{cccc}
f: & \mathcal{P}(E) & \rightarrow & \mathcal{P}(A) \times \mathcal{P}(B) \\
X & \mapsto & (X \cap A, X \cap B) .
\end{array}
$$

1. Show that f is an injection if and only if $A \cup B=E$.
2. Show that f is a surjection if and only if $A \cap B=\emptyset$.
3. Find a condition both necessary and sufficient on A and B for f to be a bijection. In this case, give the function inverse of f.

Exercise 5. On the Cantor-Bernstein theorem. Let E and F be two sets. The goal of this exercise is to show that if there exists an injection $f: E \rightarrow F$ and an injection $g: F \rightarrow E$ than there exists a bijection from E to F. We define the following family of sets

$$
\begin{gathered}
A_{0}=E \backslash g(F), A_{1}=(g \circ f)\left(A_{0}\right), \ldots, A_{n+1}=(g \circ f)\left(A_{n}\right), \\
B=\bigcup_{n \geqslant 0} A_{n}, \quad \text { and } \quad C=E \backslash B .
\end{gathered}
$$

1. Constructing the application
a. Show that for all $x \in C$ there exists a unique $z \in F$ such that $x=g(z)$. We will denote this element $\phi(x)$.
b. For $x \in B$, we denote $\phi(x)=f(x)$. Show that $\phi: E \rightarrow F$ is well defined.
2. ϕ is an injection.
a. Show that the restrictions of ϕ to B and to C are injections.
b. Consider $x \in C$ and $y \in B$ such that $\phi(x)=\phi(y)$. Show that $x=(g \circ f)(y)$.
c. Deduce that ϕ is an injection.

Hint: Show that by the definition of A_{n} 's, $\phi(x)=\phi(y)$ is impossible for $x \in C$ and $y \in B$.
3. Show that ϕ is surjective.

Hint: For $z \in F$, split the problem in two cases, if $g(z) \in C$ or if $g(z) \in B$.
4. Example: For $E=\mathbb{N}, F=\{2,3, \ldots\}, f: E \rightarrow F, n \mapsto n+4, g: F \rightarrow E, n \mapsto n$, give the sets A_{n}, B, C, and the application ϕ.

