

Homework 2 Math 16110-Section 50

Due: Tuesday October 15th

Felix Bernstein

Exercise 1. On Cantor's theorem. Let A be any set. We recall the definition of the powerset

$$\mathcal{P}(A) = \{B, B \subset A\}.$$

- **1.** Show that there is no bijection between A and $\mathcal{P}(A)$. Hint: For a function $f : A \to \mathcal{P}(A)$, consider the set $\{a \in A, a \notin f(a)\}$.
- 2. Show that there is no injective function from $\mathcal{P}(\mathbb{N})$ to $\mathbb{N}.$

Exercise 2. Beware of countability. Let $n \in \mathbb{N}$

1. Show that $\{0,1\}^2$ is finite countable, that $\{0,1\}^n$ is finite countable but that $\{0,1\}^{\mathbb{N}}$ is uncountable.

Exercise 3. Constructing some bijections.

- **1.** Construct a bijection from \mathbb{N} to \mathbb{Z} .
- **2.** Construct a bijection from $\{1/n, n \ge 1\}$ to $\{1/n, n \ge 2\}$.
- **3.** By using the previous question, construct a bijection from [0, 1] to [0, 1). *Hint: You can write* $[0, 1] = \{1/n, n \ge 1\} \cup A$ for some set A.

Exercise 4. Function on the powerset. Let E be a set, we denote $\mathcal{P}(E)$ the set of his subsets as in Exercise 1. Consider A and B two subsets of E. We define

$$\begin{array}{rccc} f \colon & \mathcal{P}(E) & \to & \mathcal{P}(A) \times \mathcal{P}(B) \\ & X & \mapsto & (X \cap A, \ X \cap B). \end{array}$$

- **1.** Show that f is an injection if and only if $A \cup B = E$.
- **2.** Show that f is a surjection if and only if $A \cap B = \emptyset$.
- **3.** Find a condition both necessary and sufficient on A and B for f to be a bijection. In this case, give the function inverse of f.

Exercise 5. On the Cantor-Bernstein theorem. Let E and F be two sets. The goal of this exercise is to show that if there exists an injection $f: E \to F$ and an injection $g: F \to E$ than there exists a bijection from E to F. We define the following family of sets

$$A_0 = E \setminus g(F), A_1 = (g \circ f)(A_0), \dots, A_{n+1} = (g \circ f)(A_n),$$
$$B = \bigcup_{n \ge 0} A_n, \quad \text{and} \quad C = E \setminus B.$$

- 1. Constructing the application
 - **a.** Show that for all $x \in C$ there exists a unique $z \in F$ such that x = g(z). We will denote this element $\phi(x)$.
 - **b.** For $x \in B$, we denote $\phi(x) = f(x)$. Show that $\phi: E \to F$ is well defined.
- **2.** ϕ is an injection.
 - **a.** Show that the restrictions of ϕ to B and to C are injections.
 - **b.** Consider $x \in C$ and $y \in B$ such that $\phi(x) = \phi(y)$. Show that $x = (g \circ f)(y)$.
 - **c.** Deduce that ϕ is an injection.

Hint: Show that by the definition of A_n 's, $\phi(x) = \phi(y)$ is impossible for $x \in C$ and $y \in B$.

- **3.** Show that ϕ is surjective.
 - *Hint:* For $z \in F$, split the problem in two cases, if $g(z) \in C$ or if $g(z) \in B$.
- **4.** Example: For $E = \mathbb{N}$, $F = \{2, 3, ...\}$, $f: E \to F$, $n \mapsto n + 4$, $g: F \to E$, $n \mapsto n$, give the sets A_n , B, C, and the application ϕ .