Homework 8 Math 20400-Section 51

Due: Monday March 2nd

Exercise 1. Prove that the map $\phi : (U, v) \to (u + v, uv)$ is a C^1 -diffeomorphism from $U = \{(u, v) \in \mathbb{R}^2 \mid u > v\}$ to some open set you should determine.

Exercise 2. Let $a, b \in \mathbb{R}$ such that |ab| < 1.

1. Let $v \in \mathbb{R}$. We define $g : \mathbb{R} \to \mathbb{R}$ by $g(x) = x + a \sin(v - b \sin(x))$. Show that g is a bijection from \mathbb{R} to \mathbb{R} .

2. Denote $f(x,y) = (x + a\sin(y), y + b\sin(x))$. Show that f is a C¹-diffeomorphism from \mathbb{R}^2 to \mathbb{R}^2 .

Exercise 3. Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be C^1 such that there exists k > 0 such that for all $(x, y) \in \mathbb{R}^n \times \mathbb{R}^n$,

$$||f(x) - f(y)|| \ge k||x - y||.$$

- **1.** Prove that $f(\mathbb{R}^n)$ is a closed set of \mathbb{R}^n .
- **2.** Prove that df_x is invertible at every point of $x \in \mathbb{R}^n$.
- **3.** Prove that f is a C^1 -diffeomorphism from \mathbb{R}^n to \mathbb{R}^n .

Exercise 4. Define the following map

$$\Phi: \left\{ \begin{array}{ccc} \mathbb{R} \times \mathbb{R} & \longrightarrow & \mathbb{R}^2 \\ (r, \theta) & \longmapsto & (r\cos\theta, r\sin\theta). \end{array} \right.$$

- **1.** Is Φ a diffeomorphism?
- **2.** Compute the derivative $d\Phi_{(r,\theta)}$ for all r and θ and show that it is invertible if $r \neq 0$.
- **3.** Denote $\Omega = \mathbb{R}_+ \setminus \{0\} \times (-\pi, \pi) \subset \mathbb{R}^2$. Show that $\Phi_{|\Omega} : \Omega \to \Phi(\Omega)$ is a C^{∞} -diffeomorphism.
- **Exercise 5.** 1. Show that the relation $x + y + z + \sin(xyz) = 0$ defines z as a function of x and y around the point (0,0,0). Compute $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ at (0,0).
 - **2.** Show that the relations x + y zt = 0, xy z + t = 0 define two implicit functions $x = \varphi_1(z, t)$ and $y = \varphi_2(z, t)$ around (0, 1) with $\varphi_1(0, 1) = 1$. Compute the derivative of φ_1 and φ_2 at this point.

Exercise 6. Let P_0 be a real polynomial of degree d and α_0 be a simple root of P_0 .

- **1.** By considering the map $f : \mathbb{R}_d[X] \times \mathbb{R} \to \mathbb{R}$ defined by $f(P, \alpha) = P(\alpha)$, show that there exists a neighborhood $U \times V$ of (P_0, α_0) such that every polynomial $P \in U$ has a unique root $\alpha \in V$, that this root is simple and that the map $P \mapsto \alpha$ is C^1 .
- **2.** Show that if P_0 has k simple roots, there exists a neighborhood U of P_0 and $k C^1$ functions $\phi_1, \ldots, \phi_k : U \to \mathbb{R}$ such that for all $P \in U, \phi_1(P), \ldots, \phi_k(P)$ are distinct and are simple roots of P.
- **3.** What happens if α_0 is not a simple root?

Augustin-Louis Cauchy (1789–1857)

Ulisse Dini (1845–1918)