Homework 8 Math 20400-Section 51

Due: Monday March 2nd

Exercise 1. Prove that the map $\phi:(U, v) \rightarrow(u+v, u v)$ is a C^{1}-diffeomorphism from $U=\left\{(u, v) \in \mathbb{R}^{2} \mid u>v\right\}$ to some open set you should determine.

Exercise 2. Let $a, b \in \mathbb{R}$ such that $|a b|<1$.

1. Let $v \in \mathbb{R}$. We define $g: \mathbb{R} \rightarrow \mathbb{R}$ by $g(x)=x+a \sin (v-b \sin (x))$. Show that g is a bijection from \mathbb{R} to \mathbb{R}.
2. Denote $f(x, y)=(x+a \sin (y), y+b \sin (x))$. Show that f is a C^{1}-diffeomorphism from \mathbb{R}^{2} to \mathbb{R}^{2}.

Exercise 3. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be C^{1} such that there exists $k>0$ such that for all $(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{n}$,

$$
\|f(x)-f(y)\| \geqslant k\|x-y\|
$$

1. Prove that $f\left(\mathbb{R}^{n}\right)$ is a closed set of \mathbb{R}^{n}.
2. Prove that $d f_{x}$ is invertible at every point of $x \in \mathbb{R}^{n}$.
3. Prove that f is a C^{1}-diffeomorphism from \mathbb{R}^{n} to \mathbb{R}^{n}.

Exercise 4. Define the following map

$$
\Phi:\left\{\begin{array}{rll}
\mathbb{R} \times \mathbb{R} & \longrightarrow & \mathbb{R}^{2} \\
(r, \theta) & \longmapsto & (r \cos \theta, r \sin \theta) .
\end{array}\right.
$$

1. Is Φ a diffeomorphism?
2. Compute the derivative $d \Phi_{(r, \theta)}$ for all r and θ and show that it is invertible if $r \neq 0$.
3. Denote $\Omega=\mathbb{R}_{+} \backslash\{0\} \times(-\pi, \pi) \subset \mathbb{R}^{2}$. Show that $\Phi_{\mid \Omega}: \Omega \rightarrow \Phi(\Omega)$ is a C^{∞}-diffeomorphism.

Exercise 5. 1. Show that the relation $x+y+z+\sin (x y z)=0$ defines z as a function of x and y around the point $(0,0,0)$. Compute $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ at $(0,0)$.
2. Show that the relations $x+y-z t=0, x y-z+t=0$ define two implicit functions $x=\varphi_{1}(z, t)$ and $y=\varphi_{2}(z, t)$ around $(0,1)$ with $\varphi_{1}(0,1)=1$. Compute the derivative of φ_{1} and φ_{2} at this point.
Exercise 6. Let P_{0} be a real polynomial of degree d and α_{0} be a simple root of P_{0}.

1. By considering the map $f: \mathbb{R}_{d}[X] \times \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(P, \alpha)=P(\alpha)$, show that there exists a neighborhood $U \times V$ of $\left(P_{0}, \alpha_{0}\right)$ such that every polynomial $P \in U$ has a unique root $\alpha \in V$, that this root is simple and that the map $P \mapsto \alpha$ is C^{1}.
2. Show that if P_{0} has k simple roots, there exists a neighborhood U of P_{0} and $k C^{1}$ functions $\phi_{1}, \ldots, \phi_{k}$: $U \rightarrow \mathbb{R}$ such that for all $P \in U, \phi_{1}(P), \ldots, \phi_{k}(P)$ are distinct and are simple roots of P.
3. What happens if α_{0} is not a simple root?

Augustin-Louis Cauchy (1789-1857)

Ulisse Dini
(1845-1918)

