
Homework 6
Math 20400-Section 51

Due: Monday February 17th

Exercise 1. Find the local and global extrema of the following functions

1. f(x, y) = 2x3 + 6xy − 3y2 + 2. 2.f(x, y) = y(x2 + (log y)2)
3. f(x, y) = x4 + y4 − 4xy. 4. f(x, y) = x2 + y3

5. f(x, y) = x4 + y3 − 3y − 2.

Exercise 2. We recall that a function f : Rn → R is called convex if for all x, y ∈ Rn we have

f(tx+ (1− t)y) 6 tf(x) + (1− t)f(y) ∀t ∈ [0, 1].

Prove that if f is a convex function differentiable on Rn then any critical point of f is a global minimum.

Exercise 3. Let f : Rn → R. We say that f is coercive if for all A ∈ R+ there exists a B ∈ R+ such that if
‖x‖ > B then f(x) > A. Show that if f is a continuous and coercive function from Rn to R then f admits a
global minimum.

Exercise 4. Let f : R→ R be C2 in a neighborhood of 0 and such that f(0) = 0 and f ′(0) 6= 0. We define the
function F : R2 → R by F (x, y) = f(x)f(y).

1. Show that F does not admit a local extremum at (0, 0), what type of point is (0, 0) for the function F?

2. Find the local extrema of the function

f(x, y) = sin(2πx) sin(2πy).

Exercise 5. Let (xi, yi)n
i=1 be a family of points in R2. The least squares regression line is the line of equation

y = mx+ p which minimizes the quantity

F (m, p) =
n∑

k=1
(yk −mxk − p)2.

In this exercise, we denote x̄ = 1
n

∑n
k=1 xk and ȳ = 1

n

∑n
k=1 yk.

1. Show that if (m, p) is a point where F admits this minimum then (m, p) is a solution to the equations
n∑

k=1
(yk −mxk − p) = 0 and

n∑
k=1

xk(yk −mxk − p) = 0.

2. By solving this system, prove that if (m, p) is a point where F admits its minimum and
∑n

k=1(xk−x̄)2 6= 0
then (m, p) is unique and

m =
∑n

k=1(xk − x̄)(yk − ȳ)∑n
k=1(xk − x̄)2 and p = ȳ −mx̄.

One can also show that this minimum actually exists by using Exercise 4. for instance but this is not
asked in this assignment.
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