Homework 6 Math 20400-Section 51

Due: Monday February 17th

Exercise 1. Find the local and global extrema of the following functions

$$
\begin{array}{cl}
\text { 1. } f(x, y)=2 x^{3}+6 x y-3 y^{2}+2 . & \text { 2. } f(x, y)=y\left(x^{2}+(\log y)^{2}\right) \\
\text { 3. } f(x, y)=x^{4}+y^{4}-4 x y . & \text { 4. } f(x, y)=x^{2}+y^{3} \\
\text { 5. } f(x, y)=x^{4}+y^{3}-3 y-2 .
\end{array}
$$

Exercise 2. We recall that a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is called convex if for all $x, y \in \mathbb{R}^{n}$ we have

$$
f(t x+(1-t) y) \leqslant t f(x)+(1-t) f(y) \quad \forall t \in[0,1]
$$

Prove that if f is a convex function differentiable on \mathbb{R}^{n} then any critical point of f is a global minimum.
Exercise 3. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$. We say that f is coercive if for all $A \in \mathbb{R}_{+}$there exists a $B \in \mathbb{R}_{+}$such that if $\|x\| \geqslant B$ then $f(x) \geqslant A$. Show that if f is a continuous and coercive function from \mathbb{R}^{n} to \mathbb{R} then f admits a global minimum.

Exercise 4. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be C^{2} in a neighborhood of 0 and such that $f(0)=0$ and $f^{\prime}(0) \neq 0$. We define the function $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by $F(x, y)=f(x) f(y)$.

1. Show that F does not admit a local extremum at $(0,0)$, what type of point is $(0,0)$ for the function F ?
2. Find the local extrema of the function

$$
f(x, y)=\sin (2 \pi x) \sin (2 \pi y)
$$

Exercise 5. Let $\left(x_{i}, y_{i}\right)_{i=1}^{n}$ be a family of points in \mathbb{R}^{2}. The least squares regression line is the line of equation $y=m x+p$ which minimizes the quantity

$$
F(m, p)=\sum_{k=1}^{n}\left(y_{k}-m x_{k}-p\right)^{2}
$$

In this exercise, we denote $\bar{x}=\frac{1}{n} \sum_{k=1}^{n} x_{k}$ and $\bar{y}=\frac{1}{n} \sum_{k=1}^{n} y_{k}$.

1. Show that if (m, p) is a point where F admits this minimum then (m, p) is a solution to the equations

$$
\sum_{k=1}^{n}\left(y_{k}-m x_{k}-p\right)=0 \quad \text { and } \quad \sum_{k=1}^{n} x_{k}\left(y_{k}-m x_{k}-p\right)=0 .
$$

2. By solving this system, prove that if (m, p) is a point where F admits its minimum and $\sum_{k=1}^{n}\left(x_{k}-\bar{x}\right)^{2} \neq 0$ then (m, p) is unique and

$$
m=\frac{\sum_{k=1}^{n}\left(x_{k}-\bar{x}\right)\left(y_{k}-\bar{y}\right)}{\sum_{k=1}^{n}\left(x_{k}-\bar{x}\right)^{2}} \quad \text { and } \quad p=\bar{y}-m \bar{x} .
$$

One can also show that this minimum actually exists by using Exercise 4. for instance but this is not asked in this assignment.

Ludwig Otto Hesse (1811-1874)

