Homework 5 Math 20400-Section 51

Due: Monday February 10th

Exercise 1. 1. Use a (well-chosen) quadratic approximation to compute, up to a small error,

$$
\mathrm{e}^{\sin (3.16) \cos (0.02)}
$$

2. Use an affine approximation to compute, up to a small error,

$$
\arctan \left(\sqrt{4.03}-2 \mathrm{e}^{0.01}\right)
$$

Exercise 2. Find the equation of the tangent plane for each of the surfaces below at the given point $\left(x_{0}, y_{0}, z_{0}\right)$.

1. $\mathscr{S}_{1}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid z=\sqrt{19-x^{2}-y^{2}}\right\}$ at $\left(x_{0}, y_{0}, z_{0}\right)=(1,3,3)$.
2. $\mathscr{S}_{2}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid z=\sin (\pi x y) \mathrm{e}^{2 x^{2} y-1}\right\}$ at $\left(x_{0}, y_{0}, z_{0}\right)=\left(1, \frac{1}{2}, 1\right)$.

Exercise 3. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by $f(x, y)=x^{2}-2 y^{3}$.

1. Find the equation of the tangent plane $\mathscr{P}_{M_{0}}$ to the surface $\mathscr{S}\left\{(x, y, z) \in \mathbb{R}^{3} \mid z=f(x, y)\right\}$ at any regular point $M_{0} \in \mathscr{S}$.
2. For the point $M_{0}=(2,1,2) \in \mathscr{S}$, find all points $M \in \mathscr{S}$ such that the tangent plane at M is parallel to $\mathscr{P}_{M_{0}}$.

Exercise 4. We consider the following surface in \mathbb{R}^{3} :

$$
\mathscr{S}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid 2 x^{2}-3 x y+y+2 z^{2}=1\right\}
$$

1. Prove that \mathscr{S} is a smooth hypersurface.
2. Describe geometrically the set of points $M \in \mathscr{S}$ such that the tangent plane at M contains the point $(0,0,0)$.

Exercise 5. We consider the following surface \mathscr{S} and line \mathscr{L}

$$
\mathscr{S}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}-z^{2}=1\right\} \quad \text { and } \quad \mathscr{L}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x=1 \text { and } y=z+2\right\}
$$

1. Show that \mathscr{S} is a smooth hypersurface.
2. Find all tangent plane(s) of \mathscr{S} which contains the line \mathscr{L}.

Brook Taylor (1685-1731)

Pierre de Fermat
(160X-1665)

