Homework 5 Math 20400-Section 51

Due: Monday February 10th

Exercise 1. 1. Use a (well-chosen) quadratic approximation to compute, up to a small error,

 $e^{\sin(3.16)\cos(0.02)}$.

2. Use an affine approximation to compute, up to a small error,

$$\arctan\left(\sqrt{4.03} - 2e^{0.01}\right)$$

Exercise 2. Find the equation of the tangent plane for each of the surfaces below at the given point (x_0, y_0, z_0) .

1.
$$\mathscr{S}_1 = \{(x, y, z) \in \mathbb{R}^3 \mid z = \sqrt{19 - x^2 - y^2}\}$$
 at $(x_0, y_0, z_0) = (1, 3, 3)$.
2. $\mathscr{S}_2 = \{(x, y, z) \in \mathbb{R}^3 \mid z = \sin(\pi x y) e^{2x^2 y - 1}\}$ at $(x_0, y_0, z_0) = (1, \frac{1}{2}, 1)$.

Exercise 3. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be defined by $f(x, y) = x^2 - 2y^3$.

- **1.** Find the equation of the tangent plane \mathscr{P}_{M_0} to the surface $\mathscr{S}\{(x, y, z) \in \mathbb{R}^3 \mid z = f(x, y)\}$ at any regular point $M_0 \in \mathscr{S}$.
- **2.** For the point $M_0 = (2, 1, 2) \in \mathscr{S}$, find all points $M \in \mathscr{S}$ such that the tangent plane at M is parallel to \mathscr{P}_{M_0} .

Exercise 4. We consider the following surface in \mathbb{R}^3 :

$$\mathscr{S} = \{ (x, y, z) \in \mathbb{R}^3 \mid 2x^2 - 3xy + y + 2z^2 = 1 \}$$

- **1.** Prove that \mathscr{S} is a smooth hypersurface.
- **2.** Describe geometrically the set of points $M \in \mathscr{S}$ such that the tangent plane at M contains the point (0,0,0).

Exercise 5. We consider the following surface \mathscr{S} and line \mathscr{L}

$$\mathscr{S} = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 - z^2 = 1\} \text{ and } \mathscr{L} = \{(x, y, z) \in \mathbb{R}^3 \mid x = 1 \text{ and } y = z + 2\}$$

- 1. Show that \mathscr{S} is a smooth hypersurface.
- **2.** Find all tangent plane(s) of \mathscr{S} which contains the line \mathscr{L} .

Brook Taylor (1685–1731)

Pierre de Fermat(160X-1665)