# Homework 4 Math 20400-Section 51 

Due: Monday February 3rd

Exercise 1. Counter-example to Schwarz's theorem. We define the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by

$$
f(x, y)= \begin{cases}x y \frac{x^{2}-y^{2}}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { otherwise }\end{cases}
$$

We saw in the last homework that the function $f$ was $C^{1}(\mathbb{R})$. Prove that $f$ is not $C^{2}$.
Exercise 2. The converse of Schwarz's theorem is not true. We define the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by

$$
f(x, y)= \begin{cases}\frac{x^{2} y^{2}}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { otherwise }\end{cases}
$$

1. Prove that $\partial_{12} f(0,0)=\partial_{21} f(0,0)=0$.
2. Show that the function $f$ does not follow the assumptions from Schwarz's theorem at $(0,0)$.

Exercise 3. Compute the Taylor polynomial of degree 3 for the following functions at the specified point in an arbitrary direction $h \in \mathbb{S}^{2}$,

1. $f(x, y, z)=\frac{1}{x y z}$ at $(1,1,1)$
2. $f(x, y, z)=\mathrm{e}^{x y+y z}$ at $(0,0,0)$.

Exercise 4. A follow-up on homogeneous functions. We suppose that $f$ is a homogeneous function of degree $r$ as in the last homework (and we can use the results from the last homework):

$$
\forall(x, y) \in \mathbb{R}^{2}, \quad \forall t>0, \quad f(t x, t y)=t^{r} f(x, y)
$$

Prove that if $f$ is $C^{2}\left(\mathbb{R}^{2}\right)$ then for all $(x, y) \in \mathbb{R}^{2}$,

$$
x^{2} \partial_{1}^{2} f(x, y)+2 x y \partial_{12} f(x, y)+y^{2} \partial_{2}^{2} f(x, y)=r(r-1) f(x, y)
$$

Exercise 5. On harmonic functions. A function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is called harmonic if we have for all $(x, y) \in \mathbb{R}^{2}$,

$$
\partial_{1}^{2} f(x, y)+\partial_{2}^{2} f(x, y)=0
$$

Let $f$ be an harmonic function.

1. We suppose that $f$ is $C^{3}\left(\mathbb{R}^{2}\right)$. Show that $\partial_{1} f, \partial_{2} f$ and $(x, y) \mapsto x \partial_{1} f(x, y)+y \partial_{2} f(x, y)$ are harmonic functions.
2. We suppose that $f$ is a radial function: there exists $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ a $C^{2}$ function such that $f(x, y)=\varphi\left(x^{2}+y^{2}\right)$ for all $(x, y) \in \mathbb{R}^{2}$. Show that for $t>0$ we have

$$
\varphi^{\prime}(t)+t \varphi^{\prime \prime}(t)=0
$$

3. We admit that the only solutions to the differential equation $x y^{\prime}(x)+y(x)=0$ are functions of the form $y(x)=\frac{A}{x}$. Find all radial harmonic functions.


Hermann Amandus Schwarz (1843-1921)


Alexis Claude Clairaut (1713-1765)

