Homework 3 Math 20400-Section 51

Due: Monday January 27th

Exercise 1. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be \mathcal{C}^{1}. Compute the derivative of the following functions

1. $g(x, y)=f(y, x)$
2. $g(x)=f(x, x)$
3. $g(x, y)=f(y, f(x, x))$
4. $g(x)=f(x, f(x, x))$.

Exercise 2. Show that the following function admits a directional derivative in any direction at $(0,0)$ but is not continuous at $(0,0)$.

$$
g(x, y)= \begin{cases}\frac{x^{2} y}{x^{4}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { otherwise }\end{cases}
$$

Exercise 3. After justifying that the following functions are differentiable, compute their Jacobian matrix

1. $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ with $f(x, y, z)=\left(\frac{1}{2}\left(x^{2}-z^{2}\right), \sin (x) \sin (y)\right)$.
2. $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ with $f(x, y)=\left(x y, \frac{1}{2} x^{2}+y, \log \left(1+x^{2}\right)\right.$. $)$

Exercise 4. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be given by

$$
f(x, y)= \begin{cases}x y \frac{x^{2}-y^{2}}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { otherwise }\end{cases}
$$

1. Is f continuous on \mathbb{R}^{2} ?
2. Is $f \mathcal{C}^{1}$ on \mathbb{R}^{2} ?
3. Is f differentiable on \mathbb{R}^{2} ?

Exercise 5. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be an application \mathcal{C}^{1} on \mathbb{R}^{2} and $r \in \mathbb{R}$. We say that f is homogeneous of degree r if

$$
\forall(x, y) \in \mathbb{R}^{2}, \forall t>0, f(t x, t y)=t^{r} f(x, y)
$$

1. Give an example of an homogeneous function of degree 3.
2. Show that if f is homogeneous of degree r then its partial derivatives are homogeneous of degree $r-1$.
3. Show that if f is homogeneous of degree r then

$$
\forall(x, y) \in \mathbb{R}^{2}, x \partial_{1} f(x, y)+y \partial_{2} f(x, y)=r f(x, y)
$$

4. We want to show the other implication, we suppose that f follows the previous identity (called the Euler identity) and we want to show that f is homogeneous of degree r. Consider $\varphi(t)=f(t x, t y)$, by differentiating the function $t \mapsto t^{-r} \varphi(t)$, show that f is homogeneous of degree r.

Carl Gustav Jacob Jacobi
(1804-1851)

Leonhard Euler
(1707-1783)

