Homework 1 Math 20400-Section 51

Due: Monday January 13th

Exercise 1. Calculate the derivatives of these functions using the definition

- **1.** $f: x \mapsto x^n$ with $n \in \mathbb{N}$
- **2.** $f: x \mapsto \sin(x)$.
- **3.** $f: x \mapsto \tan(x)$. We recall the following:

$$\tan(x+y) = \frac{\tan(x) + \tan(y)}{1 - \tan(x)\tan(y)} \quad \text{and} \quad \lim_{h \to 0} \frac{\tan(h)}{h} = 1.$$

Exercise 2. On which subsets of \mathbb{R} these two functions are continous? differentiable?

$$f: x \mapsto \begin{cases} x \sin\left(\frac{1}{x}\right) & \text{if } x \neq 0, \\ 0 & \text{otherwise.} \end{cases} \qquad g: x \mapsto \begin{cases} x^2 \sin\left(\frac{1}{x}\right) & \text{if } x \neq 0, \\ 0 & \text{otherwise.} \end{cases}$$

Exercise 3. Prove that we have for all $x \in \mathbb{R}$,

$$\arctan(e^x) = \arctan\left(\operatorname{th}\left(\frac{x}{2}\right)\right) + \frac{\pi}{4}, \quad \text{we recall} \quad \operatorname{th}(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

Exercise 4. Find all differentiable function $f : \mathbb{R} \to \mathbb{R}$ such that

$$\forall (x,y) \in \mathbb{R}^2, \quad f(x+y) = f(x) + f(y).$$

Exercise 5. Let f be a function defined on an interval I and let $a \in Int(I)$. We define, if they exist, these limits:

$$f'_{r}(a) = \lim_{h \to 0^{+}} \frac{f(a+h) - f(a)}{h}, \quad f'_{\ell}(a) = \lim_{h \to 0^{-}} \frac{f(a+h) - f(a)}{h} \quad \text{and} \quad f'_{s}(a) = \lim_{h \to 0} \frac{f(a+h) - f(a-h)}{2h}$$

- 1. Show that if $f'_r(a)$ and $f'_\ell(a)$ exist then $f'_s(a)$ exists and compute it.
- **2.** If $f'_s(a)$ exists, does it mean that $f'_r(a)$ and $f'_\ell(a)$ exist?

Exercise 6. Let $n \in \mathbb{N}$ and $f: I \to \mathbb{R}$ be a function in $C^n(I)$ such that f vanishes at n+1 distinct points in I.

- 1. Show that the *n*-th derivative of f vanishes at, at least, one point in I.
- **2.** Let $\alpha \in \mathbb{R}$. Show that the (n-1)-th derivative of $f' + \alpha f$ vanishes at, at least, one point in *I*. *Hint: One can introduce an auxiliary function.*

Exercise 7. Show that

$$\forall x > 0, \quad \frac{1}{1+x} < \log(1+x) - \log(x) < \frac{1}{x}.$$

Find, for all $k \in \mathbb{N} \setminus \{0, 1\}$,

$$\lim_{n \to \infty} \sum_{p=n+1}^{kn} \frac{1}{p}.$$

 $\begin{array}{c} {\rm Michel \ Rolle} \\ (1652 \hbox{--} 1719) \end{array}$

Bernard Bolzano (1781–1848)