Homework 1 Math 20400-Section 51

Due: Monday January 13th

Exercise 1. Calculate the derivatives of these functions using the definition

1. $f: x \mapsto x^{n}$ with $n \in \mathbb{N}$
2. $f: x \mapsto \sin (x)$.
3. $f: x \mapsto \tan (x)$. We recall the following:

$$
\tan (x+y)=\frac{\tan (x)+\tan (y)}{1-\tan (x) \tan (y)} \quad \text { and } \quad \lim _{h \rightarrow 0} \frac{\tan (h)}{h}=1
$$

Exercise 2. On which subsets of \mathbb{R} these two functions are continous? differentiable?

$$
f: x \mapsto\left\{\begin{array}{ll}
x \sin \left(\frac{1}{x}\right) & \text { if } x \neq 0, \\
0 & \text { otherwise } .
\end{array} \quad g: x \mapsto \begin{cases}x^{2} \sin \left(\frac{1}{x}\right) & \text { if } x \neq 0 \\
0 & \text { otherwise }\end{cases}\right.
$$

Exercise 3. Prove that we have for all $x \in \mathbb{R}$,

$$
\arctan \left(\mathrm{e}^{x}\right)=\arctan \left(\operatorname{th}\left(\frac{x}{2}\right)\right)+\frac{\pi}{4}, \quad \text { we recall } \quad \operatorname{th}(x)=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}
$$

Exercise 4. Find all differentiable function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
\forall(x, y) \in \mathbb{R}^{2}, \quad f(x+y)=f(x)+f(y)
$$

Exercise 5. Let f be a function defined on an interval I and let $a \in \operatorname{Int}(I)$. We define, if they exist, these limits:

$$
f_{r}^{\prime}(a)=\lim _{h \rightarrow 0^{+}} \frac{f(a+h)-f(a)}{h}, \quad f_{\ell}^{\prime}(a)=\lim _{h \rightarrow 0^{-}} \frac{f(a+h)-f(a)}{h} \quad \text { and } \quad f_{s}^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a-h)}{2 h}
$$

1. Show that if $f_{r}^{\prime}(a)$ and $f_{\ell}^{\prime}(a)$ exist then $f_{s}^{\prime}(a)$ exists and compute it.
2. If $f_{s}^{\prime}(a)$ exists, does it mean that $f_{r}^{\prime}(a)$ and $f_{\ell}^{\prime}(a)$ exist?

Exercise 6. Let $n \in \mathbb{N}$ and $f: I \rightarrow \mathbb{R}$ be a function in $C^{n}(I)$ such that f vanishes at $n+1$ distinct points in I.

1. Show that the n-th derivative of f vanishes at, at least, one point in I.
2. Let $\alpha \in \mathbb{R}$. Show that the $(n-1)$-th derivative of $f^{\prime}+\alpha f$ vanishes at, at least, one point in I. Hint: One can introduce an auxiliary function.
Exercise 7. Show that

$$
\forall x>0, \quad \frac{1}{1+x}<\log (1+x)-\log (x)<\frac{1}{x}
$$

Find, for all $k \in \mathbb{N} \backslash\{0,1\}$,

$$
\lim _{n \rightarrow \infty} \sum_{p=n+1}^{k n} \frac{1}{p}
$$

Michel Rolle
(1652-1719)

Bernard Bolzano
(1781-1848)

