
HOMEWORK 5
MATH 18500-SECTION 41, 51

DUE: WEDNESDAY MAY 4TH

Exercise 1. Find the general solution of each of the following second order inhomogeneous equations:
a. y′′ + 3y′ + 2y = e2t

b. y′′ + 3y′ + 2y = e−2t

c. y′′ + 4y′ + 4y = e−2t

Exercise 2. Find a particular solution of the equation
y′′ + 3y′ + 2y = cos t+ 2 sin t

and write it in each of the following forms:
a. y = Re

[
Zeiωt

]
where ω > 0 and Z is a complex number.

b. y = a cos(ωt) + b sin(ωt) where ω > 0 and a and b are real numbers.
c. y = A cos(ωt− φ) where A > 0, ω > 0, and 0 ≤ φ < 2π.

Exercise 3. Solve the following initial value problem:
y′′ + 3y′ + 2y = 5e2t + 6e−2t + 3 cos(t) + 6 sin(t) , y(0) = 1 , y′(0) = 1

Hint: Use the work you did in problems 1 and 2!

Exercise 4. Consider a general second order equation of the form
(D − λ1)(D − λ2)y = eλ1t

where λ1 and λ2 are arbitrary constants.
a. If λ1 6= λ2, the method of undetermined coefficients says to guess a particular solution of the form

y = Ateλ1t.

for some value of A. This leads to a general solution of the form
y = Ateλ1t +Beλ1t + Ceλ2t.

Justify this “lucky guess” using the repeated integration method.
b. If λ1 = λ2, the method of undetermined coefficients says to guess a particular solution of the form

y = At2eλ1t

for some value of A. This leads to a general solution of the form
y = At2eλ1t +Bteλ1t + Ceλ1t.

Justify this “lucky guess” using the repeated integration method.

Exercise 5. Consider a fluid-filled box which contains a solid block attached to the ends of the box with two
identical springs:

m

Let y denote the displacement of the block from the center of the box (so in the picture above, y = 0). Then the
motion of the block can be modelled using an equation of the form

my′′ + ly′ + ky = f(t),
where m > 0 represents the mass of the block, k > 0 represents the tightness of the spring, l > 0 represents the
stickiness (viscosity) of the fluid, and f(t) represents the sum of all external forces acting on the block. Assume
that the mass of the block is 1 kilogram.



a. You suddenly turn the box on its side, like this:

m

Now block is subject to the force of gravity, and its motion can be modeled by solving the initial value
problem

my′′ + ly′ + ky = −mg , y(0) = 0 , y′(0) = 0,
where g ≈ 10 meters/second2. If the block comes to rest 10 centimeters below its original equilibrium
position, determine the value of k (in units of kilograms/second2).

b. As the block comes to rest, it oscillates around its new equilibrium position (10 centimeters below its
original equilibrium position). Using a high speed camera, you measure the times at which the object
passes through its new equilibrium position, and find this is happenening once per second. Based on this
experiment, and your answer to part a, determine the value of l (in units of kilograms/second).

Exercise 6. Optional. Consider a similar box to the one described in problem 5, but assume the values m = k = 1.
Instead of turning the box on its side, you gently rock it back and forth at a constant frequency. Now the motion
of the block can be modeled by solving the initial value problem

y′′ + ly′ + y = Ad cos(ωdt) , y(0) = 0 , y′(0) = 0.

where ωd and Ad are positive constants (the driving frequency and driving amplitude).
a. Show that the solution takes the form

y = A cos(ωdt− φ) + yh(t)

where A and φ are positive constants and yh(t) is a solution of the homogeneous equation

y′′ + ly′ + y = 0.

Give explicit formulas for A and φ in terms of Ad, ωd, and l.
b. Note that lim

t→∞
yh(t) = 0 for any value of l. Because of this, yh(t) is often referred to as a transient. As you

increase the value of l, does the transient die off more or less rapidly?
c. The ratio A/Ad is called the amplitude gain of the system. Using a computer, plot the amplitude gain as

a function of ω, for a few different values of l:

l = 0.01, 0.1, 1, 10, 100

d. Let ωr be the value of the driving frequency which results in the maximum amplitude gain (the resonant
frequency). Give a formula for ωr as a function of l, assuming that l is small and positive. Is it greater or
less than the natural frequency ω0? (See problem set 4 for the definition of ω0)

e. If the value of l is sufficiently large, then the resonant frequency will be 0. Give a formula for the smallest
value of l such that this occurs. Is it greater than, less than, or equal to the value of l at which critical
damping occurs?

f. What is the solution of the initial value problem if l = 0 and ωd = ωr? Plot it as a function of t.



Exercise 7. Optional. The goal of this problem is to obtain a particular solution of the equation
(D − λ1)(D − λ2)y = f(t),

where λ1 and λ2 are arbitrary constants, and f(t) is an arbitrary function (not a sum of exponentials).
a. Let λ be an arbitrary constant. Use the integrating factor method to show that the solution of the initial

value problem
(D − λ)x = f(t) , x(0) = 0

is given by the integral

x(t) = eλt
∫ t

0
f(u)e−λudu =

∫ t

0
f(u)eλ(t−u)du.

Hint: When you get to the integration step of the integrating factors method, integrate both sides of the
equation from 0 to t instead of doing an indefinite integral. Since the variable t appears in the upper limit of
your integral, you must rename the variable inside the integral to avoid confusion. If you call that variable
u instead of t, you will obtain the formula above.

b. Let λ1 and λ2 be arbitrary constants. Use the repeated integration method to show that the solution of
the initial value problem

(D − λ1)(D − λ2)y = f(t) , y(0) = 0 , y′(0) = 0
is given by the iterated integral

y(t) =
∫ t

v=0

∫ v

u=0
f(u)eλ1(v−u)eλ2(t−v)dudv.

Hint: Apply the repeated integration approach. In each step, use the formula from part a. To avoid
confusion, call your integration variable v instead of u the second time you integrate.

c. Sketch the region of integration for the double integral in part b, and set up the same integral with the
opposite order of integration (dvdu instead of dudv).

d. Assuming that λ1 6= λ2, evaluate the inner integral. You should obtain the following formula:

y(t) =
∫ t

0
f(u)

(
eλ1(t−u) − eλ2(t−u)

λ1 − λ2

)
du =

∫ t

0
f(u)g(t− u)du.

Observe that the function g(t− u) is a solution of the initial value problem
(D − λ1)(D − λ2)y = 0 , y(u) = 0 , y′(u) = 1.

e. If λ1 = p+ iq and λ2 = p− iq are complex conjugates, use Euler’s formula to simplify the integral in part
d to an integral which does not involve any complex numbers.

f. Generalize parts d and e to the case λ1 = λ2.
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