
HOMEWORK 4
MATH 18500-SECTION 41, 51

DUE: WEDNESDAY APRIL 27TH

Exercise 1. Solve the following initial value problems using the “exponential ansatz” method:
(1) Substitute y = eλt and find all values of λ which satisfy the equation. If two real values of λ are possible,

then you obtain two real exponential solutions and can proceed to step (3).
(2) If you get a complex value of λ, find the real and imaginary part of eλt. These are both real solutions of

the equation - take them and proceed to step (3).
(3) Apply the superposition principle and obtain the general solution as a linear combination of the two real

solutions you have found so far.
(4) Find the coefficients of the linear combination which satisfy the given initial conditions.
a. y′′ + y′ − 12y = 0 , y(0) = 3 , y′(0) = 2
b. y′′ + y′ = 0 , y(0) = 0 , y′(0) = −2
c. y′′ + 2y′ + 2y = 0 , y(π) = 0 , y′(π) = 1

Exercise 2. It is often useful to consider second order equations with boundary conditions, where instead of spec-
ifying initial values y(t0) and y′(t0) we specify values y(t0) and y(t1) at an initial time t0 and a final time t1.
Problems of this form are called boundary value problems.

To find all solutions of a boundary value problem, you just produce the general solution of the equation in terms of
two unpecified coefficients c1 and c2, and then substitute the times t0 and t1. This gives you a system of equations
which you can try to solve for c1 and c2.

However, solutions of boundary value problems are not guaranteed to exist, and sometimes a boundary value
problem will have more than one solution! The following problem illustrates that phenomenon.

a. Find the unique solution of the boundary value problem

y′′ − 4y = 0 , y(0) = 0 , y(ln(2)) = 15

b. Find an infinite number of solutions of the boundary value problem

y′′ + 4y = 0 , y(0) = 0 , y(π) = 0

c. Show that the boundary value problem

y′′ + 4y = 0 , y(0) = 0 , y(π) = 1

has no solution.
d. (Optional) In general, what conditions on t0, t1, y0, y1, and k are needed in order to guarantee that the

boundary value problem
y′′ + ky = 0 , y(t0) = y0 , y(t1) = y1

has exactly one solution?

Exercise 3. Consider a damped oscillator which is modelled by an equation

my′′ + ly′ + ky = 0

where m = 2, k = 4, and l ≥ 0.
a. Write the auxiliary equation and express its roots in terms of l.
b. In the absence of damping (l = 0), find a positive value of ω0 such that the general solution of the equation

is a linear combination of sin(ω0t) and cos(ω0t).
Recall that ω0 is called the natural frequency of the oscillator.

c. Recall that an oscillator is said to be overdamped if its solutions take the form

y = c1e
−µ1t + c2e

−µ2t



where µ1 and µ2 are distinct positive real numbers. For an overdamped oscillator, give a formula (in terms
of µ1 and µ2) for the solution which satisfies the initial conditions y(0) = 0 and y′(0) = 1.

d. Recall that an oscillator is said to be underdamped if its solutions take the form

y = c1e
−µt cos(ωt) + c2e

−µt sin(ωt)

where µ and ω are positive real numbers. For an underdamped oscillator, give a formula (in terms of µ
and ω) for the solution which satisfies the initial conditions y(0) = 0 and y′(0) = 1.

e. Recall that an oscillator is said to be critically damped if its solutions take the form

y = c1te
−µt + c2e

−µt

where µ is a positive real number. For a critically damped oscillator, give a formula (in terms of µ) for the
solution satisfying the initial conditions y(0) = 0 and y′(0) = 1.

f. For which values of l is the oscillator overdamped, underdamped, and critically damped? In each of these
cases, give formulas for µ1, µ2, µ, ω (whichever is applicable) in terms of l.

g. In the underdamped case, is ω greater or less than the natural frequency ω0?
h. In the cases l = 4 and l = 6, and also in the critically damped case, find the solution satisfying y(0) = 0

and y′(0) = 1.
i. Carefully plot each of the solutions from part h. In the overdamped and critically damped cases, find

the point in time where the solution achieves its maximum value and mark this in your plot. In the
underdamped case, mark the points where the solution touches its “exponential envelope” and where it
crosses the t axis.

k. What happens if l < 0? Plot a few possible solutions in this case and explain why the equation

my′′ + ly′ + ky = 0

would not correspond to a realistic model of any physical system.

Exercise 4. Optional. Consider the third order linear homogeneous equation

y′′′ + y′′ + y′ + y = 0

a. Find all of the exponential solutions of this equation (real and complex).
Hint: For all values of a and b we have the factorization y3 + ay2 + by + ab = (y + a)(y2 + b).

b. For each complex exponential solution, show that its real and imaginary parts are also solutions.
c. In parts a and b you should have obtained three real solutions y1(t), y2(t), y3(t). If c1, c2, c3 are arbitrary

real constants, show that the linear combination y = c1y1 + c2y2 + c3y3 is also a solution.
d. Solve the initial value problem

y′′′ + y′′ + y′ + y = 0 , y(0) = 2 , y′(0) = 1 , y′′(0) = 0

Exercise 5. Optional. One way to visualize solutions of second order equations is to introduce what is called the
phase plane. This means we let

v = y′(t)

be the velocity of the solution, and we plot the parameterized curve

(y, v) = (y(t), y′(t))

in a plane whose axes are labelled by position and velocity. For example, if the solution is

y = cos(2t)

then the corresponding curve in the phase plane would be an ellipse, parameterized by

(y, v) = (cos(2t), 2 sin(2t)).
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a. Suppose that y is a solution of the equation
y′′ + py′ + qy = 0.

Find a matrix A such that (y(t), v(t)) is a solution of the system of first order equations[
y′

v′

]
= A

[
y
v

]
b. Show that the characteristic polynomial of A is the auxiliary polynomial of the 2nd order equation.
c. Solve the initial value problems from problem 1,

y′′ + y′ − 12y = 0 , y(0) = 3 , y′(0) = 2
y′′ + 2y′ + 2y = 0 , y(π) = 0 , y′(π) = 1

by converting them to systems of first order equations and solving the systems using eigenvectors and
eigenvalues. Make sure that the results you get are consistent with your answers to problem 1!

d. In general, show that any nth order ODE (linear or nonlinear)
y(n) = F (x, y, y′, . . . , y(n−1))

is equivalent to a system of n first order ODE for the functions
(y1, y2, . . . , yn) = (y, y′, . . . , y(n−1)).

Since solutions of first order systems are determined by their initial values, you can conclude that solutions
of nth order ODE are determined by the initial values of the first n derivatives of y,

y(0), y′(0), . . . , y(n−1)(0).
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