Homework 2
 Math 18400-Section 41, 51

Due: Monday January 24th

Exercise 1. Using the multivariable chain rule,

1. Write $g^{\prime}(x)$ in terms of the partial derivatives of f for $g(x)=f(x, x)$.
2. Write $\frac{\partial g}{\partial x}$ and $\frac{\partial g}{\partial y}$ in terms of the partial derivatives of f for $g(x, y)=f(y, f(x, x))$.
3. Write $g^{\prime}(t)$ in terms of the partial derivatives of f for $g(t)=f\left(2+2 t, t^{2}\right)$.
4. Write $\frac{\partial g}{\partial u}$ and $\frac{\partial g}{\partial v}$ in terms of the partial derivatives of f for $g(u, v)=f\left(u v, u^{2}+v^{2}\right)$.
5. Compute $\frac{\mathrm{d} y}{\mathrm{~d} x}$ if $y=\sin (x-t)$ and $x=t e^{2 t}$, at the point where $x=0$.
6. Compute $\frac{\partial z}{\partial y}$, if $x=3 u-u^{3}+3 v^{2} u, y=3 v-v^{3}+3 u^{2} v$, and $z=3 u^{2}-3 v^{2}$, at the point where $u=v=1$.

Exercise 2. Any object conducts heat - if we heat up one part of the object (i.e. increase its temperature), then eventually that heat will spread throughout the object. Fourier's law of heat conduction states that if $T(x, y, z)$ gives the temperature of the object at the location (x, y, z), then heat flows in the direction

$$
\vec{q}=-\overrightarrow{\nabla T}
$$

In this problem we will consider a 2D metal sheet with temperature function $T(x, y)=x y-x$.

1. At the point $(1,1)$, in which direction does the temperature increase the fastest (per unit distance)?
2. How fast does the temperature increase (per unit distance) in the direction of the vector $3 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}$?
3. Sketch the isothermal curves $T=-2,-1,0,1,2$. At several points along each isothermal curve, including the point $(1,1)$, draw a vector which indicates the direction that heat would flow.
4. Sketch the curves along which heat would flow (i.e. curves tangent to the direction of heat flow)

Exercise 3. Let $\vec{x}(t)$ be a parameterized curve which describes the motion of a satellite orbiting a planet. In this situation, $\vec{x}(t)$ obeys Newton's law of gravity, which states that

$$
m \frac{d^{2} \vec{x}}{d t^{2}}=-\vec{\nabla} U
$$

where

$$
U=-\frac{G M m}{\sqrt{x^{2}+y^{2}+z^{2}}}
$$

is the gravitational potential energy of the satellite. Here G is a constant, M is the mass of the planet, and m is the mass of the satellite.

1. Compute the gradient of U, and show that its magnitude is given by

$$
|\vec{\nabla} U|=\frac{G M m}{x^{2}+y^{2}+z^{2}}
$$

2. Deduce from Newton's law that the angular momentum of the satellite,

$$
\vec{L}=m \vec{x} \times \frac{d \vec{x}}{d t}
$$

is constant. Conclude that the satellite stays in a plane through the origin, with normal vector \vec{L}.
(Hint: Use the product rule for cross products, which can be found on page 286 of your textbook.)

Exercise 4. Consider the following parameterized curve, which represents the motion of a charged particle:

$$
\vec{r}(t)=(\cos 3 t,-4 t, \sin 3 t),
$$

1. Sketch the trajectory of $\vec{r}(t)$. Indicate the direction of motion in your sketch.
2. Newton's law for a charged particle moving in a magnetic field states that

$$
m \vec{a}=q \vec{v} \times \vec{B}
$$

where m is the mass of the particle, q is the charge on the particle, \vec{B} is the magnetic field, \vec{v} is the velocity of the particle, and \vec{a} is the acceleration of the particle. Verify that $\vec{r}(t)$ satisfies Newton's law, if $q=3 m$ and $\vec{B}=\vec{j}$.
3. Show that the velocity and acceleration of $\vec{r}(t)$ are perpendicular, and show that its speed is constant.
4. In general, show that every parameterized curve whose velocity and acceleration are perpendicular has constant speed. Hint: A function is constant if and only if its derivative is 0 .
5. Conclude that any charged particle in a magnetic field travels at constant speed.

Exercise 5. We say that f is homogeneous of degree r if

$$
\text { For all } t>0, f(t x, t y)=t^{r} f(x, y)
$$

1. Give an example of an homogeneous function of degree 3 .
2. Show that if f is homogeneous of degree r then its partial derivatives are homogeneous of degree $r-1$.
3. By differentiating the definition with respect to t and using 2., show that if f is homogeneous of degree r then

$$
x \partial_{x} f(x, y)+y \partial_{y} f(x, y)=r f(x, y)
$$

4. Show that we have

$$
x^{2} \partial_{x}^{2} f(x, y)+2 x y \partial_{x y}^{2} f(x, y)+y^{2} \partial_{y}^{2} f(x, y)=r(r-1) f(x, y) .
$$

