# Homework 3 <br> Math 18400-Section 41, 51 

Due: Wednesday February 2nd

Exercise 1. Find all critical points and their nature (local minimum, local maximum or saddle point) for each of the following functions:

1. $f(x, y)=y^{2}-x^{2}+\frac{x^{4}}{2}$
2. $f(x, y)=x^{3}+y^{3}-3 x y$
3. $f(x, y)=x^{4}+y^{4}-4(x-y)^{2}$
4. $f(x, y)=y\left(x^{2}+(\ln y)^{2}\right)$

Exercise 2. We consider the function $f(x, y)=y^{2}-x^{2} y+x^{2}$ for $x, y$ such that $x^{2}-1 \leqslant y \leqslant 1-x^{2}$.

1. Draw the set of points $D$ defined by $x^{2}-1 \leqslant y \leqslant 1-x^{2}$.
2. Find the critical points of $f$.
3. Find the minimum and the maximum of $f$ on the boundary of $D$.
4. Find the minimum and the maximum of $f$ on $D$.

Exercise 3. Use Lagrange multipliers to solve the following constrained optimization problems:

1. Find the maximum possible volume of a cylinder which can be inscribed in a sphere of radius 1 .
2. Find the maximum possible volume of a cylinder whose surface area is equal to 1 .

Note: The surface area of the cylinder should include the top and bottom.
3. Find the maximum possible volume of a rectangular box which can be inscribed in a sphere of radius 1 .
4. Find the maximum possible volume of a rectangular box whose surface area is equal to 1 .

Exercise 4. Consider the function

$$
f(x, y, z)=x^{2}+4 x y+3 y^{2}+4 y z+z^{2}
$$

and let $P$ be a point on the unit sphere $\left(x^{2}+y^{2}+z^{2}=1\right)$ where $f(x, y, z)$ attains its maximum value.

1. Write this function in the form $f(\vec{x})=\vec{x}^{T} A \vec{x}$, where $A$ is a $3 \times 3$ symmetric matrix.
2. Show that gradient and Hessian matrix of $f$ are given by $\vec{\nabla} f=2 A \vec{x}$ and $H_{f}=2 A$.
3. Does $f(x, y, z)$ have a local maximum, local minimum, or saddle point at the origin?
4. Show that the vector $\overrightarrow{O P}$ is an eigenvector for A. Hint: Use Lagrange multipliers.
5. Show that the eigenvalues of $A$ are $1,-1$, and 5 .
6. What are the maximum and minimum values of $f(x, y, z)$ on the unit ball $\left(x^{2}+y^{2}+z^{2} \leq 1\right)$ ?

Exercise 5. Consider the function $f(x, y)=\cos x \sin y$, on the square region $D$ defined by the inequalities

$$
-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}, \quad-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}
$$

1. Calculate the Hessian matrix of $f(x, y)$.
2. At which points $(x, y)$ in $D$ is the Hessian matrix degenerate?
3. At which points $(x, y)$ in $D$ is the Hessian matrix positive definite, negative definite, and indefinite? For each of these three possibilities, sketch the region where it occurs.
4. For values of $(x, y)$ which are very close to $\left(\frac{\pi}{6}, \frac{\pi}{3}\right)$, does the graph of $f(x, y)$ lie above its tangent plane, below its tangent plane, or neither?

