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Abstract
The Metropolis-adjusted Langevin algorithm (MALA) is an informed MCMCmethod

that is used to sample from a target distribution of interest. Its proposal distribution
makes use of the gradient of the target’s log-density in order to generate suitable candi-
dates for the chain. This sampler is quite efficient in the stationary phase, but displays
a notoriously erratic behaviour out of stationarity.

The Metropolis-adjusted Langevin algorithm with annealed proposals (aMALA) is
a generalization of the usual MALA that features two tuning parameters: the usual
step size δ and a parameter γ that may be adjusted to accommodate the dimension of
the target distribution (with γ = 1 corresponding to MALA). It has been established in
Boisvert-Beaudry and Bédard (2022) that aMALA with 1 < γ ≤ 2 usually outperforms
MALA, even in high-dimensional contexts where the latter should become optimal.

The results of this paper demonstrate that the computational cost of aMALA is
O(N1/3) in its non-stationary regime and that it may be as small as O(N1/5) in
stationarity. This is in contrast to MALA, whose cost is O(N1/2) out of stationarity
and O(N1/3) in its stationary regime. Hence, in virtually any situation of practical
relevance where the target distribution has a finite number of dimension and/or the
algorithm is started out of stationarity, the MALA with annealed proposals turns out
to be superior to MALA, and as easily implemented/tuned as the latter.

MSC2020 subject classifications: Primary 60J22; secondary 62F15.

Keywords: Markov chain Monte Carlo, Metropolis-adjusted Langevin algorithm, dif-
fusion limit, optimal scaling, transience

Funding: This work has been supported by the Natural Sciences and Engineering
Research Council of Canada.

Acknowledgements: The author wishes to thank Michela Ottobre (U. of Edinburgh)
for interesting exchanges and the subject of this paper.
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1 Introduction

The Metropolis-Hastings sampler, a device of choice among the popular Markov chain
Monte Carlo methods, is used to obtain samples from complicated probability distributions
Π (Metropolis et al., 1953; Hastings, 1970). In its elemental form, it builds a Markov process
with invariant distribution Π on a state space S by producing candidates for the Markov
chain that are either deemed suitable as the next state of the chain or simply rejected.

Let x0 be the initial value for the process, either fixed or drawn from an arbitrary
distribution µ, and let π be the N -dimensional target density arising from Π with respect
to Lebesgue measure. Then, at iteration k + 1, the Metropolis-Hastings (MH) sampler
generates a candidate yk+1 = y from a proposal distribution Q(xk, y) with density q(xk, y).
This candidate is accepted as the next state xk+1 of the Markov process with probability

α(xk, y) = min{1, π(y)q(y,xk)
π(xk)q(xk,y)

}, otherwise we set xk+1 = xk and the process remains at the
current state for another time interval.

The Markov chain produced through this mechanism is reversible with respect to Π,
which in turn implies that this target distribution is stationary for the chain. Different
choices of proposal distributions Q lead to various performances in terms of efficiency and
computational cost. Informed proposal distributions use characteristics of the target Π
to produce quality candidates which, on average, turn out to be accepted in a greater
proportion than candidates coming from blinded proposal distributions (i.e. distributions
that use no such information from Π). For instance, the Metropolis-adjusted Langevin
algorithm (MALA) uses the gradient of the target’s log-density in order to drag the proposal
distribution towards regions of higher target density. The MALA is a Metropolis-Hastings
algorithm with (informed) proposal distribution

yk+1 ∼ N (xk + δ∇ log {π(xk)} , 2δIN ) , (1)

with δ > 0 for tuning and where IN is the N ×N identity matrix.
The proposal distribution of the MALA stems from the discretization of the Langevin

diffusion process with time step δ. The invariant distribution of this diffusion process being
Π, it makes for an ideal starting point for deriving a good proposal distribution. Because
the discretization destroys the invariance of Π, it becomes necessary to compensate via the
accept-reject criterion, which is included to preserve detailed balanced with respect to Π.
The smaller the time step, the less correction is required from the acceptance probability;
time steps that are too small however lead to a slow-moving process.

Besides our choice of proposal distribution Q, the tuning of this proposal also has an
impact on the efficiency of the sampler or, in other words, on the speed at which the process
explores its state space. Large tunings induce moves that are far from the current state and
thus tend to be frequently rejected, leading to a process that stagnates (does not move often
enough). Small tunings produce candidates that are close to the current position; although
generally accepted, these moves result in a overlong ( exploration of the state space. In both
cases, the chain exhibits slow mixing, a behaviour that worsens as the dimension N grows.
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We thus aim at using a tuning parameter that strikes a balance between these two scenarios.
To account for the dimensionality of the target Π, the optimal size of the proposed moves
generally is a function of N , i.e. is proportional to N−ζ , for some ζ > 0. With complex and
high-dimensional statistical models being ubiquitous nowadays, documenting the efficiency
and computational cost of samplers has become essential. Hereafter, we use the expected
square jumping distance (ESJD) for measuring the efficiency, or computational cost, of the
process. We will say that the cost of the sampler in terms of ESJD is O(N ζ) if the proposal
tuning scales according to N−ζ .

Given its popularity and simplicity of usage, the MALA sampler has been studied
extensively and its behaviour is well-documented in the literature. Under certain regularity
conditions on the target density, it has been proven that optimally tuned versions of the
MALA accept 57.4%, with a computational cost of O(N1/3) in their stationarity phase
(Roberts and Rosenthal, 1998). This is much better than the random walk Metropolis
(RWM) algorithm with a blinded N (xk, σ

2IN ) proposal, which accepts 23.4% of candidates
and explores its state space in O(N) iterations when optimally tuned (Roberts et al., 1997).
Regrettably however, the behaviour of MALA samplers in their non-stationary phase is
notoriously erratic. To avoid jeopardizing the sampler’s convergence, one needs to shrink
the tuning parameter, leading to a computational cost of O(N1/2) while in transience. By
contrast, the RWM displays a steadier behaviour with its computational cost of O(N) both
in and out of stationarity (Christensen et al., 2005).

More specifically, under certain regularity assumptions on the target distribution, it
can be shown that RWM and MALA weakly converge (as N ↑ ∞) towards N -dimensional
Langevin diffusion processes. This shed light on one downside of MALA: its proposal dis-
tribution, itself originating from a Langevin diffusion process, has been naturally designed
to be efficient in high-dimensional, stationary settings. In contexts of practical significance,
that is when working with finite-dimensional targets and dealing with samplers that have
not yet attained their stationary phase, it might be preferable to select an alternative
proposal distribution.

The Metropolis-adjusted Langevin algorithm with annealed proposals (aMALA) intro-
duced in Boisvert-Beaudry and Bédard (2022) is a generalization of MALA. Its proposal
distribution is expressed as

yk+1 ∼ N (xk + γδ∇ log {π(xk)} , 2δIN ) ,

with δ > 0 and γ ∈ [1, 2]. This sampler has been derived using the local- and global-
balance properties of Zanella (2020); it is similar to MALA, but features an extra tuning
parameter γ in front of the gradient term that may be adjusted to account for the di-
mension of the target Π. In short, this extra parameter adds flexibility to the proposal
distribution by allowing us to increase the weight of the gradient term in the proposal
mean. Boisvert-Beaudry and Bédard (2022) argue that γ-values close to 2 and 1 should be
used in low- and high-dimensional settings, respectively, with intermediate values ideal for
moderate-dimensional targets. We note that MALA, which corresponds to γ = 1, should

3



be optimal in infinite-dimensional settings; in practice however, the authors could not reach
a dimension N large enough to observe this. It would thus appear that MALA is overly
conservative when it comes to the biasing of its proposal mean. This is unsurprising, given
that Langevin diffusion processes are the building blocks of MALA, while simultaneously
describing the asymptotic behaviour of MH samplers as δ ↓ 0. In finite dimensions, one
should therefore assign more weight to the informed portion of the proposal distribution.

To facilitate the tuning of the interpolation parameter γ, the authors suggest using the
guideline γ = 1 + 1/N1/3 and illustrate through various examples that this rule yields a
sampler that is nearly optimal in the various examples studied. Letting δ = ℓ2/N1/3 (with
ℓ > 0), γ = 1 + 1/N1/3, and studying a target Π whose density satisfies the regularity
conditions in Roberts and Rosenthal (1998), they proved that that the computational cost
of the aMALA is O(N1/3) in its stationary phase. This was to be expected, as the aMALA
with γ = 1 + 1/N1/3 becomes the usual MALA in the limit (since γ → 1 as N ↑ ∞).

Now, since γ provides a dimension-specific adjustment of the proposal distribution, we
expect this parameter to have a stabilizing effect on the erratic behavior of MALA outside
of stationarity. The primary contribution of this paper consists in asymptotic, out-of-
stationarity diffusion results for the aMALA sampler, in the context of general non-product
target measures. These target measures are defined using a density that is expressed with
respect to a Gaussian random field. To this end, we heavily rely on the analysis expounded
in Kuntz et al. (2018), where the MALA sampler is used on non-product target densities
and started out of stationarity (it is thus studied in its transient phase). We show that
the tuning used to obtain our diffusion limit for the aMALA corresponds to an O(N1/3)
computational cost, meaning that the behaviour of the sampler remains stable/steady both
in and out of stationarity. We also provide some results about the asymptotic behaviour of
the aMALA in its stationary phase, along with some guidelines for tuning this sampler. We
argue that the computational cost of the stationary aMALA may be as small as O(N1/5)
in some contexts. This finding is in line with our previous conclusions, i.e. that aMALA is
superior to MALA in terms of computational cost.

In order to present our theoretical results about the aMALA (both in and out of
stationarity), we start by introducing the framework in §2. Building on these foundations
we present, in §3, the main theoretical results for the aMALA along with an analysis and
some tuning guidelines. We then support these findings with numerical explorations and
simulation studies in §4. We conclude with an application on Scots pine saplings data in
§5 and with a discussion in §6. Proofs are deferred to Appendices ?? to ??.

2 Framework

2.1 Hilbert space and projections

We use the framework of Kuntz et al. (2018) and work with finite-dimensional target
measures that arise from approximations of a measure π on an real separable infinite-
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dimensional Hilbert space (H, ⟨·, ·⟩, ∥ · ∥), with the canonical norm induced by the inner
product. We let the target measure π on H be defined as

dπ

dπ0
∝ exp(−Ψ) , (2)

with π0 ∼ N (0, C). The measure π is thus absolutely continuous with respect to a Gaussian
measure π0 that has mean 0 and covariance C; furthermore, Ψ : H̃ → R is a real-valued
function with H̃ ⊆ H. The covariance C is a positive, self-adjoint, trace class operator on
H with eigenbasis {λ2

j , ϕj}j≥1; we then have

Cϕj = λ2
jϕj , ∀j ∈ N ,

and we assume that {ϕj}j∈N forms a complete orthonormal basis of H.
As MALA and aMALA have both been designed to sample from finite-dimensional

distributions of interest, we now let πN refer to the finite-dimensional projections of the
measure π in (2) on the space spanned by the firstN eigenvectors of the covariance operator,

XN := span{ϕj}Nj=1 ⊂ H .

This basically means that xN = PN (x) :=
∑N

j=1 xjϕj is the projection of a point x ∈
H onto the space XN , where xj = ⟨x, ϕj⟩ is the jth component of x and x ∈ H has
the representation x =

∑
j≥1 xjϕj . The jth component of the vector xN ∈ XN is then

expressed as xNj = ⟨xN , ϕj⟩; naturally, xj = xNj for 1 ≤ j ≤ N .
Similar notation is used for other vectors and their components, for instance the can-

didate vector yN . We also denote

ΨN := Ψ ◦ PN and CN := PN ◦ C ◦ PN ,

meaning that CN is an N×N diagonal matrix with λ2
j as its jth diagonal element. Accord-

ing to this notation, our finite-dimensional target measure πN on XN (a space isomorphic
to RN ) satisfies

dπN

dπN
0

(x) = MΨN exp{−ΨN (x)} , (3)

with πN
0 ∼ N (0, CN ) and MΨN a normalization constant. As stated in Kuntz et al. (2018),

the sequence of measures {πN}N∈N then converges to the measure π in the Hellinger metric.

2.2 Sobolev-like spaces

We now provide more details about the space H̃, and identify it in terms of an appropriate
Sobolev-like subspace of H.
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Hereafter, we denote Sobolev-like subspaces by Hs, s ∈ R. These subspaces are defined
with the following inner products and norms

⟨x, y⟩s =
∞∑
j=1

j2sxjyj and ∥x∥2s =
∞∑
j=1

j2s|xj |2 .

We emphasize the fact that (Hs, ⟨·, ·⟩s) is a Hilbert space; since H0 = H, it directly follows
that Hs ⊂ H ⊂ H−s for any s > 0.

The proof of our result requires that we alternate between some of the spaces just
mentioned. To this end, the following elementary inequality will reveal useful

|⟨x, y⟩|2 =

∣∣∣∣∣∣
∞∑
j=1

(jsxj)(j
−syj)

∣∣∣∣∣∣
2

≤ ∥x∥2s ∥y∥
2
−s , ∀x ∈ Hs, y ∈ H−s . (4)

As per the arguments in Kuntz et al. (2018) and Kuntz et al. (2019), one can define an
operator that lets us alternate between the Hilbert space H and the interpolation spaces
Hs. This allows us deducing that {ϕ̂j = j−sϕj}j≥1 forms an orthonormal basis for Hs; we
refer the reader to the above-mentioned articles for more details. Given a random variable
y ∼ N (0, C), this implies that we can either express y as

y =

∞∑
j=1

λjρjϕj ,

with ρj ∼ N (0, 1) i.i.d. for j ≥ 1 or, if
∑

j λ
2
jj

2s < ∞, as

y =
∞∑
j=1

(λjj
s)ρjϕ̂j ,

again with ρj ∼ N (0, 1) i.i.d. for j ≥ 1. We can therefore see y as a mean zero Gaussian
random variable with covariance operator C in H, or with covariance Cs in Hs, where Cs is
diagonal in the basis {ϕ̂j}j≥1, with diagonal entries j2sλ2

j .

2.3 Algorithm

The MALA sampler with annealed proposals used to sample from the measure πN generates
candidates according to the following rule

yNk+1 = xNk + γδCN∇ log πN (xNk ) +
√
2δC1/2

N ξNk+1 , (5)

with δ > 0 and γ ∈ [1, 2] as tuning parameters, and with ξNk+1 =
∑N

j=1 ξj,k+1ϕj , where
ξj,k+1 ∼ N (0, 1) i.i.d. for j = 1, . . . , N . The inclusion of the matrix CN in the proposal ker-
nel leads to a sort of preconditioned aMALA sampler that is similar to the preconditioned
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MALA, but with an extra tuning parameter γ. Using (2) and developing the gradient of
the log-target, we may reexpress the candidate yNk+1 as

yNk+1 = xNk − γδ
{
xNk + CN∇ΨN (xNk )

}
+
√
2δC1/2

N ξNk+1 .

For any xN , yN ∈ XN , the proposal design in (5) corresponds to a density

qN (xN , yN ) ∝ exp

{
− 1

4δ

∥∥yN − xN − γδCN∇ log πN (xN )
∥∥2
CN

}
, (6)

where ∥ · ∥CN defines a Hilbert-Schmidt norm on XN , that is

∥xN∥2CN =
N∑
j=1

1

λ2
j

|⟨xN , ϕj⟩|2 =
N∑
j=1

|xNj |2

λ2
j

. (7)

Such a norm is induced by the scalar product ⟨·, ·⟩CN defined as

⟨xN , yN ⟩CN = ⟨C−1/2
N xN , C−1/2

N yN ⟩ , xN , yN ∈ XN .

Note that a similar norm and scalar product can be defined on H with the covariance
operator C.

Now, the candidate yNk+1 is accepted with probability

αN (xNk , yNk+1) = 1 ∧
πN (yNk+1)q

N (yNk+1, x
N
k )

πN (xNk )qN (xNk , yNk+1)
, (8)

where 1 ∧ a = min{1, a}. If the candidate is accepted, then xNk+1 = yNk+1; otherwise, the

process remains where it was, that is xNk+1 = xNk . The aMALA sampler thus satisfies

xNk+1 = βN
k+1y

N
k+1 + (1− βN

k+1)x
N
k , xN0 = PN (x0) ,

where

βN
k+1 ∼ Bernoulli(αN (xNk , yNk+1)) .

Some care should be taken when tuning the parameters γ and δ, which should decrease
with the dimension N of the state space XN . More specifically, let δ = ℓ21/N

ζ1 and
γ = 1+ℓ22/N

ζ2 , where ℓ1, ℓ2, ζ1, ζ2 are positive parameters. As explained in the introduction,
if ζ1 is too large, then δ is small and the sampler only takes tiny steps; at the opposite, if ζ1
is too small, then proposed steps are overly aggressive and often rejected. Similarly, if ζ2 is
too large on the one hand, then γ approaches 1 too rapidly and the process swiftly behaves
like MALA, which is suboptimal in finite-dimensional settings. On the other hand, if ζ2
is too small, then the biasing term of the proposal mean carries too much weight, leading
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to candidates that are frequently rejected. It has been showed in Boisvert-Beaudry and
Bédard (2022) that the optimal choice in the stationary phase is ζ1 = ζ2 = 1/3, leading to
δ = ℓ21/N

1/3 and γ = 1 + ℓ22/N
1/3. In this paper, we show that these same tunings remain

optimal in the transient phase of the aMALA. This is an improvement over MALA, which
requires an O(N−1/2) out-of-stationarity tuning to preserve its convergence properties.
We also show that the computational cost of the aMALA is, in some contexts, as small as
O(N1/5) in its stationary phase (in which case we much set ζ1 = ζ2 = 1/5 to study the
asymptotic process).

To gain more information about the aMALA sampler in transience, we focus on the
sequence {SN

k }k∈N defined as

SN
k =

1

N
∥xNk ∥2CN =

1

N

N∑
j=1

|xNj,k|2

λ2
j

.

We note in passing that xNk refers to the kth time value of the process, xNj refers to the

jth component of the vector xN , and xNj,k denotes the jth component of the time-k state
of the process. Despite our usage of lower-case letters uniformly throughout the paper,
we understand that quantities up to time k (and later up to time t) are known, while
quantities from time k + 1 (or after time t) are random variables. The sequence {SN

k }k∈N
is generally not a Markov process; nonetheless, when the aMALA is started at an initial
value xN0 ∈ H̃ such that SN

0 is finite, it is well-defined. To study the limiting behaviour of
this sequence, we use its continuous interpolant

SN
t = (N1/3t− k)SN

k+1 + (k + 1−N1/3t)SN
k ,

k

N1/3
≤ t <

k + 1

N1/3
. (9)

We denote by C([0, T ], H̃) the space of H̃-valued functions on [0, T ] endowed with the
uniform topology. This shall be useful as we will soon present weak convergence results in
C([0, T ], H̃) (as N ↑ ∞) for the continuous interpolant just introduced.

When the dimension N is fixed, the aMALA process lives on XN and has invariant dis-
tribution πN . However, considering that we want to study the scaling limit of this process
as N ↑ ∞, it will be preferable to carry out the analysis in H. The first N components
of the H-valued vector we study coincide with xN , while the remaining components are
not updated and stay at their initial state. Specifically, this process may be written in
component-wise notation as

xj,k+1 = xNj,k+1

= xNj,k + βN
k+1

 ℓ21
N1/3

(
1 +

ℓ22
N1/3

)
[CN∇ log πN (xNk )]j +

√
2ℓ21
N1/3

λjξ
N
j,k+1

 ,

∀j ≤ N , and xj,k+1 = xj,k = 0, ∀j ≥ N + 1.
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2.4 Assumptions

We now introduce some assumptions on the function Ψ and the covariance operator C of
the measure π0, both appearing in (2). We first suppose that there exists some fixed s ≥ 0
such that Ψ : Hs → R; simply put, this means that we let H̃ = Hs.

For each x ∈ Hs, the gradient ∇Ψ(x) is an element of the dual L(Hs,R) of Hs, con-
taining the linear functionals on Hs. We emphasize that for x ∈ Hs, we may identify
L(Hs,R) = H−s and view the gradient ∇Ψ(x) as an element of H−s. We then impose the
following conditions on Ψ and C:

1. Decay of eigenvalues λ2
j of C: There exists a constant κ > s+ 1

2 such that

j−κ ≲ λj ≲ j−κ ,

where aj ≲ bj means that there is a constant K > 0 (independent of j) such that
aj < Kbj for all j.

2. Domain of Ψ: The functional Ψ is defined everywhere on Hs.

3. Derivatives of Ψ: The gradient of Ψ(x) is bounded and globally Lipschitz:

∥∇Ψ(x)∥−s ≲ 1 , ∥∇Ψ(x)−∇Ψ(y)∥−s ≲ ∥x− y∥s .

The decay of eigenvalues in the first assumption ensures that the trace of Cs in Hs is
finite, i.e. TraceHs(Cs) =

∑∞
j=1 λ

2
jj

2s < ∞, so that π0(Hs) = 1. Furthermore, we note that
since λjj

s ↓ 0 as j ↑ ∞, then the sequence {λjj
s}j is bounded, hence λjj

s ≤ C for some
constant C > 0.

The above assumptions have useful consequences. Before proceeding with our main
result in the next section, we present two lemmas that will be handy in our specific context;
the proof of these results may be found in Appendix A of Kuntz et al. (2018).

Lemma 1 (Lemma 2.1 of Kuntz et al. (2018)). Suppose that the previous assumptions
hold. Then,

1. The function C∇Ψ(x) is bounded and globally Lipschitz on Hs, that is

∥C∇Ψ(x)∥s ≲ 1 and ∥C∇Ψ(x)− C∇Ψ(y)∥s ≲ ∥x− y∥s .

Therefore, the function F (z) = −z − C∇Ψ(z) satisfies

∥F (x)− F (y)∥s ≲ ∥x− y∥s and ∥F (x)∥s ≲ 1 + ∥x∥s .

2. The function Ψ(x) is globally Lipschitz and therefore ΨN (x) = Ψ(PN (x)) also is
globally Lipschitz: ∣∣ΨN (y)−ΨN (x)

∣∣ ≲ ∥y − x∥s .
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Lemma 2 (Lemma 2.2 of Kuntz et al. (2018)). Suppose that the previous assumptions
hold. Then, the following holds for the function ΨN and its gradient ∇ΨN = ∇(Ψ ◦ PN ):

1. If the bounds specified in the third assumption hold for Ψ, then they hold for ΨN as
well: ∥∥∇ΨN (x)

∥∥
−s

≲ 1 ,
∥∥∇ΨN (x)−∇ΨN (y)

∥∥
−s

≲ ∥x− y∥s .

2. Moreover, ∥∥CN∇ΨN (x)
∥∥
s
≲ 1 and

∥∥CN∇ΨN (x)
∥∥
CN

≲ 1 .

3 Asymptotic tuning results for aMALA

3.1 Out-of-stationarity tuning results

With the above framework in place, we are now ready to state our main result about the
asymptotic, out-of-stationarity behaviour of the MALA with annealed proposals.

Define Hs
∩ to be the set of Hs-values x whose CN -norm squared, divided by N , remains

finite when N ↑ ∞. In other words,

Hs
∩ =

x ∈ Hs : lim
N↑∞

1

N

N∑
j=1

|xj |2

λ2
j

< ∞

 .

For initial values chosen in this set, the following result holds.

Theorem 1. Consider a target measure π as in (2), for which the assumptions in Section
2.4 hold. Let {xNk }k∈N be the Metropolis-Hastings algorithm that samples from π using the
proposal design of the aMALA in (5), with δ = ℓ21/N

1/3, γ = 1 + ℓ22/N
1/3, and ℓ21 = 2ℓ22.

Then, for T > 0 and any deterministic initial datum xN0 = PN (x0), where x0 is any
point in Hs

∩, the continuous interpolant SN
t of the sequence {SN

k }k∈N ⊆ R+ (defined in (9))
converges in probability in C([0, T ];R) to St ∈ R+ := {s ∈ R : s ≥ 0}, which is the solution
of the ordinary differential equation (ODE)

dSt = 2ℓ21(1− St)
{
1 ∧ eℓ

4
1ℓ

2
2(St−1)

}
dt , (10)

S0 = lim
N↑∞

SN
0 = lim

N↑∞

1

N

N∑
j=1

1

λ2
j

∣∣xNj,0∣∣2 .

Proof. The proof of this result may be found in Appendices ?? to ??.
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The above theorem assumes that the initial datum of the chains {xNk } is assigned
deterministically. Nevertheless, as discussed in Kuntz et al. (2018), the same statement
holds for random initial data, as long as the process is started out of stationarity (i.e. xN0
is not drawn from πN , or from any change of measure from πN ), and SN

0 has bounded
(uniformly in N) moments of sufficiently high order that are independent of any other
source of noise in the algorithm.

Since the time step implied by the interpolation SN
t is N−1/3, Theorem 1 implies that

the number of iterations required by the Markov process in its transient phase is O(N1/3).
This is in contrast to MALA, which requires O(N1/2) steps out of stationarity; indeed, any
tuning parameter larger than ℓ2/

√
N for ℓ2 > 0 leads to a sampler that behaves erratically.

In particular, depending on its initial state, MALA either accepts every move or rejects all
of them.

The parameter γ in the proposal mean of the aMALA then appears to stabilize the
sampler’s behaviour while in transience. In particular, attributing a larger weight to the
biasing term of the proposal mean allows using a more aggressive step size δ, even when
starting the sampler out in the tails (as long as the weight decreases towards 1 at a prede-
termined rate as N ↑ ∞). By comparison, the unsuitability of the bias in MALA’s proposal
mean forces users to rely on a tuning δ that is more conservative in order to hope reaching
stationarity – eventually. This is thus a significant improvement over MALA.

The condition ℓ21 = 2ℓ22 is of the utmost importance when setting ζ1 = ζ2 = 1/3; it
is required to eliminate the terms that are O(N1/3) in the acceptance probability (see
Appendix ??). Without this condition, we would face an asymptotic behaviour similar to
MALA, i.e. that becomes erratic as N grows, due to a degeneration of the acceptance rate.
This behaviour would then need to be corrected by relying on less aggressive tunings of the
form δ = ℓ21/N

1/2 and γ = 1 + ℓ22/N
1/2. We note that with ζ1 = ζ2 = 1/2, the adjustment

of the tuning parameters ℓ21 and ℓ22 is not as sensitive as with ζ1 = ζ2 = 1/3 (no need to
preserve a specific relation between ℓ21 and ℓ22), but convergence is slower as we generate
more conservative candidates. Generally speaking, we could also select other combinations
of 1/3 < ζ1, ζ2 < 1/2, with ζ1 = ζ2 and tunings that satisfy ℓ21 = 2ℓ22, but the asymptotic
behaviour would not be as interesting. Specifically, the process would suffer from a slower
exploration of its space (in transience and in stationarity, compared to ζ1 = ζ2 = 1/3), as
we would settle for a less aggressive (i.e. smaller) pair of tuning parameters.

From Theorem 1, the condition ℓ21 = 2ℓ22 leads to the ODE

dSt = 2ℓ21(1− St)

{
1 ∧ e

ℓ61
2
(St−1)

}
dt . (11)

How should the constant ℓ21 be chosen? To minimize the time spent in transience, |bℓ1(s)|
should be as large as possible, while being positive for s < 1 and negative for s > 1. In
Figure 1, the function bℓ1(s) = 2ℓ21(1 − s){1 ∧ eℓ

6
1(s−1)/2} is plotted against s for different

choices of ℓ1 > 0. Among those choices, we tested ℓ21 = 1.36, which is the optimal tuning for
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Figure 1: A collection of the bℓ1(·) functions in (11) for various values of ℓ21. The dashed
curve is for ℓ21 = (2/3)1/3, the dotted curve for ℓ21 = 1.36, and the solid curves are for
ℓ21 = 0.5, 1.5, 2, 2.5, 3.

a stationary MALA implemented on a high-dimensional standard normal target distribu-
tion; ℓ21 = 2, which corresponds to the simple choice ℓ22 = 1 discussed in Boisvert-Beaudry
and Bédard (2022); and also ℓ21 = (2/3)1/3, which maximizes the function bℓ1(s) at s = 0.
From the graph, it is quite obvious that there is no value of ℓ1 for which the speed of
convergence is uniformly maximized.

A natural approach would be to tune ℓ21 as a function of the initial state of the Markov
chain. This would be relatively easy to do in practice, as the optimization problem does
not depend on Ψ or C (i.e. on the particular target distribution π studied). An alternative
would consist in using the pair ℓ21 = (2/3)1/3 and ℓ22 = ℓ21/2 = (1/12)1/3, which maximizes
the function bℓ1(s) at s = 0. This choice seems reliable and close to optimality for a
broad range of starting values, so it could be used more widely than just with SN

0 = 0.
As the chain evolves and proceeds towards stationarity, a pragmatic strategy would be to
adjust ℓ21 so as to approach a prespecified acceptance rate (the optimal acceptance rate for
the specific context under study, for instance). In practice, this could be achieved in an
automatic fashion; this shall be perused separately.

3.2 Tuning results under stationarity

3.2.1 aMALA without preconditioning

It has already been established in Boisvert-Beaudry and Bédard (2022) that the computa-
tional cost of the aMALA with tunings of the form δ = ℓ21/N

1/3 and γ = 1 + ℓ22/N
1/3 is

12



O(N1/3). In that paper, target densities of the form πN (xN ) =
∏N

i=1 f(x
N
i ) were studied,

where the one-dimensional density f(xNi ) satisfied sufficient smoothness conditions. The
aMALA sampler studied did not use any preconditioning, meaning that the matrix CN in
(5) was assumed to be IN , the N ×N identity matrix, independently of the target density
under study.

Under that setting, it can be shown that the asymptotic behaviour of the aMALA
sampler corresponds to that of a Langevin diffusion process with speed measure υ(ℓ1, ℓ2),

υ(ℓ1, ℓ2) = 2ℓ21Φ

(
−1

2

[
ℓ61

{
5

6
E[{(log f(xNi ))′′′}2] + 1

2
E[{(log f(xNi )′′}3]

}
−2ℓ41ℓ

2
2E[{(log f(xNi )′′}2]− 2ℓ21ℓ

4
2E[(log f(xNi )′′]

]1/2)
. (12)

This function is maximized, with respect to ℓ22, at the unique value

ℓ̂22 =
ℓ21
2

E[{(log f(xNi )′′}2]
E[{(log f(xNi )′}2]

; (13)

this leads to υ(ℓ1, ℓ̂2) = 2ℓ21Φ(−ℓ31K/2) with

K =

{
5

6
E[{(log f(xNi )′′′}2] + 1

2
E[{(log f(xNi )′′}3]

}1/2

,

which is in turn maximized at the unique value ℓ̂21 for which the acceptance rate is equal
to 57.4%. This may be verified by following along Roberts and Rosenthal (1998)’s proof
for MALA; in our case however, the limiting acceptance rate of aMALA is impacted by
its γ parameter, resulting in two extra terms involving ℓ22 and ℓ42, respectively, in (12). We
emphasize that when setting ℓ2 = 0, (12) is in agreement with the speed measure found
in Theorem 1 of Roberts and Rosenthal (1998); we must however keep in mind that our
parameterization for MALA is slightly different from theirs, as they let h = 2δ in (1) and
work in terms of h, which would be the cause of any apparent discrepancy.

Contrarily to what was initially thought, the optimality of the 57.4% acceptance rate
does not hold across all choices of ℓ22. For this acceptance rate to be asymptotically optimal,
(13) must be satisfied. For other ℓ22 tunings, the O(N1/3) computational cost holds, but
the asymptotically optimal acceptance rate varies according to the value of ℓ22 selected and
the specific target distribution studied.

Now, in the trivial case where the target distribution is the N -dimensional normal
distribution with mean vector µN and covariance matrix σ2IN (σ2 > 0), it turns out
that the computational cost of the aMALA just discussed is potentially much cheaper.
In fact, if (13) holds, then several simplifications occur and the computational cost drops
to O(N1/5). In particular, setting ζ1 = ζ2 = 1/5, using a time step of N−1/5 in our
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interpolated processes, and following along the proof of Roberts and Rosenthal (1998)’s
Theorem 1 leads to a limiting Langevin diffusion process as before, but with speed measure

υ(ℓ1, ℓ̂2) = 2ℓ21Φ

(
− ℓ51
2
√
2 σ5

)
.

This speed measure is optimized at the unique value ℓ̂21 for which the asymptotically optimal

acceptance rate is 2Φ
(
−ℓ̂51/{2

√
2 σ5}

)
= 70.4%; this corresponds to ℓ̂21 = 1.0287σ2 and

ℓ̂22 = 0.5143.

3.2.2 aMALA with preconditioning CN

The aMALA with proposal distribution (5) displays an asymptotic behaviour in its sta-
tionary phase that is slightly different from the aMALA in §3.2.1. In particular, using a
preconditioning matrix CN in the aMALA of Boisvert-Beaudry and Bédard (2022) allows
us sending the trajectory farther away in a given iteration, leading to a much faster ex-
ploration of the state space. In fact, we obtain asymptotic results that are similar to the
special case of the standard normal target mentioned above. For a target density π as in (2)
for which the assumptions in Section 2.4 hold, we find that the computational cost of the
sampler started in its stationary phase is O(N1/5). More specifically, setting δ = ℓ21/N

1/5

and γ = 1 + ℓ22/N
1/5 with ℓ22 = ℓ21/2, we find that our sequence of interpolated processes

weakly converges (as N ↑ ∞) to a limiting Langevin diffusion process with speed measure

υ(ℓ1) = 2ℓ21Φ

(
− ℓ51
2
√
2

)
. (14)

This speed measure is optimized at a unique value ℓ̂21, and this optimal tuning corresponds

to an asymptotically optimal acceptance rate of 2Φ
(
−ℓ̂51/{2

√
2}
)
= 70.4%.

Note that if the relation between ℓ21 and ℓ22 were to be violated, we would simply work
with a sampler whose computational cost remains equal to O(N1/3) in its stationary phase.
In that case, the computational cost would be similar to that of MALA, both in and out
of stationarity, and the asymptotically optimal acceptance rate would be a function of ℓ21,
ℓ22, and π (through the speed measure of the limiting Langevin diffusion process obtained).

As before, the proof of the above result may be obtained by adjusting Roberts and
Rosenthal (1998)’s proof of their Theorem 1 to account for the parameter γ and the pre-
conditioning matrix CN . Although we do not provide the proofs of the results discussed in
§3.2, we explore them through simulation studies in §4. In the next section, we compare
efficiency curves arising from different settings of the aMALA with the theoretical curves
corresponding to the speed measures just discussed.

Several conclusions may be drawn from the results of §3. First of all, one has access
to significant efficiency gains in terms of computational cost by judiciously selecting the
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parameter ℓ22 in (5) (according to (13) when there is no preconditioning, and ℓ22 = ℓ21/2
when there is). Second of all, it is quite obvious that the use of a preconditioning matrix
CN , when available, leads to significant efficient gains in terms of computational cost.
Out of stationarity, this cost remains at O(N1/3) in both scenarios, but in the stationary
phase, using a preconditioned version of the aMALA leads to a computational cost as
small as O(N1/5). In both cases (preconditioned or not), this represents an improvement
over the usual MALA, which offers O(N1/2) and O(N1/3) computational costs in and
out of stationarity, respectively. In practice, we usually do not have access to the exact
preconditioning matrix CN . It is reasonable to assume that the computational cost will
lie somewhere between O(N1/3) and O(N1/5) in the stationary phase, depending on the
accuracy of our estimate of CN .

4 Simulations

4.1 Normal target distribution

Consider the target density πN (xN ) ∝ exp{−
∥∥xN∥∥2 /2}, where xN has dimension N =

1,000. Suppose that we run the aMALA in (5) with CN = IN and initial value 0 to
obtain a sample from this target density. We first set δ = ℓ21/N

1/3 with ℓ21 = (2/3)1/3 and
γ = 1+ℓ22/N

1/3 with ℓ22 = (1/12)(1/3), which are the optimal tuning parameters for an out-
of-stationarity aMALA started at the origin. The top line of Figure 2 presents trace plots
of ∥x∥2 under these settings; the left graph illustrates the first 10,000 iterations, while the
right one depicts the first 300 iterations of the same output together with the theoretical
curve. The latter, in red, is the solution of the ordinary differential equation in (10). The
bottom line of Figure 2 displays similar trace plots obtained with MALA; for this, we use
δ = ℓ21/N

1/2 with ℓ21 = 1 and γ = 1, which are the optimal parameters for this transient
MALA started at the origin (results from Christensen et al. (2005) adjusted to account for
our specific parameterization).

As expected from the asymptotic ODE, the initial convergence of aMALA appears to
be deterministic for the first 20 iterations. The sampler moves extremely rapidly toward
stationarity, and once there, continues mixing quite efficiently. The stationary phase is
reached in approximately 25 iterations, which is about the third of the time required by
MALA in a similar context (see bottom right graph, which requires about 75 iterations
before stabilizing). Using an O(N−1/3) tuning for δ in aMALA thus leads to significant im-
provements over MALA, which cannot handle tunings larger than O(N−1/2) in its transient
phase.

In both cases, the extremely high acceptance rates obtained (97.9% for aMALA and
95.1% for MALA) indicate that the candidates produced are too conservative for the sta-
tionary phase of these samplers. Consequently, these algorithms would benefit from an up-
date of their tuning parameters mid-run. Once stationarity is reached, letting δ = ℓ21/N

1/5

with ℓ21 = 1.03 and γ = 1 + ℓ22/N
1/5 with ℓ22 = ℓ21/2 in the aMALA yields an acceptance
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Figure 2: Trace plots of ∥x∥2 for simulating a 1,000-dimensional standard normal distri-
bution using aMALA started at the origin. Top: δ = ℓ21/N

1/3 and γ = 1 + ℓ22/N
1/3, with

ℓ21 = (2/3)1/3 and ℓ22 = (1/12)1/3; bottom: δ = ℓ21/N
1/2 with ℓ21 = 1 and γ = 1 (MALA).

The first 10,000 iterations are depicted on the left and the first 300 on the right; also
included is a solid red line that represents the solution to f ′(t) = bℓ1(f(t)) (top) and to
f ′(t) = 2{1− f(t)}(1 ∧ exp[−{1− f(t)}/2]) (bottom).
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rate that is close to 70.4% hence, according to §3.2, to a nearly optimal version of the
algorithm. To validate this claim, we define the average squared jumping distance as

ASJD(xN ) =
1

KN

K−1∑
k=0

N∑
j=1

(xNj,k+1 − xNj,k)
2

and use it here as a measure of the efficiency of an algorithm, i.e. a measure of the speed
at which the process explores its state space.

Figure 3 pictures the efficiency (ASJD) of aMALA against its acceptance rate. Each
point in a given graph is obtained by running 100,000 iterations of an aMALA started at 1
(near stationarity) using a different value of ℓ21. Specifically, we record the ASJD and the
proportion of accepted candidates of that run, and then place the corresponding point on
the graph. The four graphs presented make different assumptions on the parameter ℓ22. In
the top left graph, we use O(N−1/5) tunings and choose ℓ22 such that the condition ℓ21 = 2ℓ22
holds; in the other three graphs, O(N−1/3) tunings are used and ℓ22 is fixed at 0.5/2, 1.36/2,
and 1, respectively. We also include, on each graph, the theoretical efficiency curve under
stationarity as obtained from υ(ℓ1) in (14) (top left) and from (12) for the other graphs.
In our context, the speed measure in (12) reduces to

υ(ℓ1, ℓ2) = 2ℓ21Φ

(
−1

2

{
ℓ61
2

− 2ℓ41ℓ
2
2 + 2ℓ21ℓ

4
2

}1/2
)

,

where ℓ22 is respectively fixed at 0.5/2, 1.36/2, and 1.
The curve in the top left graph is maximized at an acceptance rate of 70% and presents

the highest ASJD among all four graphs. According to our numerical explorations, letting
ℓ22 = ℓ21/2 and tuning aMALA to accept about 70% of candidates in its stationary phase
thus leads to an optimal sampler. This agrees with the theoretical results presented in
§3.2. Breaking the condition ℓ21 = 2ℓ22 does not appear like a good approach to optimize the
exploration of the state space. Indeed, efficiency curves are not as high in those cases and,
as ℓ22 grows, the sampler becomes more sensitive to the choice of tuning ℓ21 (for large values
of ℓ22, underestimating ℓ21 might lead to a sudden drop in terms of efficiency and acceptance
rate). From those graphs, we realize that when δ is too small compared to γ, candidates
go through a phase where they are more strongly guided by their proposal mean than by
their proposal variance. This leads to an acceptance rate that gradually decreases before
going back to 1. Candidates in that region of the efficiency curve lack randomness and
become slightly more difficult to accept. However, at some point, δ becomes small enough
for the candidates produced to be sufficiently close to the current state of the process so
as to be virtually always accepted. The curve obtained using the relation ℓ21 = 2ℓ22 is, by
far, the best among the scenarios presented. This comes as no surprise given the results
expounded in §3.2.

As can be witnessed from the graphs in Figure 3, it takes a relatively long time before
the asymptotics kick in. Even with a target distribution in N = 1, 000 dimensions, the
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Figure 3: Efficiency against acceptance rate for simulating a 1, 000-dimensional standard
normal distribution using 100,000 iterations of aMALA started at x = (1, . . . , 1). We set
δ = ℓ21/N

ζ , γ = 1+ ℓ22/N
ζ , and use a range of values for ℓ21. Top: ℓ

2
2 = ℓ21/2, ζ = 1/5 (left),

ℓ22 = 0.5/2, ζ = 1/3 (right). Bottom: ℓ22 = 1.36/2, ζ = 1/3 (left), ℓ22 = 1, ζ = 1/3 (right).
The solid red lines represent the theoretical efficiency curves.
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Figure 4: Efficiency against acceptance rate for simulating an N -dimensional standard
normal distribution using 100,000 iterations of aMALA started at x = (1, . . . , 1). We set
δ = ℓ21/N

1/5, γ = 1+ℓ22/N
1/5, ℓ22 = ℓ21/2, and use a range of values for ℓ21. Left: N = 5, 000.

Right: N = 100, 000. The solid red lines represent the theoretical efficiency curves.

efficiency curves of the sampler do not perfectly agree with the theoretical efficiency curves.
When increasing N , we however reach a near-perfect agreement between the theoretical
curves and the simulated ones. Figure 4 displays graphs that are similar to the top left
graph in Figure 3 with ℓ22 = ℓ21/2, but for standard normal target distributions inN = 5, 000
and N = 100, 000 dimensions, respectively.

4.2 Beta-logistic target distribution

We now depart from the normality assumption and validate the asymptotic results pre-
sented in §3.2.1 when aMALA does not use preconditioning. We study a Beta-logistic target
distribution: if B ∼ Beta(a, b) on (0, 1) with a, b > 0, then X = logit(B) = log{B/(1−B)}
has a beta-logistic distribution on R with density

f(x) =
Γ(a+ b)

Γ(a)Γ(b)
eax(1 + ex)−(a+b) , x ∈ R .

We consider N = 1, 000 independent copies of this random variable with parameters
a = b = 2 and run 100,000 iterations of aMALA with proposal

N
(
xN + δγ

{
a− (a+ b)

exp(xN )

1 + exp(xN )

}
, 2δIN

)
.

The initial state of the sampler is directly drawn from the Beta-logistic(2, 2) so as to focus
on the stationary phase of the sampler. Figure 5 presents efficiency graphs of ASJD against
acceptance rate for a range of δ = ℓ21/N

1/3 values, similar to what was done in the previous
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Figure 5: Efficiency against acceptance rate for a 1,000-dimensional Beta-logistic target
(100,000 iterations of aMALA in stationarity with δ = ℓ21/N

1/3, γ = 1 + ℓ22/N
1/3, and a

range of values for ℓ21). Top: ℓ22 as in (13) (left), ℓ22 = 0.5/2 (right). Bottom: ℓ22 = 1.36/2
(left), ℓ22 = 1 (right). The solid red lines represent the theoretical efficiency curves.

section. As before, each of the four graphs illustrates the behaviour associated to a different
γ = 1 + ℓ22/N

1/3 value. The solid red lines represent the theoretical efficiency curves of
υ(ℓ1, ℓ2) in (12) against the asymptotic acceptance rate, a(ℓ1, ℓ2) = υ(ℓ1, ℓ2)/ℓ

2
1.

As expected, the optimal version of aMALA arises when (13) holds; in the current
context,

ℓ̂22 =
ℓ21
2

(a+ b+ 1)(a+ b)2

ab

Γ(a+ b)

Γ(a)

(
Γ(a+ 2)

Γ(a+ b+ 2)
− 2

Γ(a+ 3)

Γ(a+ b+ 3)
+

Γ(a+ 4)

Γ(a+ b+ 4)

)
.

In this case, the optimal ℓ21 is the value for which the proportion of accepted candidates
is 57.4%, as prescribed by the theory. We note that the efficiency curves obtained with
a non-preconditioned version of aMALA along with arbitrary ℓ22 values appear smoother
than those obtained with some preconditioning. In conclusion, even though we know that
asymptotically optimal acceptance rates vary as a function of ℓ22, these rates seem to remain
relatively close to 70.4% in the first example, and to 57.4% in the second one. These might
serve as useful guidelines in practice.
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5 Preconditioned aMALA: log-Gaussian Cox point processes

We now investigate the performance of the aMALA on a high-dimensional target density
by studying the log-Gaussian Cox point process example presented in Christensen et al.
(2005). The target density of this example possesses strong correlations and provides an
interesting challenge for MCMC samplers. The dataset contains the locations of 126 Scots
pine saplings in a Finnish natural forest. These locations are first standardized to fit on
the region [0, 1]2, which becomes the area of interest. A discretization of this square is then
obtained using a 64× 64 regular grid, and the random variables Y = (Yi,j , i, j = 1, . . . , 64)
represent the number of points in each grid cell (i, j). Based on this fine discretization,
the dimension of the model becomes N = 642 = 4096 and most grid cells are empty.
The random variables are assumed to be conditionally independent given a latent intensity
process Λ(·) = {Λ(i, j)|i, j = 1, . . . , 64} and are Poisson distributed with means mΛ(i, j),
i, j = 1, . . . , 64, where m = 1/4096 is the area of each cell. The latent intensity process
is assumed to take the form mΛ(i, j) = m exp{Xi,j}, where the prior for X = (Xi,j , i, j =
1, . . . , 64) is a multivariate Gaussian with mean E[X] = µ1 and N ×N covariance matrix
Cov(X) = Σ such that

Cov(Xi,j , Xi′,j′) = σ2 exp

{
−
√

(i− i′)2 + (j − j′)2

64β

}
.

As in Christensen et al. (2005), we use the estimated hyperparameters β = 1/33, σ2 = 1.91,
and µ = log(126)− σ2/2.

Using Bayes, the posterior density of interest satisfies

π(x|y) ∝ exp

{
−1

2
(x− µ1)⊤Σ−1(x− µ1)

} 64∏
i,j=1

exp {xi,jyi,j −m exp{xi,j}} ,

for x ∈ RN . The derivative of the log-density with respect to the latent variables is
∇ log π(x|y) = y −m exp{x} − Σ−1(x − µ1). As in Girolami and Calderhead (2011), we
let the preconditioning matrix CN = M−1 with M = −E[∇2 log π(x|y)] = Λ + Σ−1, where
Λ is an N ×N diagonal matrix whose diagonal elements are obtained from the expectation
of the exponential of normal random variables as m exp{µ+ (Σ)ii}, i = 1, . . . , 4096.

Given the pines dataset and fixed hyperparameters, we generate values from π(x|y)
using a preconditioned aMALA with various combinations of initial value for x and tuning
parameters γ, δ. We outline the fact that contrarily to the MALA of Christensen et al.
(2005), it is not necessary to reparameterize the target density in order to benefit from an
efficient exploration of the state space; we may thus use the density detailed above as is.

The initial values used in the simulations are Xi,j = µ for i, j = 1, . . . , 64, as well as a
starting value near the posterior mode obtained by solving the equation yi,j − exp{Xi,j}−
(Xi,j − β)/σ2 = 0 for Xi,j , i, j = 1, . . . , 64; these values were studied in Christensen et al.
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(2005). We also consider intermediate values (the vectors 5.657691 · 1 and 7.122988 · 1,
which are the two largest values solving the previous equation), as well as initial values
that are farther in the tail of the distribution, such as 642-dimensional vectors of 0’s and
10’s.

For each of these initial values, we implement MALA samplers (γ = 1) with tunings
δ = 1/N1/2 and δ = 1.36/N1/3; the former is optimal in transience for a standard normal
target started at the origin, while the latter is optimal in the stationary phase for a standard
normal target. We also run aMALA with δ = ℓ21/N

1/3, γ = 1 + ℓ22/N
1/3, and ℓ22 = ℓ21/2,

where we investigate different values of ℓ21. We study ℓ21 = (2/3)(1/3), which has been
selected as near-optimal in transience according to Theorem 1. We also study a selection
of ℓ21 values ranging from 2 to 2.9, and finally implement aMALA with δ = 1.03/N1/5 and
γ = 1+0.515/N1/5, which has been found to be the optimal tuning in the stationary phase
in §3.2.2. A summary of our findings is presented in Tables 1 and 2; for each algorithm
implemented, we measure efficiency using the average squared jumping distance and we
report the acceptance rate, as well as the initial value used.

X0 = µ1 X0 near post. mode X0 = 01

Algorithm ζ ℓ21 ℓ22 ASJD Acc. rate ASJD Acc. rate ASJD Acc. rate

MALA 1/2 1.00 0.00 154.15 0.967 154.16 0.967 154.23 0.967
MALA 1/3 1.36 0.00 0.00 0.000 0.00 0.000 0.00 0.000

aMALA 1/3 (2/3)1/3 (1/12)1/3 541.51 0.956 537.72 0.949 539.49 0.952
aMALA 1/3 2.00 1.00 1107.33 0.825 1104.69 0.823 0.00 0.000
aMALA 1/3 2.50 1.25 1264.02 0.742 1256.85 0.738 0.00 0.000
aMALA 1/3 2.62 1.31 1285.58 0.716 1274.07 0.707 0.00 0.000
aMALA 1/3 2.74 1.37 1315.83 0.697 1316.41 0.697 0.00 0.000
aMALA 1/3 2.90 1.45 1271.91 0.635 1287.19 0.643 0.00 0.000
aMALA 1/5 1.03 0.515 1178.64 0.543 1193.21 0.549 0.00 0.000

Table 1: 10,000 iterations of MALA and aMALA with the following initial values: µ, near
posterior mode, and 0

The two samplers that are tuned so as to be optimal in transience (1st and 3rd line
in each table) succeed in leaving their initial state and exploring the space in all cases,
regardless of X0. As expected, the acceptance rates of these algorithms are quite large
(97% for MALA and 95% for aMALA), which indicates that a tuning adjustment should
probably be performed once the process leaves the transient phase. In all cases, aMALA
offers a performance that is about 3.5 times as good as that of MALA (improvement ranging
between 348% and 352% in terms of ASJD). This is explained by the fact that aMALA
explores its state space in O(N1/3) iterations, compared to O(N1/2) for MALA.

As the process is started further out in the tails, it becomes increasingly difficult for
other versions of these algorithms (with different tunings ℓ21) to leave the initial state. In
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X0 = 5.6576911 X0 = 7.1229881 X0 = 101

Algorithm ζ ℓ21 ℓ22 ASJD Acc. rate ASJD Acc. rate ASJD Acc. rate

MALA 1/2 1.00 0.00 153.96 0.966 154.02 0.967 154.59 0.967
MALA 1/3 1.36 0.00 0.00 0.000 508.48 0.570 0.00 0.000

aMALA 1/3 (2/3)1/3 (1/12)1/3 539.66 0.952 536.56 0.946 544.81 0.955
aMALA 1/3 2.00 1.00 1075.85 0.802 1108.08 0.825 0.00 0.000
aMALA 1/3 2.50 1.25 1076.49 0.632 1106.60 0.649 0.00 0.000
aMALA 1/3 2.62 1.31 0.18 1e-04 1032.91 0.574 0.00 0.000
aMALA 1/3 2.74 1.37 0.00 0.000 345.28 0.183 0.00 0.000
aMALA 1/3 2.90 1.45 0.00 0.000 190.85 0.095 0.00 0.000
aMALA 1/5 1.03 0.515 0.00 0.000 0.41 1e-04 0.00 0.000

Table 2: 10,000 iterations of MALA and aMALA with the following initial values: 5.657691,
7.122988, and 10

spite of this, we notice that aMALA does much better than MALA, which almost never
leaves its initial value when tuned according to its stationary settings. We emphasize
the fact that the target distribution studied does not satisfy the regularity conditions ex-
pounded in §2.4 (the covariance matrix used in aMALA is only an approximation, among
other things). Consequently, the asymptotically optimal tuning ℓ21 = 1.03 does not neces-
sarily corresponds to a 70% acceptance rate. According to the numerical results obtained,
it would appear that adjusting the acceptance rate is a tuning approach more robust than
adjusting ℓ21. Indeed, the ASJD is near its maximum when the acceptance rate is tuned so
as to approach 70%, so this is probably what users should aim for. In fact, when tuning
aMALA so that it accepts 70% of candidates, we realize that it only fails to leave the
initial value when the latter is extreme (0’s or 10’s). We also note that an aMALA that is
optimally tuned for its stationary phase is more than twice as efficient as MALA in terms
of ASJD (when the initial state is 7.122988, which is the only occurence of MALA explor-
ing its state space with its O(N−1/3) optimal tuning). Specifically, a run of aMALA with
ℓ21 = 2.4 leads to an ASJD of 1211.71 and an acceptance rate of 74.3%, which represents
an improvement of 240% over the MALA tuned to accept 57% of candidates (extra run
not recorded in the tables).

6 Discussion

This paper presents asymptotic results about the new MALA with annealed proposal,
both in and out of stationarity. As was done in the literature for MALA, we consider a
preconditioned version of aMALA and study its computational cost in transience and in
stationarity. Through the various developments, it becomes obvious that aMALA performs
best when its tuning parameters satisfy a specific relationship: δ = ℓ21/N

ζ1 and γ =
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1 + ℓ22/N
ζ2 , with ℓ22 = ℓ21/2 and ζ1 = ζ2. This implies that γ is entirely determined by our

choices of ℓ21 and ζ1 for δ, which ultimately leads to a sampler as easy to tune as MALA. We
find that aMALA’s computational cost out of the stationary phase is O(N1/3), a significant
improvement over MALA’s O(N1/2) cost. Although there is no value ℓ21 that optimizes
the speed of convergence in transience, the choice ℓ21 = (2/3)1/3 seems reliable and close to
optimality for a broad range of initial values.

In its stationary phase, the preconditioned aMALA is found to have a computational
cost of O(N1/5), provided that ℓ22 = ℓ21/2 holds. In that case, one can simply tune ℓ21 so
as to approach the asymptotically optimal acceptance rate of 70.4%. If a user were to
select another value of ℓ22, violating the above relation, then the computational cost would
become O(N1/3) and the asymptotically optimal acceptance rate would then be smaller
than 70% (but an exact optimal value would be difficult to find). Nonetheless, simulation
studies show that aMALA offers better performances than MALA in that case, as long as
ℓ21 is not too small (in practice, we can easily remediate to this potential problem by using
a few preliminary runs with different ℓ21 values).

Finally, when omitting the preconditioning matrix in aMALA, we find that the pa-
rameter ℓ22 should be chosen so as to satisfy (13). In that case, the computational cost is
O(N1/3) and ℓ21 should simply be tuned so as to target a 57.4% acceptance rate in the sta-
tionary phase, as is the case for MALA. The new sampler however leads to better efficiency
measures (i.e. a larger speed measure) due to the presence of γ in the proposal mean. In all
the situations considered, the theoretical and practical results obtained in this paper are in
agreement and unequivocally show the advantages of implementing aMALA over MALA.
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