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A differential geometric approach to Bayesian
marginalization

D.A.S. Fraser∗, and Mylène Bédard†

Abstract. The statistical tool box offers a wide range of inference techniques
to choose from; regrettably, the reliability of these methods in the sense of ‘re-
producibility of frequency properties’ can often be unclear or even ignored. We
examine this issue for default Bayes methods and develop a prior that leads to
full second-order inference for any regular scalar parameter of interest in presence
of nuisance parameters; the new prior is Jeffreys based. Also, in parallel, we show
that such second-order accuracy is widely unavailable for vector parameters of in-
terest through the Bayesian framework, unless the interest parameter has a special
linearity. Detailed examples, including simulations, are presented and discussed.
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1 Introduction
As part of discussing Lindley [20]’s view of a Bayesian 21st century, Efron [9] proposed
a simple classification for Bayes priors: ‘genuine priors’ where there is a valid frequency
source for the parameter value, and ‘uninformative or mathematical priors’ for formal
calculations without such a valid source. The conditional probability lemma of course
says that when parameter values are actually sourced from a specified prior and the
model itself is valid, then the posterior distribution exhibits the stated frequency prop-
erty for the parameter. In cases where other priors describe the sourcing however, then
the lemma does not say much in terms of frequency properties for the particular con-
text. This is not to say that such posteriors might not have attractive properties; for
example, if a quantile bound obtained from some posterior distribution exhibits the
reproducibility-of-frequency-under-repetitions property, then that frequency is de facto
confidence for the quantile bound.

Berger [1] and Goldstein [18] refer to the unification of Bayesian and frequentist
procedures in terms of coverage matching. This property arises when a Bayes calculation
is examined under repetitions and found to exhibit the stated posterior value. Such a
concept is of course confidence with an alternative labelling, and indicates that a Bayes
calculation can indeed provide a route to confidence. Over the years, various researchers
have made progress on achieving reproducibility through Bayes. Tibshirani [22], for
instance, proposed a coverage-matching prior for the case where a scalar parameter of
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interest is orthogonal to the complementing nuisance parameter. More recently, Fraser
et al. [17] developed a prior based on matching Bayesian and frequentist higher-order
approximations; we refer the reader to that article and the references therein for more
information on the subject. Datta and Sweeting [7] also provides a comprehensive review
of available coverage-matching priors.

In this paper, we develop a new prior that leads to second-order accuracy in terms
of frequency reproducibility for a scalar parameter of interest. The construction of this
new prior, which was foreseen in the explorations of Fraser et al. [15], builds on regular
models and likelihood asymptotics. Its development requires useful properties stemming
from exponential models in their canonical form, but this does not jeopardize the wide
applicability of the new prior: it can indeed be obtained from general regular models,
not only exponential ones.

We record, in §2 and §3, the distributional results that are necessary for the devel-
opment of the new prior. We then introduce the prior in §4; it is, in fact, Jeffreys [19]’s
prior used ‘off-label’, strictly on the one-dimensional profile contour for the interest
parameter. In the case where the interest parameter is non-linear with respect to the
canonical parameter, then a rotationally symmetric reparameterization of the model
is used to express the required Jacobian. We present a clear and systematic approach
for computing the prior, waving the need for potentially restrictive nuisance correction
terms that are contingent on the geometry of the interest parameter with respect to
the canonical parameterization, see Fraser et al. [15]. The resulting one-dimensional
posterior, which may be seen as emerging from the new Jeffreys-based prior combined
to the profile likelihood of the interest parameter, can then be used for second-order
Bayesian inference. Following this line of reasoning, further Bayesian calculations (such
as predictive distributions) are then accessible through the one-dimensional statistical
model that is proportional to the profile likelihood of interest (instead of the initial
full-dimensional statistical model).

In parallel, we also show through a revealing example in §5 that posteriors for vector
parameters quite generally do not have such confidence accuracy, particularly when
marginalized to component parameters. In fact, priors featuring second-order accuracy
are widely unavailable for vector parameters of interest, unless the parameter has a
special linearity. Finally, in §6, we examine a spectrum of examples in detail, and find
that the new prior gives remarkable accuracy for posterior quantile bounds and intervals.

2 Some results on Bayes-frequency equivalence
Let Y1, . . . , Yn be independent and identically distributed (i.i.d.) random variables from
a statistical model with density f(yi; θ) on R, where θ has dimension p. We write
y = (y1, . . . , yn) with observed data y0, and assume that f(y; θ) is an exponential family
model with continuity in the variable and parameter. Although this assumption might
appear restrictive, we note that the methodology introduced in this paper is widely
applicable. Indeed, for general regular statistical models (not in exponential form), we
may rely on a tangent exponential model that provides full third-order inference for the
original model-data combination; see Appendix A.
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2.1 Bayes-frequency equivalence, location models

Under this framework, let s and φ be the canonical variable and parameter for the
exponential family model, respectively. Specifically,

f(y; θ) = exp{φ(θ)⊤s(y) − κ[φ(θ)]}f(y) ,

where φ(θ) ∈ Rp is one-to-one-equivalent to θ and s(y) ∈ Rp. The density in its canonical
parameterization is therefore expressed as g(s;φ) = exp{φ⊤s− κ(φ)}g(s).

Our goal is to find a prior density such that frequentist p-values match Bayesian
posterior survivor values to some degree of accuracy. The exact p-value for φ0 is defined
here as the probability left to the observed data point s0, p(φ0) =

∫ s0
g(s;φ0)ds, while

the Bayesian posterior survivor value is the posterior probability right to φ0, s(φ0) =∫
φ0
π(φ|s0)dφ.

In the particular case of location models, by seeing one region of integration as the
reflection of the other, we directly have

p(φ0) =
∫ s0

g(s− φ0)ds =
∫ s0−φ0

g(z)dz =
∫
φ0

g(s0 − φ)dφ = s(φ0) .

This means that the p-value exactly matches the Bayesian posterior survivor value
s(φ0) =

∫
φ0
π(φ|s0)dφ, where the posterior density is obtained using the flat prior for

location parameters, π(φ) ∝ 1. Before introducing Welch and Peers [25]’s result for
scalar exponential models, we present a convenient approximation to the statistical
density g(s;φ).

2.2 Saddlepoint approximation

In recent years, many of the most productive developments for statistical analysis have
come from the saddlepoint approximation promoted by Daniels [6]. This method offers
an O(n−3/2) estimate of an exponential family density, hereafter referred to as third-
order accurate. This highly accurate approximation presents itself in terms of very
familiar statistical quantities:

g(s;φ) = exp{φ⊤s− κ(φ)} g(s)

= ek/n

(2π)p/2 exp{ℓ(φ; s) − ℓ(φ̂; s)} |ȷ̂φφ|−1/2 {1 + O(n−3/2)} , (1)

where ℓ(φ; s) − ℓ(φ̂; s) = −r2
φ/2 is the negative log-likelihood ratio, φ̂ = φ̂(s) is the

maximum likelihood estimator (MLE), and ȷ̂φφ = ȷφφ(φ̂) is the observed information
matrix in the canonical parameterization. Each of these involves dependence on the
variable s, but only the first also has dependence on φ. The term k/n is a generic
normalizing constant.

Hereafter, we let g̃(s;φ0) = ek/n(2π)−p/2e−r2
φ0/2|ȷ̂φφ|−1/2, keeping in mind that this

expression is an O(n−3/2) approximation to the real statistical density; see (1). The
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high accuracy of the approximate density g̃(s;φ0) is important, but pales in contrast to
its ability to extract measures of adequacy between data and parameter. It essentially
replaces any use of sufficiency, ancillarity, and other reduction methods, yet retaining
continuity. The approximation g̃(s;φ0) sort of gives the null distribution for computing
the p-value in a single, unequivocal step.

2.3 Bayes-frequency equivalence, scalar case

Suppose we have a scalar-variable, scalar-parameter model in exponential form. A result
from Cakmak et al. [4] shows that g(s;φ) can be rewritten as a location model, say
ḡ(t− µ) with t = t(s) and µ = µ(φ), to second-order accuracy:

g(s;φ) = ḡ(t(s) − µ(φ)){1 + O(n−1)} .

This is achieved by making use of Taylor expansions and transformations on the vari-
able and parameter spaces (see also §2.2 of Fraser et al. [15] for instance). Using this
convenient approximate location property, it is then easy to show that the observed
p-value function is equal, to second-order accuracy, to the Bayesian posterior survivor
function under Jeffreys [19] prior. This intriguing result was established by Welch and
Peers [25].

In particular, let ψ = ψ(φ) be the interest parameterization. Using the saddlepoint
approximation in (1) and applying a transformation from s to φ̂, which is one-to-one
with Jacobian |ȷφφ(φ̂)|, leads to

p(ψ0) ≈
∫ s0

ek/n

(2π)1/2 e−r2
ψ0/2ȷ−1/2

φφ (φ̂)ds (2)

=
∫ φ̂(s0) ek/n

(2π)1/2 e−r2
ψ0/2ȷ1/2

φφ (φ̂)dφ̂ .

We note that this saddlepoint approximation is itself an exponential family model. It
can be expanded, as in Cakmak et al. [4], and eventually approximated by a location
model as follows

p(ψ0) ≈
∫ φ̂(s0) ek/n

(2π)1/2 e−r2
ψ0/2︸ ︷︷ ︸

ḡ(t−µ0){1+O(n−1)}

ȷ1/2
φφ (φ̂)dφ̂︸ ︷︷ ︸

dt

≈
∫ t0

ḡ(t− µ0)dt

=
∫
µ0

ḡ(t0 − µ)dµ ≈
∫
φ0

ek/n

(2π)1/2 e−r2
ψ/2︸ ︷︷ ︸

ḡ(t0−µ){1+O(n−1)}

ȷ1/2
φφ (φ)dφ︸ ︷︷ ︸

dµ

, (3)

where (3) is the Bayes survivor function s(φ0) =
∫
φ0
π(φ|s0)dφ as based on Jeffreys’

prior π(φ) ∝ ȷ
1/2
φφ (φ). Both integrals are expressed in terms of r2

ψ/2, the constrained
signed log-likelihood ratio ℓ(φ̂; s) − ℓ(φ̂ψ; s), with φ̂ψ the constrained maximum likeli-
hood estimator given the interest parameterization ψ. On the first line, the interest ψ0
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is fixed and r2
ψ0
/2 = ℓ(φ̂; s) − ℓ(φ̂ψ0 ; s), whereas on the second line, the data is at its

observed value and r2
ψ/2 = ℓ(φ̂; s0) − ℓ(φ̂ψ; s0).

The p-value essentially records the statistical position of the data relative to a
parameter value φ0 such that ψ(φ0) = ψ0. In the current context, (3) means that
p(ψ0) = s(ψ0){1 + O(n−1)} and we can say that the root information (Jeffreys) prior
gives Bayes-frequency equivalence.

3 Some results on likelihood asymptotics
Our goal is now to find a prior that leads to Bayes-frequency equivalence for a scalar
parameter of interest in presence of nuisance parameters. For this, we use the concept
of ancillarity to reparameterize the statistical model g(s;φ).

3.1 Ancillary statistic and reparameterization, vector case

Suppose we have a p-dimensional exponential model and are interested in a scalar pa-
rameter ψ = ψ(φ); let λ = λ(φ) be a (p − 1)-dimensional complementing nuisance
parameter for ψ. We assume here that the nuisance λ is chosen orthogonal to the
scalar interest ψ, in the sense of Cox and Reid [5] (since ψ is a scalar, one can always
reparameterize to obtain a nuisance parameter orthogonal to the interest parameter).
Conveniently, this requirement will eventually be swallowed up in the theoretical devel-
opments of §4 and does not need to be accounted for in the examples or, more generally,
in practice with general regular statistical models. Indeed, the orthogonality property is
used below to obtain the marginal density of an ancillary variable that depends on the
interest parameter ψ only. Once this is achieved, we reparameterize this one-dimensional
density in terms of the canonical φ to pursue our developments. To this end, we use
arguments from differential geometry to derive a Jacobian for this transformation from
orthogonal parameters to canonical ones. The new prior we eventually obtain for ψ is
one-dimensional and free of the nuisance parameter λ.

As it turns out, the unique null distribution for assessing a specific ψ value is directly
available from asymptotic theory; we now provide the broad lines of the argument, see
Fraser and Reid [16] or Fraser [13] for more details. With ψ(φ) fixed at ψ0, there exists
an approximately ancillary statistic U for the nuisance parameter, i.e. a function of s
whose distribution is second-order free of λ. This (scalar) statistic U(s) takes values on
a continuous contour in the sample space; U(s) and the contour on which it is defined
may not be unique, but its density is unique to third-order accuracy. We thus have

H(u;ψ0, λ) = h(u;ψ0){1 + O(n−3/2)} . (4)

For convenience, let the continuous contour be the observed profile line L0
ψ0

= {s ∈ Rp :
λ̂ψ0 = λ̂0} on which the constrained maximum likelihood estimator of λ is fixed at its
observed value. The statistic U(s) thus takes values on L0

ψ0
, where ψ = ψ0 is fixed. We

do not need to characterize U(s), but an explicit expression for h(u;ψ) is required.
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With this in mind, we reparameterize the exponential model g(s;φ) so that the
couple (u(s), v(s)) acts as the full canonical variable, where v(s) is some accompanying
(p−1)-dimensional variable. We may face one of two cases. In the first one, the interest ψ
is a linear function of φ. An appropriate change of variable then easily leads to an expo-
nential model with canonical parameter (ψ(φ), λ(φ)) and canonical variable (u(s), v(s));
from there, a saddlepoint approximation g̃(u, v;ψ, λ) as in (1) is then accessible.

In the second case, the interest ψ is not linear in φ; in lieu of ψ, we then define a new
scalar parameter χ = χ(φ) that is linear in φ and tangent to ψ(φ) at φ̂ψ0 , the constrained
maximum likelihood value of φ given ψ(φ) = ψ0. Through a change of variable, we
then obtain an exponential model with canonical variable (u(s), v(s)) and canonical
parameter (χ(φ), ζ(φ)) (instead of ψ(φ) and λ(φ)), where ζ is an accompanying (p−1)-
dimensional parameter. Since the observed profile line is the contour of interest to us,
we need not worry about a potential loss of accuracy from this manipulation. Indeed,
we note that on L0

ψ0
, the original exponential model g(s;φ) exactly coincides with

this tangent exponential model. Now, since a saddlepoint approximation g̃(u, v;χ, ζ) is
available for the latter, we then pursue the analysis with the approximation g̃(u, v;χ, ζ).
For simplicity however, we hold on to our usual notation ψ for the interest parameter.

3.2 Density of the ancillary statistic

Now that the exponential model has been reparameterized in terms of (u, v), we wish
to obtain an expression for the marginal density h(u;ψ). With ψ(φ) fixed at ψ0, the full
density g(u, v;ψ0, λ) is factorized as

g(u, v;ψ0, λ) = q(v|u;ψ0, λ) H(u;ψ0, λ)
= q(v|u;ψ0, λ) h(u;ψ0){1 + O(n−3/2)} ,

with a nuisance density q(v|u;ψ0, λ) and an interest density h(u;ψ0) that contains full
third-order information about ψ0; see (4). To obtain an expression for h(u;ψ0) on the
ancillary contour L0

ψ0
, we find expressions for the full model g and nuisance density q,

both restricted to L0
ψ0

, and then solve for h in the previous equation.

Remember that (u, v) now acts as the full canonical variable of the exponential
model and consider a saddlepoint approximation as in (1):

exp{ψu+ λv − κ(ψ, λ)} g(u, v) = g̃(u, v;ψ, λ) {1 + O(n−3/2)} ,

where, using the orthogonality of ψ and λ to factorize the determinants,

g̃(u, v;ψ, λ) =
ek/n

(2π)p/2 exp{ℓ(ψ, λ;u, v) − ℓ(ψ̂, λ̂;u, v)} |ȷψψ(ψ̂, λ̂)|−1/2|ȷλλ(ψ̂, λ̂)|−1/2 .

On L0
ψ0

, the interest parameter is fixed at ψ0 and the constrainted MLE λ̂ψ0 is fixed
at its observed value λ̂0. From the exponential form of g(u, v;ψ0, λ), it easily follows
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that λ̂ψ0 is a function of v only —not u (similarly, when χ is fixed, then ζ̂χ is a function
of v only). The observed profile line therefore corresponds to a contour on which v is
fixed at the observed v0. On that line, the saddlepoint approximation for the full density
satisfies

g̃(u, v0;ψ0, λ) =
ek/n

(2π)p/2 exp{ℓ(ψ0, λ;u, v0) − ℓ(ψ̂, λ̂;u, v0)} |ȷψψ(ψ̂, λ̂)|−1/2|ȷλλ(ψ̂, λ̂)|−1/2 .

The conditional density of v given the ancillary U = u, q(v|u;ψ0, λ), is a density
on the (p − 1)-dimensional variable space with parameter λ. Since q(v|u;ψ0, λ) ∝v

g(u, v;ψ0, λ), it inherits exponential form from the full model and thus also admits a
saddlepoint approximation, q̃(v|u;ψ0, λ). On the contour L0

ψ0
, this conditional density

is evaluated at v0 with parameter λ:

q̃(v0|u;ψ0, λ) = ek/n

(2π)(p−1)/2 exp{ℓ(ψ0, λ;u, v0) − ℓ(ψ0, λ̂ψ0 ;u, v0)}|ȷλλ(ψ0, λ̂ψ0)|−1/2.

Dividing the full density g̃(u, v0;ψ0, λ) by the conditional one q̃(v0|u;ψ0, λ) leads to
the marginal distribution h(u;ψ0) on L0

ψ0
, with parameter ψ0 and scalar differential du

h(u;ψ0) = ek/n

(2π)1/2 exp{ℓ(ψ0, λ̂ψ0 ;u, v0) − ℓ(ψ̂, λ̂;u, v0)}

|ȷψψ(ψ̂, λ̂)|−1/2|ȷλλ(ψ̂, λ̂)|−1/2|ȷλλ(ψ0, λ̂ψ0)|1/2 ;

we remind the reader that ek/n is a generic normalizing constant. This density features
third-order accuracy, and thus contains full third-order information on the interest pa-
rameter ψ0.

If we now reexpress the density h(u;ψ0) in terms of the original canonical parame-
terization φ, we find

h(u;ψ0) = ek/n

(2π)1/2 exp{ℓ(φ̂ψ0 ;u, v0) − ℓ(φ̂;u, v0)}

|ȷ(ψψ)(φ̂)|−1/2|ȷ(λλ)(φ̂)|−1/2|ȷ(λλ)(φ̂ψ0)|1/2

= ek/n

(2π)1/2 e−r2
ψ0/2

{ |ȷ(λλ)(φ̂ψ0)|
|ȷ(λλ)(φ̂)|

}1/2

|ȷ(ψψ)(φ̂)|−1/2 , (5)

with −r2
ψ0
/2 = ℓ(φ̂ψ0 ;u, v0) − ℓ(φ̂;u, v0). The parentheses around ψψ and λλ indicate

that the second derivatives must be rescaled with respect to the given exponential
parameterization φ. The information determinants in the parameterization (ψ), (λ) can
be obtained by applying Jacobians φψ = ∂φ/∂ψ and φλ = ∂φ/∂λ to the determinants
in the parameterization ψ, λ:

|ȷ(ψψ)(φ̂)| = |ȷψψ(φ̂)||φ⊤
ψ (φ̂)φψ(φ̂)|−1 ,
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|ȷ(λλ)(φ̂)| = |ȷλλ(φ̂)||φ⊤
λ (φ̂)φλ(φ̂)|−1 ,

|ȷ(λλ)(φ̂ψ)| = |ȷλλ(φ̂ψ)||φ⊤
λ (φ̂ψ)φλ(φ̂ψ)|−1 .

Equation (5) is a one-dimensional density for u expressed in terms of the original
canonical parameter φ on the observed profile line L0

ψ0
. The resulting expression is sim-

ilar to (1), except that it involves an extra ratio of nuisance information determinants.
We note that (5) also happens to be valid for vector ψ. For more information about
the development of h(u;ψ), and in particular the implications of using the tangent
exponential model, see Fraser [10].

3.3 Location form and standardization - density of ancillary statistic

Now that we have access to an explicit expression for h(u;ψ), we may use it to compute
an O(n−3/2) p-value function; evaluated at ψ0, we write p∗(ψ0) =

∫ u0
h(u;ψ0)du. In

addition to this, the marginal null distribution h(u;ψ0) in (5) can be shown to have
a location form to second-order accuracy; this will eventually lead to Bayes-frequency
equivalence as in §2.3.

Suppose we temporarily ignore the factor {|ȷ(λλ)(φ̂ψ0)|/|ȷ(λλ)(φ̂)|}1/2 in (5); the con-
tribution |ȷ(ψψ)(φ̂)|−1/2du then appears as the Welch and Peers [25] differential on the
observed profile line L0

ψ0
with respect to an underlying scalar exponential model; see (2).

This therefore presents the expression A1 = ek/n(2π)−1/2 · exp{−r2
ψ0
/2}|ȷ(ψψ)(φ̂)|−1/2

as a location model with variable t and parameter µ0 to second-order accuracy, as ar-
gued in §2.3. Now, the factor A2 = {|ȷ(λλ)(φ̂ψ0)|/|ȷ(λλ)(φ̂)|}1/2, already second-order
accurate, can be expanded as a function exp{a(t − µ0)/n1/2} with the same t and µ0;
see §A.1 of Fraser et al. [15]. The product A1A2 is thus a function of (t−µ0), providing
a full location form for (5) to second order. A manipulation similar to (3) can then be
applied to p∗(ψ0), leading to a prior density π(ψ) that verifies Bayes-frequency equiva-
lence for a scalar interest parameter in presence of a vector nuisance parameter. Before
going forward with this, some technicalities however need attention.

The distribution (5) is on the line L0
ψ0

for a fixed ψ0 and goes through the observed
data (u0, v0). It is also perpendicular to the interest parameter contour, Pψ = {ψ ∈ R :
φ = φ̂ψ}, at the constrained maximum likelihood value φ̂ψ0 on the parameter space; see
Figure 1. Now consider an arbitrary ψ value for the interest parameter; it turns out that
ψ(φ) often has certain rotation properties that cause the line L0

ψ to change direction
with ψ-change. This is the case, for instance, if φ = (φ1, φ2) and ψ = φ1/φ2: as ψ varies
on the parameter space (φ1, φ2), so does the direction of L0

ψ. As a result, the observed
information on L0

ψ could also vary, as could the form of the underlying exponential
distribution. In particular, if the observed information matrix is not proportional to the
identity matrix, then the scaling of underlying exponential distributions on L0

ψ likely
changes with ψ.

We can notationally avoid this complication by recalibrating the exponential coor-
dinates φ to have an observed information matrix equal to the identity. This is not a
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change in substance, just notational so that what we have written as an exponential
model is, under rotation, the same exponential model to second order. The recalibration
is achieved by finding a right square root T of ȷ̂φφ = T⊤T and then using the modi-
fied canonical parameter φ̄ = Tφ, which has acquired an identity observed information
ȷ̂φ̄φ̄ = I. This implies that the exponential distributions h(u;ψ) through the data point
are now, for various ψ, a single exponential distribution.

4 A Jeffreys-based prior featuring second-order
reproducibility

We now combine the previous distributional results with Welch and Peers [25]’s approach
to derive a prior that achieves confidence, i.e. that possesses the reproducibility property.
Hereafter, we use the modified exponential parameterization φ̄ described at the end of
§3.3; for notational simplicity, we however write φ and assume that the adjustment has
been made.

4.1 Prior density

The density (5) can be integrated up to the observed u = u0, leading to

p∗(ψ0) =
∫ u0

h(u;ψ0)du

=
∫ u0

ek/n

(2π)1/2 e−r2
ψ0/2

{ |ȷ(λλ)(φ̂ψ0)|
|ȷ(λλ)(φ̂)|

}1/2

|ȷ(ψψ)(φ̂)|−1/2du ,

where r2
ψ0

and the information functions of course depend on the scalar u. From the
developments in §3, recall that the integrand is a third-order approximation to the exact
marginal density of the statistic U(s), leading to a third-order p-value p∗(ψ0). Recall
also the uniqueness of this density subject to retaining model continuity, and the fact
that it contains full information about the interest parameter ψ0.

As argued in §3.3, the density h(u;ψ0) in (5) can be expressed as a density that
possesses location form to second order O(n−1). The implication of this property is that
we can apply the location model result in (3) to the density h(u;ψ0). By first performing
a change of variable from u to ψ̂ = ψ̂(u, v0) on L0

ψ0
with Jacobian |ȷ(ψψ)(ψ̂, λ̂0)| =

|ȷ(ψψ)(φ̂)|, we find

p∗(ψ0) =
∫ ψ̂(u0,v0) ek/n

(2π)1/2 e−r2
ψ0/2

{ |ȷ(λλ)(φ̂ψ0)|
|ȷ(λλ)(φ̂)|

}1/2

︸ ︷︷ ︸
ḡ(t−µ0){1+O(n−1)}

|ȷ(ψψ)(φ̂)|1/2dψ̂︸ ︷︷ ︸
dt

.

Then, by mimicking (3), the integrand may be approximated by the function ḡ(t−µ0),
a location model with variable t and fixed parameter µ0. Recall that for such models,
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Figure 1: Exponential coordinates having symmetry (ȷ̂0φφ = I) at the point φ̂0; dψ is an
increment in the parameter ψ; dφ̂ψ is the corresponding vector increment for the point
φ̂ψ on the profile curve Pψ; and d(ψ) is the corresponding increment in the symmetrized
exponential coordinates.

elementary calculus leads to
∫ t0

ḡ(t − µ0)dt =
∫
µ0
ḡ(t0 − µ)dµ. With t0 fixed and µ

varying, the density on the right is

ḡ(t0 − µ){1 + O(n−1)} = ek/n

(2π)1/2 e−r2
ψ/2

{ |ȷ(λλ)(φ̂ψ)|
|ȷ(λλ)(φ̂)|

}1/2

= ek/n

(2π)1/2 exp{ℓ(φ̂ψ;u0, v0) − ℓ(φ̂;u0, v0)}
{ |ȷ(λλ)(φ̂ψ)|

|ȷ(λλ)(φ̂)|

}1/2

.

We are left finding an expression for the differential dµ in terms of the special param-
eterization (ψ); the latter indicates that we integrate with respect to φ, but along the
contour Pψ in the parameter space.

In §2.3, we went from an integral with respect to s on the variable space, to one
with respect to φ on the parameter space. The transformations implied that dt =
|ȷφφ(φ̂)|−1/2ds = |ȷφφ(φ̂)|1/2dφ̂ and dµ = |ȷφφ(φ)|1/2dφ. In a similar fashion, we go
here from an integral with respect to u on the line L0

ψ0
= {(u, v0) : λ̂ψ0 = λ̂0} to one

with respect to (ψ) on the ψ contour Pψ = {ψ ∈ R : φ = φ̂ψ}, where φ̂ψ = φ̂0
ψ is based

on observed data (u0, v0). The transformations then imply that dt = |ȷ(ψψ)(φ̂)|−1/2du =
|ȷ(ψψ)(φ̂)|1/2dψ̂ and dµ = |ȷ(ψψ)(φ̂ψ)|1/2d(ψ). Indeed, given that v is fixed at its observed
v0 and that λ̂ψ = λ̂0, the differential is a function of the constrained MLE φ̂ψ.

To summarize, we have

p∗(ψ0) =
∫ u0

ek/n

(2π)1/2 e−r2
ψ0/2

{ |ȷ(λλ)(φ̂ψ0)|
|ȷ(λλ)(φ̂)|

}1/2

︸ ︷︷ ︸
ḡ(t−µ0){1+O(n−1)}

|ȷ(ψψ)(φ̂)|−1/2du︸ ︷︷ ︸
dt

(6)
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≈
∫
ψ0

ek/n

(2π)1/2 e−r2
ψ/2

{ |ȷ(λλ)(φ̂ψ)|
|ȷ(λλ)(φ̂)|

}1/2

︸ ︷︷ ︸
ḡ(t0−µ){1+O(n−1)}

|ȷ(ψψ)(φ̂ψ)|1/2 d(ψ)︸ ︷︷ ︸
dµ

. (7)

The integral on L0
ψ0

in (6) leads to p∗(ψ0), a third-order approximation to p(ψ0), while
the integral on Pψ = {ψ ∈ R : φ = φ̂ψ} in (7) is an O(n−1) approximation to p(ψ0).
We can then approximate the p-value function using a posterior survivor function.

We can simplify (7) by using the orthogonality of ψ and λ to affirm that |ȷφφ(φ̂ψ)| =
|ȷ(λλ)(φ̂ψ)||ȷ(ψψ)(φ̂ψ)|. We can also absorb the information term |ȷ(λλ)(φ̂)|−1/2, which
depends solely on the data, into the arbitrary constant k:

p(ψ0) ≈
∫
ψ0

ek/n

(2π)1/2 e−r2
ψ/2 |ȷφφ(φ̂ψ)|1/2 d(ψ) = s(ψ0) . (8)

As before, the parentheses around ψ indicate that the integrand is expressed in terms
of φ, but that we integrate on the profile contour Pψ; more details about the differential
d(ψ) are provided in §4.2. Furthermore, to avoid notational difficulties with parameter
rotation, recall that the exponential parameter φ is locally rotationally symmetric as
described in the last paragraph of §3.3.

The O(n−1) version of the p-value in (8) has now been written as an integral of
observed likelihood on the parameter space. This integral of likelihood is totally re-
stricted to the profile curve Pψ; as such, the integral is a contour integral, and not the
usual full parameter space integral. The integrand in (8) can thus be seen as a posterior
density for ψ obtained from the directional prior πD(ψ)dψ ∝ |ȷφφ(φ̂ψ)|1/2 d(ψ), which
is Jeffreys’ prior used ‘off-label’, on just the profile Pψ for the interest parameter. The
resulting posterior survivor value s(ψ0) in (8) has full second-order repetition accuracy.

4.2 Jacobian

We now study the differential d(ψ) based on the special exponential parameterization
(ψ). The parentheses in (ψ) are to show that we integrate with respect to the canonical
variable φ, but along a profile curve Pψ developed in terms of ψ. On that curve, the
constrained MLE φ̂ψ varies as a function of the interest parameter ψ. Nonetheless,
working in terms of φ was convenient as we did not need identifying a nuisance parameter
λ orthogonal to ψ.

To make a change of variable from (ψ) to ψ, we need the Jacobian |d(ψ)/dψ|, whose
calculation involves a few steps. We first need to establish how a φ-change affects ψ
along Pψ. Once we have a standardized measure available for this, we can multiply it
with |dφ̂ψ/dψ|, the magnitude of a change in φ̂ψ resulting from a ψ-change along Pψ.

A change dφ generates a change dψ along the gradient vector dψ/dφ of the ψ
surface. If we are currently at the point φ̂ψ on Pψ, then a unit version of this vector is
denoted w1 = {dψ(φ)/dφ}/|dψ(φ)/dφ|, evaluated at φ̂ψ. In a similar fashion, a change
dψ generates a change dφ̂ψ along the gradient vector dφ̂ψ/dψ of the profile contour Pψ.
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A unit version of this vector is denoted w2 = {dφ̂ψ/dψ}/|dφ̂ψ/dψ|, also evaluated at
φ̂ψ.

By looking at Figure 1, the standardized change w1 (a unit change for ψ in the
direction dψ/dφ viewed as originating from some change dφ) obviously has a lesser
effect along Pψ. This effect is represented by the projection of w1 onto w2 (see Figure 1).
In particular, if we let α be the angle between these unit vectors, then the cosine of α
provides the magnitude of this projection onto w2.

Now, recall that a ψ-change along the gradient vector of the profile contour Pψ
generates a φ̂ψ-change with magnitude |dφ̂ψ/dψ|. The φ-change perpendicular to a ψ
contour (along Pψ) is then obtained by multiplying the magnitude |dφ̂ψ/dψ| and the
cosine of α:

d(ψ) = |d(ψ)
dψ | dψ = cos{α} |dφ̂ψdψ | dψ

= w1 · w2 |dφ̂ψdψ | dψ = w1 · dφ̂ψ
dψ dψ , (9)

where · is the dot product.

Using this Jacobian, we obtain the Bayes posterior survivor function for a general
scalar interest parameter ψ0:

s(ψ0) = c

∫
ψ0

e−r2
ψ/2|ȷφφ(φ̂ψ)|1/2 |dφ̂ψdψ | cos{α} dψ ,

where |dφ̂ψ/dψ| cos{α} represents the Jacobian for Jeffreys’ prior on the profile curve,
|ȷφφ(φ̂ψ)|1/2. This posterior survivor function s(ψ0) has second-order reproductive ac-
curacy as derived from the p-value function: p(ψ0) = s(ψ0){1 + O(n−1)}.

Following (9), the implicit prior density is thus expressed as

πD(ψ) dψ ∝ |ȷφφ(φ̂ψ)|1/2d(ψ) = |ȷφφ(φ̂ψ)|1/2 w1 · dφ̂ψ
dψ dψ (10)

for ψ on Pψ, and may be used with the profile log-likelihood ℓ(φ̂ψ; s0) for further
Bayesian developments. Note that the nuisance parameter nowhere appears in the prior,
nor in the posterior; in practice, identifying λ orthogonal to ψ is thus not required. The
posterior survivor function s(·) in this section has second-order uniqueness and accu-
racy by its derivation from the p∗-value function, which has second-order uniqueness and
accuracy by calculation respecting continuity. See Fraser [12] for a related discussion.

4.3 Some thoughts on the new prior density

Tibshirani [22] proposes a prior density featuring frequentist reproducibility properties;
to this end, he considers a scalar parameter of interest ψ along with a nuisance parameter
λ that is orthogonal to ψ (in the sense of Cox and Reid [5]). The resulting prior is the
product of Jeffreys’ prior for the interest component ψ and an arbitrary function g(λ)
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for the nuisance parameter. Tibshirani [22] expounds his result by referring to Welch
and Peers [25], and therefore implicitly works under the assumption that the statistical
model is continuous in the variable and parameters, with i.i.d. data. Although he does
not explicitly focus on full exponential models, the examples studied all involve the
normal distribution.

The prior density he proposes is obviously not unique; while it is completely de-
termined in the ψ direction, the function g(λ) may be characterized using various ap-
proaches. Once the likelihood is marginalized with respect to λ however, the resulting in-
ference is equivalent to working with the profile likelihood for ψ and the one-dimensional
Jeffreys’ prior for ψ.

The current paper may be seen as a generalization of Tibshirani [22]’s approach to
cases where a regular statistical model, not necessarily in exponential form, is expressed
in its canonical parameterization (no need to find orthogonal interest and nuisance
parameters). It provides a general expression for the prior density and Jacobian asso-
ciated to any regular model, which then gives access to a posterior survivor function
s(·) along the profile Pψ. The resulting inferences about the scalar interest parameter
ψ are second-order reproducible and do not require the identification of an orthogonal
nuisance parameter λ. The proposed one-dimensional prior is expressed in terms of φ̂ψ,
but has not been obtained through optimisation explicitly. It is rather seen as arising
from a marginalization of the full model, itself approximated using Laplace expansions.

The proposed prior can be extended over the whole parameter space. To this end,
we however need reverting to an orthogonal setting (ψ, λ). As in Tibshirani [22], we
would then use the prior |ȷψψ(ψ, λ̂ψ)|1/2 for ψ, choose an arbitrary prior g(λ) for the
orthogonal nuisance parameter, and then apply a change of variable to move from
π(ψ, λ) ∝ |ȷψψ(ψ, λ̂ψ)|1/2g(λ) to the canonical parameterization φ. The interest in per-
forming this last change of variable is not clear however: the previous steps require
identifying an orthogonal nuisance parameter λ, so one might as well stick with the
prior π(ψ, λ) for the calculations.

If we use L(ψ, λ;u, v) with the prior π(ψ, λ) = π(λ|ψ)π(ψ) to find the integrated
likelihood function, we obtain

L(ψ;u0) =
∫

L(ψ, λ;u0, v0)π(λ|ψ) dλ

= L(ψ, λ̂ψ;u0)|ȷλλ(ψ, λ̂ψ)|−1/2π(λ̂ψ|ψ){1 + Op(n−1)} .

The second equality arises from the use of Laplace expansions (see Tierney and Kadane
[23], Tierney et al. [24]), and the first two terms of that expression refer to Cox and
Reid [5]’s adjusted profile likelihood. In this context, the proposed approach is thus
equivalent to choosing π(λ|ψ) ≡ π(λ), integrating over λ, and then reexpressing the
integrated inference problem in terms of φ (instead of ψ). The main strength of the
new prior density is that it yields reproducible inferences without requiring orthogonal
parameters. While used in several second-order approaches (see Tibshirani [22] and
Severini [21], for instance), this orthogonality assumption requires solving differential
equations Cox and Reid [5], which often is a daunting task.
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5 A prior for sets?
In §3 and §4, we considered a vector parameter φ and identified a scalar parameter of
interest ψ. By focussing on the latter, we found a prior density πD(ψ) for ψ on the profile
contour Pψ that features second-order reproducibility properties. A reasonable concern
is whether such second-order posterior accuracy might be available more generally. In
particular, does a similar density exist for vector ψ? Or even for a scalar ψ that involves
computations on a compact set rather than a one-dimensional contour?

We answer this question by presenting a simple core example where we can rea-
sonably hope that things would be easy. Let S = (S1, S2) on the plane be distributed
according to a standard Normal centered at φ = (φ1, φ2). This is a simple exponential
model with canonical variable s and canonical parameter φ:

g(s;φ) = (2π)−1 exp
{

− 1
2 [(s1 − φ1)2 + (s2 − φ2)2]

}
= (2π)−1 exp

{
− 1

2 (s2
1 + s2

2)
}

exp
{

− 1
2 (φ2

1 + φ2
2)
}

exp {s1φ1 + s2φ2)} .

Let ρ2 = φ2
1 +φ2

2 be the parameter of interest; here, ρ2 represents the squared distance
from the origin (0, 0) to the point (φ1, φ2) on the plane. Now, let s0 = (s0

1, s
0
2) be

the observed data point; the squared distance from the origin to this observation is
r2 = (s0

1)2 + (s0
2)2.

Given the distribution of S, the variable S2
1 +S2

2 is distributed as a Noncentral Chi-
squared with ν = 2 degrees of freedom and noncentrality parameter ρ2

0; its distribution
function is denotedHν(·; ρ2

0). This variable may be seen as the squared norm of a random
vector with N(φ, I2) distribution. The p-value for testing a specific parameter value ρ2

0
therefore is the probability that (S1, S2) be closer to the origin than the observed s0

given the parameter (φ1, φ2)0, itself at a distance ρ0 from the origin. We then look for
the probability of the set {s ∈ R2 : s2

1 + s2
2 < r2} and the p-value safisfies p(ρ2

0) =
P(S2

1 + S2
2 < r2; ρ2

0) = H2(r2; ρ2
0).

Now, since φ is a location parameter, the prior density for ρ2 should be coherent
with Jeffreys’ flat prior for φ, π(φ) ∝ 1. This leads to the following posterior density on
the plane

π(φ|s0) = (2π)−1 exp
{

− 1
2 [(φ1 − s0

1)2 + (φ2 − s0
2)2]
}
.

The posterior density of φ is a standard Normal located at (s0
1, s

0
2); it follows that ρ2

is distributed as a Noncentral Chi-squared distribution with 2 degrees of freedom and
noncentrality parameter r2. The Bayes survivor function evaluated at ρ2

0, which is the
probability that the squared distance from the origin to ρ2 be at least ρ2

0, then satisfies
s(ρ2

0) = 1 −H2(ρ2
0; r2).

Hence, both functions can easily be compared. First, let us look at p(ρ2
0) as a function

of ρ2
0. The p-value function evaluates the sample space probability within a disk of fixed

radius r centered at the origin. To compute this probability, it uses a standard Normal
density whose mode is initially located at ρ0 = 0, and then gradually moves away from
(0, 0). The function p(ρ2

0) = H2(r2; ρ2
0) then starts at some value (< 1) for ρ2

0 = 0
and decreases towards 0 as ρ2

0 increases. By opposition, the Bayes survivor function
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Figure 2: p-value and posterior survivor value functions for the parameter ρ2; each
graph has its own r2 value: 4, 2, 1, and 0.5.

evaluates the parameter space probability outside a circle of radius ρ0 centered at the
origin; the size of the circle gradually increases with ρ0. The probability is computed
using a standard Normal density centered at the fixed point s0, at a distance r from the
origin. The function s(ρ2

0) = 1−H2(ρ2
0; r2) therefore starts at 1 for ρ0 = 0 and decreases

towards 0 as ρ0 increases.

When r2 = ρ2
0 for instance, the p-value H2(r2; r2) evaluates the probability within

a disk of radius r using a standard Normal whose mode is located on the boundary
of the disk. The Bayes survivor value 1 − H2(r2; r2) evaluates the probability outside
the same disk, using the same Normal distribution. It follows that the Bayes survivor
function is larger than the p-value function, a familiar result in the presence of parameter
curvature. And then if we decrease the value of r, the p-value moves towards 0 and the
Bayes survivor function moves towards 1. In the extreme, the p-value can be close to 0
and the corresponding survivor value close to 1. As the p-value has repetition validity,
it follows that the Bayes survivor probability in general does not, here to the extreme.

Figure 2 illustrates the behaviour of the p-value and Bayes survivor functions of the
parameter ρ2 for various values of the observed radius (r2 = 4, 2, 1, 0.5). In particular,
the discrepancy between both approaches becomes larger as r2 decreases, in which case
the p-value function becomes closer to 0. The above should not be surprising given the
behaviour of the pivotal r/ρ in calculating confidence. Given that the usual flat prior for
location parameters does not yield a Bayes survivor function that matches the p-value
function, we conclude that reproducibility is generally not attainable on sets.
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6 Examples
We now present a range of examples based on simple exponential models in which the
parameter of interest ψ increases in complexity. We begin with a parameter ψ that is
linear in the canonical parameterization φ, then consider a rotational ψ, and follow with
a ψ that is curved in terms of φ. We conclude with the Behrens-Fisher problem, which
features a three-dimensional nuisance parameter λ. We detail how the new reproducibil-
ity prior is obtained in each of these cases, and graphically assess its performance by
comparison to the exact p-value function. When the latter is not available, we instead
present an MCMC-based, exact conditional p-value and also include the frequentist
benchmark that is the third-order p-value.

6.1 Linear parameter

Consider an interest parameter ψ linear in the canonical parameterization φ, i.e. ψ(φ) =
v⊤φ =

∑
viφi. In this simple case, the line L0

ψ remains parallel to the vector v under ψ
changes. Since L0

ψ does not rotate, there is no need to invoke rotational symmetry in the
observed information matrix ȷ̂φφ, thus waiving the recalibration discussed at the end of
§3.3. Users looking for an automated implementation of the method could nonetheless
include a default use of this recalibration without altering results.

Specifically, consider a beta density with canonical parameter φ = (α, β):

f(y;α, β) = Γ(α+ β)
Γ(α)Γ(β)y

α−1(1 − y)β−1 , y ∈ (0, 1) ,

with n = 5 observed values y0 = (0.36, 0.68, 0.44, 0.43, 0.34). The parameter α is of
interest (ψ = α), while β is a free nuisance (λ = β). The interest ψ is linear in the
canonical parameterization, as ψ(φ) = v⊤φ = α with v⊤ = (1, 0).

We aim at comparing the p-value function p(α) to posterior survivor value functions
s(α) arising from available uninformative priors. To this end, the signed log-likelihood
root (SLR) approach is used as a simple approximation to p(α), while the third-order
approach acts as a highly accurate one Fraser [14]; MCMC simulations replace the exact
p-value when the latter is not available. These are then compared to posterior survivor
value functions s(α) obtained using Jeffreys’ prior and the new directional Jeffreys-style
prior.

The beta model does not admit closed-form expressions for its maximum likelihood
estimates (MLEs). Using the function beta.mle in the R package Rfast leads to φ̂0 =
(7.47, 9.03); this estimate is used in approximating p(α). The constrained MLE of β
given α, β̂α, is the solution of

D′(β̂α) −D′(α+ β̂α) = 1
n

n∑
i=1

log(1 − y0
i ) ,

where D′(x) = d log Γ(x)/dx is the digamma function. This equation is solved using
the function uniroot in R; constrained MLEs β̂α are obtained for various values of
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the interest α, and then used in approximating p(α) and computing posterior survivor
values s(α) based on the new directional Jeffreys-style prior.

The Fisher information function appears in every calculation (except in the SLR);
it satisfies

ȷφφ(φ) =
(
n (D′′(α) −D′′(α+ β)) −nD′′(α+ β)

−nD′′(α+ β) n (D′′(β) −D′′(α+ β))

)
,

where D′′(x) = d2 log Γ(x)/dx2 is the trigamma function. Jeffreys’ prior does not dis-
tinguish between interest and nuisance parameters; it is defined on the full parameter
space as the root of the Fisher information determinant:

πJ(α, β) ∝ {D′′(α)D′′(β) −D′′(α+ β) [D′′(α) +D′′(β)]}1/2
, α, β > 0 .

We note that the Bayesian benchmark prior, the reference prior of Bernardo [2], is not
easily available for a beta model in which an interest parameter is targeted. If it were,
it would also lead to a prior on the full parameter space, but interest and nuisance
parameters would have been treated differently in the derivation of this density.

As a new way of targeting the interest parameter, the directional Jeffreys-style prior
restricts the usual Jeffreys’ prior to the profile contour for the interest α. From (10),
the new prior πD satisfies

πD(α) dα ∝ |ȷφφ(φ̂ψ)|1/2 d(ψ) = πJ(α, β̂α) d(α) .

In the current simple linear case, w1 in (9) is the vector (1, 0), and thus

d(α) = w1 · d(α, β̂α)⊤

dα dα = dα .

The posterior survivor value function sD(α) is then obtained by integrating the one-
dimensional posterior density

πD(α|y0) dα ∝ exp
{
ℓ(α, β̂α; y0)

}
|ȷφφ(α, β̂α)|1/2 dα ,

where ℓ(α, β̂α; y0) = log f(y0;α, β̂α) denotes the profile log-likelihood function of the
interest α.

Figure 3 examines the third-order function p(α) (solid line) and the normal approx-
imation for the signed log-likelihood root rα (dash-dotted line). The graph also features
a comparison with posterior survivor values obtained under Jeffreys’ prior (dotted line)
and the new directional Jeffreys (red dashed line). Approximations of the p-value func-
tion have been obtained in R, while the posterior survivor values were obtained by
running 100,000 iterations of a random walk Metropolis algorithm with a Gaussian pro-
posal distribution featuring a scaling σ2 = 4 (also in R). In the current context, the
directional Jeffreys offers second-order reproducibility; this is not available from the
regular Jeffreys, which treats both parameters as of equal importance.
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Figure 3: p-value and Bayes survivor functions for the parameter α in the beta model;
the MLE of α is identified by a pale vertical line.

In this example, we studied the simplistic case where φ = (α, β) = (ψ, λ) ≡ θ. Linear
examples with φ ̸= θ are easy to find and in such cases, the development of the new
prior is similar to that expounded in the current section. Consider, for instance, the
same beta model and let ψ = α + β, λ = β; this yields an interest parameter that is
still linear in φ, expressed as ψ(φ) = v⊤φ with v⊤ = (1, 1). The constrained MLE of β
given ψ, β̂ψ, is now the solution of

D′(ψ − β̂ψ) −D′(β̂ψ) = 1
n

n∑
i=1

log y0
i − 1

n

n∑
i=1

log(1 − y0
i ) .

The vector w1 in (9) is w1 = (1, 1)/
√

2, leading to

d(ψ) = w1 · d(ψ − β̂ψ, β̂ψ)⊤

dψ dψ . (11)

In practice, an analytical expression for dφ̂ψ/dψ is not always available. In such
cases, d(ψ) is simply reexpressed as d(ψ) = w1 · dφ̂ψ and posterior survivor values are
then easily obtained using numerical integration, by selecting an appropriately small
lag h and letting dφ̂ψ ≈ φ̂ψ+h − φ̂ψ.

From (10) and (11), the new prior satisfies πD(ψ)dψ ∝ |ȷφφ(ψ− β̂ψ, β̂ψ)|1/2w1 · dφ̂ψ
and is combined to the profile likelihood to obtain posterior survivor values, as explained
above. Figure 4 provides a comparison similar to that found in Figure 3, outlining
virtually parallel performances amongst implemented methods.
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Figure 4: p-value and posterior survivor value functions for the parameter ψ = α + β
in the beta model; the MLE of ψ is identified by a pale vertical line.

6.2 Rotating parameter
In several cases, the direction of the line L0

ψ may vary under ψ changes. Although this
does not happen in linear cases, more generally, L0

ψ may rotate through an O(n−1/2)
angle. This even happens in very simple settings and with classical distributions, as the
following example illustrates.

Consider a normal model in which Y ∼ N(µ, σ2) and let θ = (ψ, λ) = (µ, σ2). For a
vector of n observations, the log-likelihood function of this model satisfies

ℓ(µ, σ2; y) = −n

2 log(2πσ2) − 1
2σ2

n∑
i=1

y2
i + µ

σ2

n∑
i=1

yi − nµ2

2σ2 . (12)

From (12), the canonical parameters are φ(θ) = (µ/σ2,−1/σ2). The interest parameter
thus satisfies ψ(φ) = −φ1/φ2 = µ, which is obviously not linear in φ. The maximum
likelihood estimates in the canonical parameterization are φ̂ = (nȳ/S2,−n/S2), where
ȳ =

∑n
i=1 yi/n and S2 =

∑n
i=1 y

2
i − nȳ2. The constrained MLE for σ2 given µ is

σ̂2
µ = {S2 + n(ȳ − µ)2}/n, leading to φ̂ψ = (µ/σ̂2

µ,−1/σ̂2
µ). The Fisher information

function is expressed as

ȷφφ(φ) =
(

−n/φ2 nφ1/φ
2
2

nφ1/φ
2
2 n/2φ2

2 − nφ2
1/φ

3
2

)
. (13)

Using (13), Jeffreys’ prior is πJ(φ)dφ ∝ |ȷφφ(φ)|1/2dφ ∝ (−φ2)−3/2 dφ on R × R−.
Furthermore, Bernardo [2]’s reference prior satisfies πR(φ)dφ ∝ dφ/φ2

2.

We now proceed to determine the new Jeffreys-style prior, based on an observed
sample y0 = (0.00, 1.10,−0.50, 0.25,−0.95,−0.60, 0.35). Since the angle of L0

ψ rotates



20 Differential geometry for Bayesian marginalization

under ψ changes, we apply the recalibration φ̄ = Tφ with ȷφφ(φ̂) = T⊤T and φ̂ = φ̂0,
as mentioned in §3.3. For simplicity and interchangeability in the use of T and its
transpose, we find the eigenvalues and eigenvectors of ȷφφ(φ̂) with the function eigen
in R, and then use these quantities to define a symmetrical matrix T .

In practice, this change from φ to φ̄ only affects (10) through the differential d(ψ).
Indeed, since ȷφ̄φ̄ = (T−1)⊤ȷφφT

−1, then |ȷφ̄φ̄| = |ȷφφ|/|T |2; when evaluated at θ =
(ψ, λ̂ψ) along the profile curve, these determinants are proportional with respect to ψ
and therefore interchangeable in terms of Bayesian computations. The determinant of
(13) evaluated at φ̂ψ is then computed as

|ȷφφ(φ̂ψ)|1/2 ∝
(
σ̂2
µ

)3/2 ∝ {S2 + n(ȳ − µ)2}3/2 . (14)

We finally develop the differential term d(ψ) in (9). It is crucial to explicitly take account
of the recalibration T in this Jacobian. The term dψ/dφ̄ in w1 (§4.2) satisfies

dψ
dφ̄ = dψ(φ)

dφ · dφ
dφ̄ =

(
− 1
φ2
,
φ1

φ2
2

)
· T−1 = σ2(1, µ) · T−1 ,

which can then be normalized to the unit vector w1 = {dψ/dφ̄}/|dψ/dφ̄| and evaluated
at φ̂ψ. The term d(T φ̂ψ)/dψ in w2 (§4.2) is obtained as

T · dφ̂ψ
dψ = T · d

dµ

(
µ

σ̂2
µ

,− 1
σ̂2
µ

)⊤

= 1
(σ̂2
µ)2 T ·

(
σ̂2
µ + 2µ(ȳ − µ),−2(ȳ − µ)

)⊤
.

This finally leads to

d(ψ) =
∣∣∣∣dψdφ̄

∣∣∣∣−1 dψ
dφ · T−1 · T · dφ̂ψ

dψ dψ (15)

= 1
|(1, µ) · T−1|(σ̂2

µ)2 (1, µ) ·
(
σ̂2
µ + 2µ(ȳ − µ),−2(ȳ − µ)

)⊤ dµ

= 1
|(1, µ) · T−1|σ̂2

µ

dµ ,

and the matrix T conveniently appears in the norm of the vector w1 only. Using the
latter along with (14), we obtain the directional Jeffreys-style prior

πD(µ) dµ ∝ {S2 + n(ȳ − µ)2}3/2 d(µ) ∝ {S2 + n(ȳ − µ)2}1/2

|(1, µ) · T−1|
dµ ;

the resulting posterior survivor value evaluated at µ0 is

sD(µ0) =
∫
µ0

exp
{
ℓ(µ, σ̂2

µ; y0)
}
πD(µ) dµ .
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Figure 5: p-value and posterior survivor value functions for the parameter µ in the
normal model; the MLE of µ is identified by a pale vertical line.

Figure 5 examines p-value and posterior survivor value functions obtained with
the observed sample y0. The exact p-value function p(α) is obtained using a Student-t
distribution with n−1 degrees of freedom and is represented on the graph by a solid line.
The normal approximation for the signed likelihood root is also included (dash-dotted
line). The graph features a comparison with posterior survivor values obtained under
Jeffreys’ prior (dotted line), the reference prior (long-dash), and the new directional
Jeffreys (red dashed line). Exact and approximated p-value functions have been obtained
in R, while the posterior survivor values (based on Jeffreys and reference) were obtained
by running 200,000 iterations of a random walk Metropolis algorithm with a Gaussian
proposal distribution featuring a scaling σ2 = 0.40 (also in R). Posterior survivor values
using the new directional Jeffreys were obtained through numerical integration. Results
from the new Jeffreys-style prior are as convincing as those based on the Bayesian
benchmark, the reference prior.

6.3 Curved parameter

As an example with curvature, consider a gamma model with canonical parameters
α, β > 0. We are interested in the variance ψ = α/β2, which is curved in terms of
φ = (α, β), and we choose to work with the free nuisance parameter λ = β. The density
of the model is

f(y;α, β) = βα

Γ(α)y
α−1 exp{−βy} , y > 0 ,

with n = 5 observed values y0 = (0.20, 0.45, 0.78, 1.28, 2.28) as used in Brazzale et al. [3]
on page 13. The maximum likelihood estimates of the canonical parameters, φ̂ = (α̂, β̂),
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are the solution of the equations

α̂/β̂ = ȳ ,

D′(α̂) − log α̂ = 1
n

n∑
i=1

log yi − log ȳ .

By re-expressing the log-likelihood function in terms of interest and nuisance as
ℓ(ψ, λ; y), we find the constrained MLE λ̂ψ to be the solution of

2ψλ
[

log λ+ 1
2 −D′(ψλ2) + 1

n

n∑
i=1

log yi

]
= ȳ .

The Fisher information function in the canonical parameterization is

ȷφφ(φ) =
(
nD′′(α) −n/β

−n/β nα/β2

)
,

and so Jeffreys’ prior |ȷφφ(φ)|1/2, which treats both parameters as of equal interest, is
πJ(φ)dφ ∝ {αD′′(α) − 1}1/2/β dφ. The reference prior for this specific context would
target the interest parameter ψ = α/β2, but is not widely available is this case.

Since the model studied does not satisfy the linearity constraint, a recalibration φ̄ =
Tφ of the canonical parameter is required, where T is such that ȷφφ(φ̂0) = T⊤T . From
(15) in §6.2, recall that this recalibration only impacts the differential d(ψ) through the
term |dψ/dφ̄|. Jeffreys’ prior evaluated on the profile contour, i.e. at φ̂ψ = (α̂ψ, β̂ψ) =
(ψβ̂2

ψ, β̂ψ), is

|ȷφ̄φ̄( ˆ̄φψ)|1/2 ∝ |ȷφφ(φ̂ψ)|1/2 ∝ {α̂ψD′′(α̂ψ) − 1}1/2/β̂ψ .

The term dψ/dφ̄ in w1 of §4.2 is

dψ
dφ̄ =

(
1
β2 ,−

2α
β3

)
· T−1 ;

evaluated at φ̂ψ, it becomes (1/β̂2
ψ,−2ψ/β̂ψ)·T−1. Since we did not obtain a closed-form

expression for φ̂ψ, the differential term dφ̂ψ/dψ in (9) cannot be computed explicitly; we
simply use d(ψ) = |dψ/dφ̄|−1 dψ/dφ dφ̂ψ and numerically evaluate this expression for
an appropriately small lag h by letting dφ̂ψ ≈ φ̂ψ+h − φ̂ψ. This leads to the directional
Jeffreys-style prior satisfying

πD(ψ) dψ ∝ πJ(φ̂ψ) d(ψ)

∝ 1
β̂ψ

{α̂ψD′′(α̂ψ) − 1}1/2 1
|dψ/dφ · T−1|

dψ
dφ · dφ̂ψ

∝ 1
β̂ψ

{α̂ψD′′(α̂ψ) − 1}1/2 1
|(1,−2ψβ̂ψ) · T−1|

(1,−2ψβ̂ψ) · d(α̂ψ, β̂ψ)⊤ ,
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Figure 6: p-value and posterior survivor value functions for the parameter ψ = α/β2

in the gamma model; the MLE of ψ is identified by a pale vertical line.

and to a posterior survivor function

sD(ψ0) =
∫
ψ0

exp
{
ℓ(α̂ψ, β̂ψ; y0)

}
πD(ψ) dψ .

Figure 6 compares approximations of the p-value function (SLR, third-order) and
posterior survivor value functions under different priors (regular Jeffreys and new di-
rectional Jeffreys). The new directional prior is again extremely close to the third-order
p-value function, while Jeffreys’ prior now significantly underestimates the latter. The
exact conditional p-value is obtained here by making use of MCMC on the tangent
exponential model.

6.4 Behrens-Fisher problem

Consider two independent variables Y1 ∼ N(µ1, σ
2
1) and Y2 ∼ N(µ2, σ

2
2) with data y =

(y1,y2), where yi is of size ni from Yi (i = 1, 2). The interest parameter is ψ = µ1 −µ2
and we let the nuisance be λ = (µ2, σ

2
1 , σ

2
2); the full parameter is then θ = (ψ, λ). The

log-likelihood function satisfies

ℓ(θ; y) = − n1

2 log(2πσ2
1) − n2

2 log(2πσ2
2)

− 1
2σ2

1
{n1(ȳ1 − ψ − µ2)2 + S2

1} − 1
2σ2

2
{n2(ȳ2 − µ2)2 + S2

2} ,

with ȳi =
∑ni
j=1 yij/ni and S2

i =
∑ni
j=1 y

2
ij −ni(ȳi)2, i = 1, 2. This leads to the full MLE

θ̂ = (ȳ1 − ȳ2, ȳ2, S
2
1/n1, S

2
2/n2). To obtain the constrained MLE of λ given ψ, we solve
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the following system of equations:

µ̂2 = n1σ̂
2
2(ȳ1 − ψ) + n2σ̂

2
1 ȳ2

n1σ̂2
2 + n2σ̂2

1
, (16)

σ̂2
i = (ȳi − ψ1(i=1) − µ̂2)2 + S2

i

ni
, i = 1, 2 ;

plugging σ̂2
1 and σ̂2

2 into µ̂2, we numerically solve for µ̂2 and then work backwards for
the variances.

The canonical parameter of this model is φ(θ) = ((ψ + µ2)/σ2
1 , µ2/σ

2
2 , 1/σ2

1 , 1/σ2
2).

The MLE is φ̂ = φ(θ̂) = (n1ȳ1/S
2
1 , n2ȳ2/S

2
2 , n1/S

2
1 , n2/S

2
2) and the constrained MLE

given ψ is φ̂ψ = ((ψ + µ̂2)/σ̂2
1 , µ̂2/σ̂

2
2 , 1/σ̂2

1 , 1/σ̂2
2), using estimates in (16). The log-

likelihood function can be reexpressed as ℓ(φ; y), which leads to the information matrix

ȷφφ(φ) =


n1
φ3

0 −n1φ1
φ2

3
0

0 n2
φ4

0 −n2φ2
φ2

4

−n1φ1
φ2

3
0 n1

2φ2
3

+ n1φ
2
1

φ3
3

0
0 −n2φ2

φ2
4

0 n2
2φ2

4
+ n2φ

2
2

φ3
4


with determinant |ȷφφ(φ)| = n2

1n
2
2/{4φ3

3φ
3
4}. Jeffreys’ prior for this problem is there-

fore πJ(φ)dφ ∝ |ȷφφ(φ)|1/2dφ ∝ (φ3φ4)−3/2dφ, while the reference prior satisfies
πR(φ)dφ ∝ (φ3φ4)−2dφ.

We now work on finding the new prior. The interest parameter ψ is not a linear
function of φ, as ψ(φ) = φ1/φ3 − φ2/φ4. We therefore need to recalibrate and work
with φ̄ = Tφ, where ȷφφ(φ̂) = T⊤T . This transformation only has an impact on the
differential d(ψ) and does not affect the term πJ(φ̂ψ) = |ȷφφ(φ̂ψ)|1/2. The differential
dψ/dφ̄ is

dψ
dφ̄ =

(
1
φ3
,− 1

φ4
,−φ1

φ2
3
,
φ2

φ2
4

)
· T−1 ,

which can then be normalized to the unit vector w1 = {dψ/dφ̄}/|dψ/dφ̄| and evaluated
at φ̂ψ. Since we did not obtain a closed-form expression for φ̂ψ, the differential term
d ˆ̄φψ/dψ = T · dφ̂ψ/dψ in (9) cannot be computed explicitly. In that case, we simply
use the differential d(ψ) = w1 · T · dφ̂ψ, and numerically evaluate this expression by
letting dφ̂ψ ≈ φ̂ψ+h − φ̂ψ for an appropriately small lag h. This leads to the directional
Jeffreys-style prior satisfying

πD(ψ) dψ ∝ πJ(φ̂ψ) d(ψ) = (σ̂2
1 σ̂

2
2)3/2 1

|dψ/dφ · T−1|
dψ
dφ · dφ̂ψ ,

and to a posterior survivor function

sD(ψ0) =
∫
ψ0

exp {ℓ(φ̂ψ; y)} πD(ψ) dψ .
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Figure 7: p-value and posterior survivor value functions for the parameter ψ = µ1 −µ2
in the Behrens-Fisher problem; the MLE of ψ is identified by a pale vertical line.

Figure 6 provides a comparison of p-value and posterior survivor value functions
similar to previous examples; it is based on the dataset y0

1 = (1.02, 0.82, -0.37, 0.40, 1.29,
1.39, -0.21), y0

2 = (−0.86, -2.13, -0.76, 0.60, 0.26, -0.74, 0.49). For the Behrens-Fisher
problem, it is well-known that Jeffreys’ prior leads to a second-order reproducible p-value
function. Since the reference prior differs from the latter, it now over- or under-estimates
the p-value, depending of the specific ψ tested. As expected, the new directional Jeffreys-
based prior is extremely close to the third-order p-value, which illustrates its robustness
across various contexts.

7 Discussion
Efron [9] offered a classification of Bayes priors, mentioning ‘genuine priors’ when there is
an objective random source for the actual parameter value and ‘uninformative priors’ for
formal calculations, sometimes referred to as mathematical priors. For the non-genuine
priors, Berger [1] and Goldstein [18] recommend unifying Bayesian and frequentist proce-
dures, by which they mean reproducibility, that is repetition under identical conditions.
Repetition reliability has had extensive discussion in the frequency literature and leads
to third-order accuracy for scalar parameters with most regular models. With this as
a benchmark under repetitions, we have developed a second-order accurate prior for
scalar parameters and find it to be essentially Jeffreys’ prior but confined to the pro-
file contour for the scalar parameter of interest; this indicates that the ordinary use of
Jeffreys does what might be viewed as a double overlapping calculation.

According to the theory exposed, Bayesian inference should then use the profile
likelihood with parameter ψ, along with the new Jeffreys-based prior. Although the
resulting one-dimensional posterior appears to rely on plug-in estimators, we note that
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it arises from usual Bayesian arguments such as marginalization. Indeed an ancillary
statistic u, whose distribution is free of the nuisance parameter, was first identified; an
expression for the density of this statistic was then obtained by marginalizing the joint
density with respect to λ. Therefore, the issue of the theoretical developments is not to
be mistaken for a deliberate plug-in approach.

Examples have been investigated under increasing complexity: linear, rotating, curved,
and they clearly support the claimed second-order accuracy. Vector interest parameters,
however, do not generally have repetition reliability; this was investigated by Dawid
et al. [8] as marginalization paradoxes, and by the present discussion under parame-
ter curvature in §5. Second-order frequency-based p-values for vector parameters are
available from Fraser et al. [11].

A Appendix: from exponential to general models
The results discussed in this paper were presented for regular exponential models, but
they are available for quite general regular models. For this, consider an n-dimensional
variable with a p-dimensional full parameter, plus continuity for parameter effects. In the
simple scalar variable and parameter case, the distribution function F (y; θ) = z (say)
can be inverted to give the quantile function y = y(z; θ). This allows easy simulations
for the variable y using an underlying uniform distribution for z. The same is widely
available for the vector variable case, by determining an n× p matrix

V = (v1, . . . , vp) = ∂y

∂θ
,

where the differentiation is for fixed pivotal z = z(y; θ) = z(y0; θ̂0). Differentiating the
log-model ℓ(θ; y) in the directions V then gives the needed canonical parameter

φ = ∂ℓ(θ; y)
∂V

∣∣
y0 ,

which is used with an observed canonical variable s = 0. This leads to an exponential
model using (φ, s), called the tangent exponential model, which then provides full third-
order inference for the original model-data combination.
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