1. PROOFS THAT THERE ARE INFINITELY MANY PRIMES

INTRODUCTION

The fundamental theorem of arithmetic states that every positive integer may be fac-
tored into a product of primes in a unique way. Moreover any finite product of prime
numbers equals some positive integer. Therefore there is a 1-to-1 correspondence between
positive integers and finite products of primes. Thus we can understand positive integers by
decomposing them into their prime factors and studying these, just as we can understand
molecules by studying the atoms of which they are composed.

Once one begins to determine which integers are primes and which are not, one quickly
finds that there are many of them, though as we go further and further, they seem to be
a smaller and smaller proportion of the positive integers. It is also tempting to look for
patterns amongst the primes: Can we find a formula that describes all of the primes? Or
at least some of them? Are there actually infinitely many? And, if so, can we quickly
determine how many there are up to a given point? Or at least give a good estimate?
Once one has spent long enough determining primes, one cannot help but ask whether it
is possible to recognize prime numbers quickly and easily? These questions motivate the
early parts of this course.

1. PROOFS THAT THERE ARE INFINITELY MANY PRIMES, WITHOUT ANALYSIS

1.1. EucLID AND BEYOND. Ancient Greek mathematicians knew that there are infinitely
many primes. Their beautiful proof by contradiction goes as follows: Suppose that there
are only finitely many primes, say k£ of them, which we will denote by 2 = p; < py =
3 < ... < pg. What are the prime factors of pips...pr + 17 Since this number is > 1 it
must have a prime factor, and this must be p; for some j, 1 < j <k (since all primes are
contained amongst pi,ps, ..., px). But then p; divides both pips...pr and pips...pr +1,
and hence p; divides their difference, 1, which is impossible.!

Many people dislike this proof, since it does not exhibit infinitely many primes, but only
shows that it is impossible that there are finitely many. It is possible to more-or-less correct
this deficiency by defining the sequence a; = 2,a2 = 3 and then a,, = ajas...a,_1+ 1 for
each n > 2. Let p, be some prime divisor of a,,. We claim that the p,, are all distinct so we
have an infinite sequence of distinct primes. We know that these primes are distinct else

1Buclid gives this proof in Book 9 Proposition 20 of his Elements, assuming that there are just three
primes. The reader is evidently meant to infer that the same proof works no matter how large a finite
number of primes we assume there to be. The notation of those times was far less flexible than that of
today, so that the astute reader necessarily had to deduce the full content of the statement of a theorem,
or of a proof, from what was written, and could not necessarily learn all that was meant from what
was actually written. Even Renaissance thinkers like Fermat and Descartes recognized this difficulty and
deplored those who could not navigate it adroitly.
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if p, = pp, with m < n then p,, divides (a,, an) = (am, 1) = 1, since a,, =1 (mod a,,) by
our construction, which is impossible.

Fermat conjectured that the integers b, = 22" + 1 are primes for all n > 0. His claim
starts off correct: 3,5,17,257,65537 are all prime, but is false for b5 = 641 x 6700417, as
Euler famously noted. Nonetheless we can prove that if p,, is some prime divisor of b,, for
each n > 0 then pg,p1,... is an infinite sequence of distinct primes, in this case because
by, = biba...b,_1 + 2 for each n > 1, and so (b, bn) = (bm,2) = 1 for all m < n, since
b, =2 (mod b,,).2

A related proof involves letting ¢, be the smallest prime factor of n! + 1. Thus there
cannot be a largest prime n since ¢, must be a larger prime.

Exercises

1.1a. (Other proofs inspired by Euclid’s proof) Suppose that we are given distinct primes
P1,P2, - - - » Pk, and let m denote their product, p1ps . ..pg. Show that each of the following
integers N has a prime factor which is not equal to any prime in this list, and so deduce
that there are infinitely many primes.

a) Forany r,1 <r <kletn=pips...p, and N :=n+ m/n.
b) (Reminiscent of proofs of the Chinese Remainder theorem): Let N := Zle m/p;.

1.1b. In this question we give an algorithm that determines all of the primes.

a) Let p1,pa2, ..., pr be distinct primes, with m = p1py .. .pg. Prove that if N = Zle N;,
where the prime factors of N; are exactly {p1,p2, ... ,pr}\{p:} for each ¢, then (N, m) = 1.

b) For any given integer N with (/N,m) = 1, use the Chinese Remainder theorem to
determine integers M; for which N = 2?21 M; (mod m), where the prime factors of M;
are exactly {p1,p2,...,pr} \ {p:} and 1 < M; < m, for each i.

c) Prove that if 1 < N < Zle m/p; with (N,m) = 1 then there exist integers N, as in
part a, with each |N;| < m. (Hint: One idea is to select M; or M; — m in part b).

d) Taking p1, po, ... , px to be the primes up to y/z we have a way to determine, with proof,
each prime N between /x and x by finding a representation of N as in part c. Find all
the primes between 5 and 100 in this way, along with these proofs that they are indeed
prime.

1.1c. Use the sequence of Fermat numbers to prove that, for each integer k > 1, there are
infinitely many primes = 1 (mod 2%).

1.1d. Suppose that p; =2 < p; =3 < ... is the sequence of prime numbers. Use the fact
that every Fermat numbers has a distinct prime divisor to prove that p,, < 22" +1. What
can one deduce about the number of primes up to x?

1.1e. (Open questions). Are there infinitely many primes of the form a,? If p; = 2 <
p2 = 3 < ... is the sequence of prime numbers then are there infinitely many n for which
p1p2 - ..pn + 1 is prime? For which pips...p, — 1 is prime? Let us determine an infinite
sequence of primes by starting with prime ¢;, and then letting ¢,, be some prime divisor of

2This proof appeared in a letter from Goldbach to Euler in July 1730.
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q192 - - -qn—1 + 1. Can this be arranged so that the sequence q1, g2, ... is a re-arrangement
of the set of all primes? What if ¢, is the smallest prime divisor of q1¢s...¢q,—1 + 17

1.2. VARIOUS OTHER NON-ANALYTIC PROOFS.

The Mersenne numbers take the form M,, = 2™ — 1. Suppose that p is prime and ¢ is
a prime dividing 2P — 1. The order of 2 mod ¢, must be divisible by p, and must divide
q — 1, hence p < g — 1. Thus there cannot be a largest prime p, since any prime factor ¢
of M), is larger, and so there are infinitely many primes.

Furstenberg gave an extraordinary proof using point set topology: Define a topology on
the set of integers Z in which a set S is open if it is empty or if for every a € S there is
an arithmetic progression Z, , := {a + ng : n € Z} which is a subset of S. Evidently each
Zq,q is open, and it is also closed since Z, q = Z \ Up: 0<b<q—1, b£aZp,q- 1f there are only
finitely many primes p then A = U,Z , is also closed, and so Z\ A = {—1,1} is open,
but this is obviously false since A does not contain any arithmetic progression Z; ,. Hence
there are infinitely many primes.

Exercises

1.2a. a) Prove that if f(t) € Z[t] and r, s € Z then r — s divides f(r) — f(s).
b) Prove that if 2" — 1 is prime then n is prime.

c) Prove that if 2" 4+ 1 then n is either 0 or a power of 2.

1.2b. Prove that if prime ¢ divides 2P — 1, where p is prime, then 2 has order p mod q.
Deduce that (27 —1,2° — 1) =1 for all primes p and /.

1.2¢c. (Open questions). Prove that there are infinitely many Mersenne primes, 2P — 1.
(This is equivalent to asking whether there are infinitely many even perfect numbers, since
n is an even perfect number if and only if it is of the form 2P~1(2P — 1) with 27 — 1 prime.)
Prove that there are infinitely many Fermat primes, 22° + 1. Prove that there are integers
n for which 22" + 1 is composite.?

1.2d. (Open). Prove that there are infinitely primes p for which 2P — 1 is composite. (This
is a conjecture because one can prove, and you should prove, that if p = 3 (mod 4) and
q = 2p + 1 is also prime then ¢ divides 2P — 1, so that 2P — 1 is composite.)

1.2e. We know that

2
1 227 -1_1

2_
92 1, 221 _ 1 92" =1 _{ and 22 1
are all prime and it is an open question as to whether any terms in this sequence are

composite?

1.3. PRIMES IN CERTAIN ARITHMETIC PROGRESSIONS. Any prime = a (mod m) is divis-
ible by (a,m), and so if (a,m) > 1 there cannot be more than one prime = a (mod m).

3There are no primes known of the form 22" 41 other than for n < 4, and we know 22" 4 1is composite
for 5 < n < 30 and many other n besides. It is always a significant moment when a Fermat number is
factored for the first time.
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Thus all but finitely many primes are distributed among the ¢(m) arithmetic progressions
a (mod m) with (a,m) = 1. We will eventually prove that all such arithmetic progres-
sions contain infinitely many primes, and that the primes are roughly equally distributed
amongst these ¢(m) arithmetic progressions (mod m). For now we will prove results
along these lines using only very elementary methods. We begin by proving that there are
infinitely many primes in each of the two feasible residue classes mod 3.

There are infinitely many primes = —1 (mod 3), for if there are only finitely many, say
P1,P2, .-+ , Pk, then N = 3pips...pr — 1 must have a prime factor ¢ = —1 (mod 3), else
N =1 (mod 3), and so ¢ divides both N and N + 1 and hence their difference 1, which
is impossible. A similar proof works for primes = —1 (mod 4), and indeed for much more
general sets of primes — see exercise 1.3a below.

How about the primes = 1 (mod 3)? We can look for sequences of integers n, all of
whose prime factors ¢ are =1 (mod 3), by the idea of exercise 1.2b: that is, for each such
n there should be some integer a, such that the order of a mod ¢ must be divisible by
3, for each ¢ which divides n. Now if a has order 3 then a® = 1 (mod ¢), and to avoid
order 1 we want a Z 1 (mod ¢). We come close to this by considering the prime factors
of (a> —1)/(a — 1) = a® + a + 1: the only way a prime factor of this can have order 1 is
if it divides (a® + a+ 1,a — 1) = (3,a — 1), that is the prime factor must be 3 and a = 1
(mod 3). We are ready to prove that there are infinitely many primes = 1 (mod 3): If
there are only finitely many, say pi1,p2,...,pk, then a = 3p1ps ...px has order 3 modulo
any prime divisor ¢ of N = a? +a+ 1 so that ¢ =1 (mod 3), but then ¢ divides N, and a
which divides N — 1, and hence their difference, 1, which is impossible.

In order to generalize this argument to primes = 1 (mod m), we need to replace the
polynomial a? 4+ a + 1 be one that recognizes when a has order m. Evidently this must
be a divisor of the polynomial a™ — 1, indeed a™ — 1 divided through by all of the factors
corresponding to orders which are proper divisors of m. So let define the cyclotomic
polynomials ¢, (t) € Z[t], inductively, by the requirement t™ — 1 = [],, ¢a(t) for all
m > 1, with each ¢4(t) monic. The roots of ™ — 1 are the distinct mth roots of unity, so
our definition implies that the roots of ¢,,(t) are exactly the primitive mth roots of unity,
that is those a € C for which @™ =1 but a” # 1 for all r, 1 <r < m — 1. These can be
written more explicitly as exp(2imj/m) with (j, m) = 1 so that ¢,,(t) has degree ¢(m).
Exercises
1.3a. Let G be a proper subgroup of the multiplicative group of elements mod m (that is,
the residue classes coprime to m).

a) Show that if N is an integer with (N, m) = 1 where N is not an element of G, then N
has a prime factor which is not an element of G.

b) Given any finite set of primes p1, ps, ... ,pr which do not divide m, and a residue class
b (mod m), show that for any b € (Z/mZ)* \ G there exists an integer N such that N =b
(mod m) and (N,p1ps...px) = 1.

c) We will now prove that there are infinitely many primes whose residues mod m which
do not belong to the subgroup G. For if there are only finitely many, say p1,ps, ... , Pk,
select NV as in part b, and then use part a to deduce the desired conclusion.

d) Deduce that there are infinitely many primes in at least two of the arithmetic progres-
sions 3 mod 8, 5 mod 8, and 7 mod 8.
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1.3b. a) Prove that the set of primitive mth roots of unity can be written in the form
exp(2imj/m) with (j,m) = 1.

b) p is a primitive prime factor of ™ — 1 if p divides a™ — 1 but p does not divide a™ — 1
for any n,1 <n < m—1. Show that every primitive prime factor of ™ — 1 divides ¢, (a).

¢) Prove that ged(a™ —1,a" — 1) = a(™™ — 1. Deduce that if prime p divides ¢,,(a) but
is not a primitive prime factor of a™ — 1 then p divides ¢4(a) for some proper divisor, d,
of m.

»¢a(a)) then
)/(a™/1 1)

d) Prove that if d is a proper divisor of m and prime p divides ged (¢, (a)
m/d is a power of p. (Hint: If prime ¢ # p divides m/d consider (a™ — 1
(mod a™/9 — 1), and establish that ¢4(a) divides ™/ —1.)

e) Prove that ¢,,(0) = 1 for all m > 1. Deduce that if p is a prime factor of ¢,,(ma) for
any integer a then p =1 (mod m).

f) Use part e to deduce that there are infinitely primes = 1 (mod m).

1.3c. We use the theory developed in exercise 1.3b in another question.

a) Writing a? = 1 + kp” where p { k, prove that if p” # 2 then a?? — 1 is divisible by p"**
but not by p"™2. Deduce that if p divides ¢,,(a) but is not a primitive prime factor of
™ — 1 then p? does not divide ¢,,(a), except when m = 2 and a = 3 (mod 4).

b) Use 1.3b.d and 1.3c.a to show that if m > 2 and a™ — 1 does not have a primitive prime
factor then ¢,,(a) divides m.

c¢) By proving upper and lower bounds on |¢,,(a)|, show that |¢,,(a)| > m for all integers
a and m with |a| > 2 and m > 3, except ¢3(—2) = ¢6(2) = 3. (Hints: If |a| > 3 then
|om (@) = [1(j.m)=1 la — exp(2imj/m)| = (a| — 1)?(m) for m > 3 except when |a| = 3 and
m =4 or 6. When |a| = 2 use only those roots of unity in the other half of the unit circle
from a.)

d) Finally deduce that for each integer a with |a| > 2, the integers (a™ — 1)/(a — 1) have
a primitive (and thus distinct) prime factor for all integers m # 1,2 or 6.

{zn}n>0 is a Lucas sequence if zo = 0,27 =1 and
(1) Tpyo = bryi1 +cxy, forall n >0,

for given non-zero, coprime integers b, ¢; the integers x,, = (a™ — 1)/(a — 1) form a Lucas
sequence with b = a + 1 and ¢ = —a for each n > 0. In 1913 Carmichael showed that if
the discriminant A := b% 4 4¢ > 0 then x,, has a primitive prime factor for each n # 1,2
or 6 except for Fio = 144 where F,, is the Fibonacci sequence (b = ¢ = 1), and for FY,
where F! = (=1)"7'F, (b = —1, ¢ = 1). It is much more difficult to prove that Lucas
sequences with negative discriminant have primitive prime factors. Nonetheless, in 1974
Schinzel succeeded in showing that z,, has a primitive prime factor once n > ng, for some
sufficiently large ng, if A # 0, other than in the periodic case b = +1, ¢ = —1. Determining
the smallest possible value of ng has required great efforts culminating in the beautiful work
of Bilu, Hanrot and Voutier [BHV]| who proved that ny = 30 is best possible (indeed if
b=1,c= —2 then z5, zs, T12, T13, T18, T30 have no primitive prime factors).
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1.3d. In exercise 1.3b.f we saw that there are infinitely many primes = 1 (mod 8), and in
exercise 1.3a.d that there are infinitely many primes i at least two of the other arithmetic
progressions (mod 8).

a) For b = 3,5 or —1 suppose that there are only finitely many primes = b (mod 8), and
let np be their product. Establish a contradiction by considering the prime factors of
n? +b—1,n? +4 or n? — 2, respectively. (Hint: Use the law of quadratic reciprocity.)

b) Generalize this argument to prime divisors of values of other quadratic polynomials.

1.4. PRIME DIVISORS OF POLYNOMIALS. We know that any linear polynomial mt+a € Z[t]
with (m,a) = 1 takes on infinitely many prime values (which is equivalent to the fact that
there are infinitely many primes = a (mod m) if (a, m) = 1). We wish to generalize this to
any irreducible f(t) € Z[t], with suitable restrictions. To formulate the restrictions there
is one subtlety: the reason we need (m,a) = 1 in the linear case is that (m,a) divides
mn + a for every integer n, and in fact (m,a) = gcd{mn+a: n € Z}. Hence let us define
Content(f) to be the ged of the integers f(n) as we vary over n € Z. It is conjectured that
for any irreducible f(t) € Z[t] with Content(f) = 1 there are infinitely many integers n for
which f(n) is prime. (In fact that for any irreducible f(¢) € Z[t] there are infinitely many
integers n for which f(n)/Content(f) is prime.)

The polynomial n? 4+ n + 41 is prime for n = 0,1, ..., 39, though composite for n = 40.
One can ask whether there are any polynomials f(t) € Z[t] such that f(n) is prime for all
integers n? The answer is no: We now show that if f(¢) € Z[t] has degree > 1 then f(n)
is composite for infinitely many integers n. Since a non-zero polynomial has only finitely
many roots, for example (f(t) —1)f(¢)(f(t) + 1), thus |f(n)| > 2 for all but finitely many
integers n. Select any such n and let m = f(n). Now f(n+ km) = f(n) = 0 (mod m)
for any integer k, by exercise 1.2a.a, so that f(n 4+ km) is composite all k except for the
finitely many n 4+ km which are roots of (f(t) —m)f(¢)(f(t) +m).

One can use a minor variation to show that if f(t) € Z[t] has degree d and there are more
than 2d distinct integers n for which |f(n)| is prime then f(t) is irreducible. To prove this
suppose f(t) = g(t)h(t); for each n where |f(n)| is prime we have that either g(n) = £1
or h(n) = £1. Now there are no more than 2 deg(g) roots of (g(t) — 1)(g(t) + 1), and no
more than 2 deg(h) roots of (h(t) — 1)(h(t) + 1), and therefore < 2deg(g) + 2deg(h) = 2d
distinct integers n for which |f(n)| prime. (The “2d” in this result can be improved to
“d + 2”7, and this is probably best possible for all d > 6. If we ask for f(n) to be prime
then the correct bound is d.)

We finish this section by proving that for any f(¢) € Z[t] of degree > 1 there are infinitely
many distinct primes p for which p divides f(n) for some integer n. We may assume that
f(n) # 0 for all n € Z else we are done. Now suppose that p1,...,pr are the only primes
which divide values of f and let m = p;...px. Then f(nmf(0)) = f(0) (mod mf(0))
for every integer n, by exercise 1.2a.a, so that f(nmf(0))/f(0) =1 (mod m). Therefore
f(nmf(0)) has prime divisors other than those dividing m for all n but the finitely many
n which are roots of (f(tmf(0)) — f(0))(f(tmf(0))+ f(0)), a contradiction.

Exercises
1.4a. a) Prove that the ged of the coefficients of f divides Content(f).
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b) Give an example to show that Content(f) can be larger than the ged of the coefficients
of f.

c) If a polynomial f(¢) € Z[t] has degree d then show that there exist integers b, by, ... , b4
for which f(t) = 29_ b;(").

d) Prove that Content(f) = gedg<j<qb; = gedo<,<q f(1)-

1.4b. Use the proof above to show that if f has degree d then there exists an integer n,
with |n| < d(1 4+ max|, <q|f(m)]), for which f(n) is composite. Can you significantly
improve this?

1.4c. Suppose that mq,ma,...,my are a set of pairwise coprime integers such that m;
divides f(a;) for some integer a;, for each j. Prove that there are infinitely many integers
n for which myms ... my divides f(n).

1.4d.a) Suppose that g(t) € Z[t], where my, ..., my are integers that satisfy g(m;) = 1,
and nq,...,n, are integers that satisfy g(n;) = —1. Prove that Hle(mi —n;) divides 2
for each j, and Hle(mi —n;) divides 2 for each 7.

b) Deduce that if k,¢ > 1 then we must have g(x) = £G(+z +a) for some choice of sign +
and some integer a where G(z) is either x(z—1)(x —3)+1withk =3,/ =1, or x(x—1)—1
with k = ¢ =2, 0or 222 — 1 with k =2,/ =1, or 2z — 1 with k = ¢ = 1, or x — 1 with
k=1¢=1.

c) Suppose that f(t) € Z[t] is reducible of degree d, for which there are more than d integers
n with|f(n)| is prime. Deduce that f(t) has a proper factor g(t), as in part b.

d) Suppose that f(t) € Z[t] is reducible of degree d, for which there are > d + 4 integers
n for which |f(n)| is prime. Deduce that there exist integers a and b such that f(t) =
g(t +b) where g(t) = ((t —a)(t —a — 1) — 1)(t?> —t — 1) so that the prime values are
g2)=gla—1)=a?>-3a+1,-g(1) = —g(a) =a®*—a—1,—¢g(0) = —g(a+1) =a?+a—1
and g(—1) = g(a+2) = a® + 3a + 1.

Hence there are examples of reducible polynomials of degree four, taking on prime values
eight times, in fact there is an example for each a such that h(t) := (t—a)(t—a—1)—1is
prime for t = —1,0, 1 and 2, something which we have conjectured above happens infinitely
often, for instance for a = 4.

e) Our conjecture implies that there is an infinite sequence of integers r1, 7, ... such that
72 4+ r; — 1 is prime for each i. For a given integer d > 2, let f(t) be the polynomial
(t2 —t - 1)(1 + aH?:_IQ(t + r;)). The prime k-tuplets conjecture states that if ait +
b1,...,ait + by € Z[t] have the property that Content(]_[?zl(ajt +b;)) =1 then there are
infinitely many integers n for which ain + by,...,agn + by are all prime. Use the prime
k-tuplets conjecture to deduce that there exist integers a such that |f(t)| takes on prime
values at d + 2 different integer values for ¢ (and, in fact, f(¢) takes on prime values at
d different integer values for t). Show that these examples give the most possible prime
values, for large enough d.

If one asks for prime values of f(n)/Content(f) then the answer is surprisingly different:
The number of prime values that can be taken by f(n)/Content(f) where f(t) € Z][t] is a
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reducible polynomial of degree d is something like 2¢%/ 1984 for some constant ¢ > 0. See
[ChRu] for details.

1.4e.a) For a given polynomial f(t) = Z?:o a;t" € Z[t] define H := maxo<i<a—1 |a;/adl.
Show that if f(a) =0 then |a| < H + 1.

b) Show that if f is reducible and n is an integer for which |f(n)| is prime then there exists
a root a of f(a) = 0 for which |n —a| < 1.

c¢) Deduce that if n is an integer, with |n| > H + 2, for which |f(n)| is prime then f(¢) is
irreducible.

d) Modify this argument to show that if n is an integer, with |n| > H + 1 + Content(f),
for which |f(n)/Content(f)| is prime then f(¢) is irreducible.

e) Modify this argument to show that if prime p = ag +a;10+ ...+ a410¢ in base 10 then
the polynomial ag + ait + ...+ aqt? is irreducible. (Hint: Prove first that, for o as in part
b, we have |f(a)/a? > Re(aq + ag_1/a) — 9> 0 1/]al’, and then that Re(1/a) > 0.)

1.5. A DIVERSION: DYNAMICAL SYSTEMS PROOFS. In general we know that the prime
divisors of a sequence of integers > 1 form an infinite sequence of primes if the integers in
the sequence are pairwise coprime. We will generalize the constructions from section 1.1.
We begin by simplifying the description of the sequences a,, and b,,.

pi1 — 1 =aqas...a, = (a1az...an_1)an = (ay — 1)an,,

so that a,1 = f(a,) where f(t) := t> —t + 1. (Similarly b,,1 = g(b,) where g(t) :=
t2 — 2t + 2.) How do we explain the fact that a,, = 1 (mod a,,) for all m < n? Well
am+1 = flam) = f(0) =1 (mod a,,) and, thereafter, a,11 = f(a,) = f(1) =1 (mod a,,)
by induction on n > m + 1. (Similarly b,,+1 = g(by) = g(0) = 2 (mod b,,) and by,41 =
g(b,) = ¢g(2) = 2 (mod b,,) by induction.) So the only requirements on f; seem to be
that f(0) = f(1) = 1, and f is the simplest such polynomial is 1 4+ ¢(¢ — 1). In fact any
polynomial 1+ h(t)t(t — 1), where h(t) € Z[t] has positive leading coefficient, will work. In
section 1A1 we will determine all polynomials f(¢) € Z[t] that be used into this framework.

We introduce a little terminology from dynamical systems: A number a is said to be
preperiodic for f, if the sequence a, f(a), f(f(a)),... is eventually periodic.

Proposition 1.5.1. Let f(t) € Z[t| have degree > 1, positive leading coefficient, and
f(0) # 0. Suppose that 0 is a preperiodic point for f but that 0 is not part of the period, and
let ¢ be the least common multiple of the integers in the sequence f(0), f(f(0)), f(f(f(0))),....
If ag € Z with an+1 = f(an) for alln > 0, and (an,?) = 1 for all n > 0, then we obtain
an infinite sequence of distinct primes by selecting one prime factor from each a.,.

Proof. Let wg = 0 and wy,+1 = f(wy,) for all n > 0, so that a1 = f(am) = f(0) = wq
(mod a,,) and, thereafter, ayyj+1 = fi(am+j) = f(w;) = wjt1 (mod ay,) by induction
on j > 1. Therefore if m < n then (am,an) = (am, Wn—mn,) which divides (a,, ), which
equals 1 by the hypothesis. The rest of the proof follows as above.

To be able to use Proposition 1.5.1 we need a good idea of when 0 is a preperiodic point,
which turns out to be simpler than one might guess:
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Proposition 1.5.2. Suppose that f(t) € Z[t] and that the sequence {u, : n > 0}, with
up € Z and upy1 = f(uy) for all n > 0, is periodic. If p is the smallest period then p =1
or 2.

Proof. We have u,,1, = u,, for all n > 0. One knows that = —y divides f(x)— f(y) for any
integers x, y; in particular that w, 11 —u, divides f(up+1)—f(un) = Upt2—unp41. Therefore
up — ug divides us —uy, which divides ug —us, ... , which divides u, —u,_1, which divides
Up+1 —Up = U1 —ug. That is, we have a sequence of integers that all divide one another and
so must all be equal in absolute value. If they are all 0 then p = 1. If not then they cannot
all be equal, say to d # 0, else 0 = (u1 —uo) + (ug —u1) + (ug —u2)+- - -+ (up —up—_1) = pd.
Therefore two consecutive terms must have opposite signs, yet have the same absolute
value, so that u,i9 — Upyr1 = —(Upy1 — uy,) and therefore u, 19 = u,. But then applying
f, p —n times to both sides, we deduce that us = ug and therefore p = 2.

This allows us to classify all such polynomials f:

Theorem 1.5.3. Suppose that f(t) € Z[t] and that O is a preperiodic point for f but is
not in the period. The basic possibilities are:
a) The period has length 1, and either f(t) = u with0 — v — u — ..., or
f(t) = (2/u)t?> —u where u =1 or 2, with0 — —u — u — u — ...; or
b) The period has length 2, and either f(t) =1+4+ut —t*> with0 -1 —u—1— ..., or
fO)=14+t+t2 -3 with0 —1—2— -1 —-2— ...,
Other examples arise by replacing f(t) by —f(—t), or adding a polynomial multiple of
Hle(t — a;) where the a; are the distinct integers in the orbit of 0.

Proof by Exercises

1.5a. Let f(t) € Z][t], and assume that f has a period of length 1, say f(u) = u. Then

a) f must be of the form f(t) = u+ (t — u)g(t) for some g(t) € Z][t].

b) If f(v) = w with v # u then f(t) = u+ (t — u)(t — v)g(t) for some g(t) € Z[t].

c) If f(w)=vthen v —w =w—u= =41 or +£2, equals § say and g(t) =2/0 + (t — w)h(t)
for some h(t) € Z[t].

d) If f(z) = w then (z — u)(x — v) divides (w — u), which is impossible.

1.5b. Assume f(t) € Z[t], and f has a period of length 2, say f(u) = v and f(v) = u.
Then

a) f must be of the form f(t) =v+u—t+ (t —u)(t —v)g(t) for some g(t) € Z][t].

b) If f(w) =wv then w — v = +1, so that g(t) = w — v + (t — w)h(t) for some h(t) € Z][t].
o)If f(x) =wthenx—u==+1. fx—u=w—v=37then 2 = (x—v)(w—v+(x—w)h(x));
this implies that x — v = 6,24, —4 or —20 each of which can be ruled. If z — u = —(w — v)
then u, z, w, v are consecutive integers (in this order), and h(t) = —1+ (t —x)j(t) for some
Jj(t) € Z[t].

d) Show that if f(y) = x then y — u divides |x — v| = 2, and y — v divides |z — u| = 1,
which is impossible.

1.5c. a) Deduce the cases of the theorem by setting x = 0, then w = 0 and then v = 0.
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b) This section was motivated by examples of the first case in the theorem, that is, f(u) =
u+t(t —u). An example in the second cases is given by f(¢) = t? — 2, so that 0 — —2 —
2 — 2 — ...: Start with 2y = 4 and then let x,,.1 = f(z,) for all n > 0. Note that
2 divides each x, but never 4, so a minor modification of our argument above works to
prove that there are infinitely many primes. This sequence has appeared in the literature
for another reason: Lucas showed that the Mersenne number 2" — 1 is prime if and only
if it divides x,,_o.

1.5d. Going back to the proof of Proposition 1.5.2, now suppose that f(z) € A[z] where A
is the ring of integers of some number field, and that vg — u; — ... — up—1 — up where
p is prime, and ug € A.

a) Prove that each u; € A.

b) Show that (w;ym —u;)/(um —up) is a unit of the field for all i and all m,1 < m < p—1.

We have considered iterations of the map n — f(n) where f(t) € Z[t]. If one allows
f(t) € Q[t] then it is an open question as to the possible period lengths in the integers.
Even the simplest imaginable case, f(z) = 22 + ¢, with ¢ € Q, is not only open but leads
to the magnificent world of dynamical systems (see []). It would certainly be interesting
to know what primes divide the numerators when iterating, starting from a given integer.

1.6. FORMULAS FOR PRIMES. ,
i) Let p1 =2 < py =3 < ... be the sequence of primes and define « =) -, pp, /10" =

.2003000050000007000000011 . ... Then p,, = [10™°a] — 102™~1[10(m=D’q].

Is such a magical number « truly interesting? If one could easily describe a (other than
by the definition that we gave) then it might provide an easy way to determine the primes.
But with its artificial definition it does not seem like it can be used in any practical way.
At first one might suppose that, useful or not, « is quite unique; however the following
exercise shows that this is not so.

Exercise 1.6a. Show that there are uncountably many numbers « of this type!

An even less practical formula for primes is derived as follows:
ii) Wilson’s theorem tells us that n is a prime if and only if n divides (n — 1)! + 1. We

deduce that [COS <27T <M>>} is equal to either 1 or 0 depending on whether n is

n
prime or not. Summing this over all integers up to = we have an exact formula for the
number of primes up to x.

There are surely other ways to identify primes of even less value! Our focus in section
** will be to discuss ways of rapidly determining whether a number is prime.

iii) By 1970, researchers on Hilbert’s tenth problem, knew that there exist polynomials f in
many variables, such that the positive values taken by f when each variable is set to be an
integer, is precisely the set of primes. In 1971 Matijasevic¢ indicated how to construct such
a polynomial, and one can construct such polynomials for the set of Fibonacci numbers,
for the set of Fermat primes, for the set of Mersenne primes and the set of even perfect
numbers, and indeed any diophantine set. One can find many different polynomials for the
primes, we will give one below with 104 variables of degree 25, and it is known that one
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can cut the degree to as low as 5 though for an astronomical cost in terms of the number of
variables. No one knows the minimum possible degree, or the minimum possible number
of variables.

We will reduce the 104 variables to 26, by only allowing our variables to take non-
negative integer values (and so are the sum of four squares of integers): Our polynomial
is k 4 2 times

l—-(n+l+v—9)2—-2n+p+qg+z—e? —(wz+h+j—q)? —(ai+k+1-1-1i)
— ((gk+29+k+1)(h+j)+h—2)*—= (2 +plla—p)+t(2ap — p* — 1) — pm)?
—(p+1l(a—n—1)4+b2an +2a —n?—2n—2) —m)? — ((a®> = )I* + 1 —m?)?
—(g+yla—p—1)+s2ap+2a—p* —2p—2) —2)* = ((a® ~ 1)y* + 1 —2?)*
—(16(k+ 1%k +2)(n+ 1) +1— )2 — (3 (e +2)(a+1)* + 1 — 0%)?
— (16r%y*(a® — 1) + 1 —u?)? — (((a + v (u® — a))? — 1)(n + 4dy)? + 1 — (z + cu)?)?.

Stare at this for a while and try to figure out how it works: The key is to determine when
does it take positive values, noting that the displayed quantity is equal to 1 minus a sum of
squares. Understanding much beyond this seems difficult, and it seems that the only way
to appreciate this polynomial is to understand its derivation — see [JSW]. In the current
state of knowledge it seems that this absolutely extraordinary and beautiful polynomial is
entirely useless in helping us better understand the distribution of primes!

1.7. SPECIAL TYPES OF PRIMES.

In section 1.2 we asked whether there are infinitely many primes of the form 2™ + 1, or
of the form 2" — 1, both of which are open questions. One can generalize this by asking
whether there are infinitely many primes of the form & - 2™ 4+ 1 or of the form k 4+ 2™ for
given integer k. At first sight this seems like a much more difficult question but Erdés
showed, ingeniously, how these questions can be resolved for certain integers k:

Let by, = 22" + 1 be the Fermat numbers (remember that by, by, ba, b3, by are prime and
bs = 641 x6700417), and let k be any positive integer such that k = 1 (mod 641bgb1b2b3by)
and k = —1 (mod 6700417). Now

eifn=1 (mod2)then k-2"+1=1-2'+1=0by =0 (mod by);

eifn=2 (mod4)then k-2"+1=1-224+1=0b; =0 (mod by);

eifn=4 (mod 8) then k-2"+1=1-22 +1=10b, =0 (mod by);

eifn=28 (mod 16) then k- 2" +1=1-22 +1=0b3 =0 (mod b3);

o if n=16 (mod 32) then k-2" +1=1-22" +1=1b, =0 (mod by);

e ifn=32 (mod 64) then k-2"+1=1-22 +1=0b; =0 (mod 641); and

eif n =0 (mod 64) then k-2" +1=—1-2°+1=0 (mod 6700417).

Every integer n belongs to one of these arithmetic progressions (these are called a
covering system of congruences), and so we have exhibited a prime factor of k- 2" + 1
for every integer n. Therefore we have shown that for a positive proportion of integers k,
there is no prime p such that (p — 1)/k is a power of 2.

Exercise 1.7a.a) Deduce that k- 2™ + 1 is composite for every integer n > 0 (with k as
defined above).
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b) Prove that 2" + k is composite for every integer n > 0. (Hence, you have shown that
there is no prime p for which p = k is a power of 2.)

c) Let ¢ be any positive integer for which ¢ = —k (mod bg — 2). Prove that ¢- 2™ — 1 and
|2" — | is composite for every integer n > 0

1.7b. (Open question) John Selfridge found the smallest & known for which k- 2™ + 1 is
always composite: At least one of the primes 3,5,7,13,19, 37, and 73 divides 78557 -2" + 1.
Is this the smallest such k7

1.7c. Let ¢ be any integer for which £ = 1 (mod 641bgbabsbs) and = 22° (mod 6700417),
so that k = ¢4 = 1 (mod 641bgbabsbs) and is = 22° = —1 (mod 6700417). If n = 2
(mod 4) then, writing n = 4m + 2 we have k- 2" + 1 = 4(£2™)* + 1 and the polynomial
4% 4+ 1 = (2t% + 2t +1)(2t% — 2t + 1). Prove that k- 2" + 1 is composite for every integer
n > 0.

This last exercise shows that we can have k - 2™ 4+ 1 composite for all n for reasons other
than having a covering system.

Are there infinitely many primes p for which p? divides 2P — 2? Calculations have been
done up to 10'° yet the only such primes that have been found are 1093 and 3511. One
can ask similar questions about 37 — 3, etc.



