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Introduction

Fermat’s ‘little’ theorem asserts that
(1) a"' =1 mod n,

whenever n is a prime that does not divide a. If (1) holds for a composite integer n
then we call n a ‘pseudoprime to base a’. If a composite number n is a pseudoprime
to every base a, for which (a,n) = 1, then we call n a ‘Carmichael number’. One
can identify Carmichael numbers fairly easily by using

Korselt’s criterion: A composite number n is a Carmichael number if and only
if n is
squarefree and p — 1 divides n — 1 for every prime p dividing n.

The smallest Carmichael number, 561 (= 3 x 11 x 17), was found by Carmichael
in 1910. Recently we proved that there are infinitely many Carmichael numbers;
in fact, that there are more than z2/7 Carmichael numbers up to z, once z is
sufficiently large (see [AGP]).

If n is neither prime nor a Carmichael number, then there are more than n/2
integers a in [1,n — 1] for which the congruence (1) does not hold. Thus if we pick
an integer a at random in the interval [1,n — 1] then there is a better than even
chance that (1) will fail and so we will have a proof that n is composite. If we
repeat this ‘test’ say 100 times, then there is a minuscule chance that we will fail to
recognize such an integer n as composite (and, in fact, we expect to obtain such a
‘witness’ a in no more than two such tests). This algorithm is very efficient because
one can determine powers modulo n extremely rapidly.

Unfortunately the test just described rarely recognizes Carmichael numbers as
being composite!. Since there are infinitely many Carmichael numbers, we cannot
skirt this difficulty by instructing our algorithm to just look out for a finite list of
exceptional integers. However this difficulty can be neatly resolved by replacing the
‘Fermat test’ based on (1) by a slightly stronger test: For any given odd integer
n > 1, let t be the largest odd factor of n — 1, so we can write n — 1 = 2%t for some
positive integer u. If n is a prime which does not divide a, then

(2) Either o' =1modn, Or a2’ = —1mod n for some i € {0,1,...,u — 1}.

If this is true when n is a composite number then we call n a ‘strong pseudoprime
to base a’. In the mid-70’s Selfridge used a test based on (2) to rapidly identify
composite numbers, which works whether or not they are Carmichael numbers.
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An integer a is called a ‘witness™? for n if n does not divide a and if (2) fails3.
Selfridge had observed that there are always a lot of witnesses for any composite
integer n; more precisely, Monier [M] and Rabin [R] independently proved that at
least three-quarters of the integers a in the interval [1,n — 1] are witnesses for n.
Imitating the procedure above, we note that now if we select an integer a at random
in the interval [1,n — 1] then there is a far better than even chance that it will be
a witness for n; and so we can be almost certain that we identify any composite
number in just a few such tests?.

So maybe we can use (2) to test whether a number is prime? Indeed, Miller
proved, assuming the truth of an appropriate generalization of the Riemann Hy-
pothesis (GRH), that if n is composite then there must be some ‘small’ value of
a for which (2) fails, thus giving a ‘polynomial time’ deterministic primality test.
Let w(n) denote the least positive witness for n. Following work of Miller, Oesterlé
and Bach (see [B]), we now know that

(3) If the GRH is true then w(n) < 2log® n.

We are concerned in this paper with determining how large w(n) can get. It is
known that 2 is a witness for most odd composite numbers (see [E] and [P]). How-
ever it is also known that there are infinitely many strong pseudoprimes base 2,
so that the least witness is then at least 3. Specific examples have been found
in which w(n) is fairly large: For instance w(3215031751) = 11 ([PSW]) and
w(341550071728321) = 23 ([J])°. [Ar] provides an extraordinary example of a 337-
digit odd composite, whose least prime witness exceeds 200.

Prior to this paper it had not been proved that w(n) > 3 for infinitely many n,
even though it has long been expected that w(n) can get arbitrarily large. Here we
prove this and more:

Theorem 1. There are infinitely many Carmichael numbers n whose least witness
is larger than (logn)'/(4legloglogn) = In fact, there are > X 1/(1000logloglog X) oy cpy
n < X, for sufficiently large X .

In section 3 we will argue that the maximal order of w(n) is presumably clognloglogn,
for some constant ¢ > 0, though there are many obstacles to turning our ‘argument’
into a proof®. However under the assumption of a suitable uniform version of the
prime k-tuplets conjecture we are able to show that the maximal order of w(n) is
at least clogn for some constant ¢ > 0. (A set of linear forms {a;,x +b;, 1 <1i <k}
is called ‘admissible’ if 1 < b; < a; for each 7, and for every prime p, there exists
an integer n, such that p does not divide any of the a;n, + b;. Hardy and Lit-
tlewood’s ‘prime k-tuplets conjecture’ [HL] contends that for any admissible set of
linear forms, there are infinitely many integers n for which each a;n + b; is prime.)

2to the fact that n is composite

3that is, n is not a strong pseudoprime to base a. Perhaps bases a to which n is a strong
pseudoprime should be referred to as ‘alibis’.

4Actually Lehmer [Leh] and Solovay and Strassen [SS] noted that one can obtain such a surefire
compositeness test using a procedure intermediate in strength between (1) and (2).

5These numbers are, in fact, ‘champions’, in that w(n) is smaller for all smaller n.

6See also [BH].



Uniform prime k-tuplets conjecture. For each integer k > 1, there exist con-
stants Ak, vk > 0 such that for any ‘admissible’ set of linear forms {a;xz 4+ b;, 1 <
i < k} there exists an integer n < yg(ayas . ..ax)** such that each a;n+b; is prime.

Such a result is known for £ = 1 (Linnik’s Theorem) and even with A; = 5.5
(see [HB]); and it is widely believed that the above uniform version of the prime
k-tuplets conjecture is true. In section 3 we prove the following result.

Theorem 2. Suppose that the ‘Uniform prime triplets conjecture’ is true (that is
for k = 3). There exists a constant a > 0 such that there are infinitely many
Carmichael numbers n whose least witness is larger than alogn. Moreover there
are at least P such n up to x, once x is sufficiently large, for some constant > 0.

Lenstra [Len| asked whether, for any given finite set of odd, composite numbers,
there exists an integer w, perhaps very large, which serves as a witness for every
number in the set (we will call w a ‘reliable witness’). In particular, we would like
to have a reliable witness for every odd composite number up to . Unfortunately
we will prove that there cannot be a reliable witness once z is sufficiently large’.
We shall actually prove that one needs quite a few witnesses to correctly identify
all of the odd, composite numbers up to x:

Theorem 3. If X is sufficiently large then for any set W of < (log X )/ (410gloglog X)
integers, there are more than X 1/(1000logloglog X) Cyrmichael numbers n < X which
have no witnesses in the set WW.

Theorem 1 is a corollary of Theorem 3. If V¥ is not so large then we can obtain
larger sets of Carmichael numbers which have no witnesses in W.

Theorem 4. For any fized §, 0 < § < 1, there exists a constant cs > 0, such that
for any set W of < ecs(loglog X0 integers, there are more than X>%/25 Carmichael
numbers n < X which have no witnesses in the set WV.

Besides determining w(n), it is also of interest to determine the size of the

smallest ‘reliable set’ YV of witnesses; this is a set YV with the property that every
composite integer up to x has a witness in ¥/. Theorem 3 implies that any such
set contains more than (log X)!/(4logloglog X) witnesses. We might wish to restrict
the members of W to themselves be < z. By (3) we know that if the GRH is true
then there is such a set of size < 2log® z. Adleman [A] and Dixon [D, Exercise 12]
have shown how to get such a set of size O(logz) unconditionally (we shall give
their argument in Proposition 3.1). We will also argue in section 3 that it seems
unlikely that there is a reliable set of witnesses of size o(log x).
Style and notation: The precise constants in our theorems are open to a little
improvement: we have chosen to use ‘clean’ constants. Most of the proofs given
involve modifications of the proofs in [AGP]; for brevity’s sake we suppress details
that remain exactly the same, referring the reader to [AGP]; though we have tried
to make our explanations here as self-contained as possible. Throughout the paper
there are inexplicit constants ‘c;’, as well as ‘for sufficiently large” hypotheses; these
can be made explicit with considerable extra work.

"It is an interesting open computational problem to find the smallest integer x for which there
is no reliable witness for all of the odd, composite numbers up to x.
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§1. Tools

We begin with a simple characterization of strong pseudoprimes which is stated
without proof in [PSW]. For any pair of coprime integers a and n with n > 0, let
{4 (n) denote the order® of @ modulo n .

Proposition 1.1. Let n be a positive, odd composite integer. Then n is a strong
pseudoprime to base a if and only if a”~' = 1 mod n and there exists an integer k
such that, for every prime factor p of n, 2F divides £,(p) but 281 does not.

Proof. Throughout the proof we write n = 2%t 4+ 1 where ¢ is odd.

Suppose that n is a strong pseudoprime to base a. Either a! = 1 mod n, so
that a' = 1 mod p for each prime factor p of n, and thus each ¢,(p) is odd (giving
k = 0 above). Or there must exist some integer k in the range 1 < k < u for which
a2’ 7't = —1 mod n. But then a2" 't = —1 mod p for each prime p dividing n, and
so 2" is the exact power of 2 dividing each /,(p).

Suppose conversely that ¢ ! = 1 mod n and that 2* is the exact power of 2
dividing ¢, (p) for each prime factor p of n. It is well known that for any prime power
p®, the order of @ modulo p® equals some power of p times £,(p). Since n is odd
this means that 2¥ is the exact power of 2 dividing £, (p®) for each prime power p°
dividing n. However, since we already know that a?'t = a” ! = 1 mod p® we thus
deduce that a2°t = 1 mod p?, whereas a2t = 1 mod p® if £ > 1. By the Chinese

2kt _ 2k—1y

Remainder Theorem, this implies that a 1 mod n, whereas a —1 modn

if £ > 1, and so n is a strong pseudoprime to base a.

We shall apply Proposition 1.1 to special types of Carmichael numbers in the
following way.

Corollary 1.2. Suppose that n is a Carmichael number, and that every prime
factor of n is = 3 mod 4. Then a is not a witness for n if and only if the quadratic

restdue symbol (%) takes the same value for each prime divisor p of n.

Proof. Note that n divides a if and only if p divides a for every prime divisor p of
n (since any Carmichael number n is squarefree by Korselt’s criterion); and this is

true if and only if <%) = 0 for each prime divisor p of n.

Otherwise we may assume n does not divide a, and so a is not a witness for n
if and only if n is a strong pseudoprime to base a. Let p be any prime divisor of
n, which must be = 3 mod 4 by hypothesis. Since ¢,(p) divides p — 1 (which is
divisible by 2 but not by 4), we see that the exact power of 2 dividing ¢,(p) can be
either 2% or 2!, but no higher power. However, if 2° is the exact power of 2 dividing

lo(p), then <%> = ¢ 1Y/2 = 1 mod p and so (%) = 1. Alternatively, if 2! is the

exact power of 2 dividing £, (p), then a®® /2 # 1 mod p and so <%> = —1. The
result follows now directly from Proposition 1.1.

8that is, the order of a in the group (Z/nZ)*.



Let A\(n) denote the largest order of any element of the group (Z/nZ)*; note that
a*™ =1 mod n for any integer a which is coprime to n, and that A(n) is the least
such integer. As noted by Gauss?, A\(n) is the least common multiple of the numbers
A(p®), where p® runs over the prime power divisors of n, and A(p?) = p®~1(p—1) if
p>2or p® =2or 4, and \(2%) = 2972 if @ > 3. Also called Carmichael’s function,
A(n) is intimately connected with Carmichael numbers: a composite number n is
Carmichael if and only if A\(n) divides n — 1.

Proposition 1.3. Suppose n and k are coprime integers with n > 2 and S is
a set of primes which are all of the form dk + 1, where d is a divisor of n. If
#S > A(n)logn then there is a nonempty subset of S whose product is a Carmichael
number.

Proof. Since n and k are coprime, (Z/nZ)* is isomorphic to the subgroup of (Z/nkZ)*
of residues that are 1 mod k. Note that & is naturally embedded in this sub-

group. Since n > 2, we have [A(n)logn] > [A(n)(1 + log(¢(n)/A(n)))], where

p(n) = #(Z/nZ)*. From a result of van Emde Boas and Kruyswijk (see [AGP,

Theorem 1.1]), there is a subset of S\{nk + 1} whose product is 1 mod nk. But

then this product is a Carmichael number by Korselt’s criterion.

To find many such Carmichael numbers we can use [AGP, Proposition 1.2],
which is an elementary combinatorial result. Combining it with Proposition 1.3
above immediately gives

Corollary 1.4. Suppose n and k are coprime integers with n > 2 and S is a set
of primes which are all of the form dk+ 1, where d is a divisor of n. Ift and A are
integers for which #8 >t > A > [\(n)logn]|, then there are at least (ﬁs)/(ﬁs)
distinct subsets of S, each containing < t elements, such that the product of the
elements in each such subset is a Carmichael number.

Proposition 1.5. There exists a constant cy > 0 such that for any given arithmetic
progression £ mod m with (¢,m) = 1, if x is sufficiently large and if n is a squarefree
integer which is coprime to m, then there exists an integer k < x3/° such that

#{d|n : p=dk+1 is a prime, p <z and p=/{mod m} > S

(m)log
If we further assume that n has < x'/* prime factors, and that the sum of the
reciprocals of the primes dividing n is < 1/60, then we may take k to be coprime to
n.

Proof. We shall modify the proof of Theorem 3.1 in [AGP], taking B = 2/5 there!®
to simplify matters. Note that by definition every element of Dg(zx) is > logz,
so if we take = > €™ then no member of the set Dg(x) of exceptional moduli can
divide m. Analogously to the proof of Theorem 3.1 in [AGP] we begin by forming
a new number n’, obtained by removing from n some prime factor of (d,n) for each

9Gauss discovered Carmichael’s function over a hundred years before Carmichael: see article
92 of ‘Disquisitiones Arithmeticae’ where Gauss discussed the function whilst classifying those
moduli for which there is a primitive root.

10which is in the set B of [AGP] since 2/5 < 5/12.

—#{dn: d < z%/°}.



d € Dg(z), so that no member of Dg(x) divides mn’. Note that there are < Dp
prime factors of n/n’.

For every integer d coprime to m with d < 2%/5, let aqg be the congruence
class moddm which is = 1 mod d and = ¢ mod m. We proceed as in the proof
of Theorem 3.1 in [AGP], though replacing the various estimates for the number
of primes = 1 mod D by the analogous estimates for the number of primes =
ap mod Dm (here D = d or dq of [AGP])!L. One difference is that there we assumed
that n had no prime factor ¢ > 3/10; whereas here we shall bound the ‘contribution’
of all of the primes ¢ > 2?/7 dividing n by using the trivial fact that the number
of primes < dz3/5 which are = aqq mod dgm, is less than the number of integers in
this arithmetic progression, which is < 1 4 23/%/gm. However, by (the extended)
hypothesis we know that there are < z'/* such primes ¢, so their total contribution
is < /(1 +2%/5/2%/"m) < 23/5 /9mlog = if x is sufficiently large. Therefore there
are at least

23/5

s d /: d< 2/5
3p(m) logx#{ In S

pairs (p,d), where d divides n’ and d < x?/°, and p is a prime = a4 mod dm

with p < dz3/5 and ((p — 1)/d,n) = 1. Bach such pair corresponds to an integer
k = (p — 1)/d which is coprime to n and < 23/5. Thus there is some such k which
corresponds to at least #{d|n’ : d < 2%/°}/(3p(m)logz) such pairs (p,d). The
result with k coprime to n now follows from (3.1) of [AGP], where cq = 1/(3-2P5).

The arithmetic progressions mod dgm occurred in the proof solely to ensure
that the integer k produced is coprime to n. If we remove this assertion from the
theorem then it is easy to remove some of the restrictions placed on the prime
factors of n, leading to our result above when k£ is not guaranteed to be coprime to
n.

Let 7(n) denote the number of positive integers which divide n. Take { =m =1
and 2 = n®/? in Proposition 1.5. Since 7(n) = #{d|n : d < n} we have the
following result with ¢; = 2¢(/5.

Corollary 1.6. For any sufficiently large squarefree integer n, there is some posi-
tive integer k < n®/2 for which

c17(n)

#{d|n:p=dk+1 is a prime } > :
logn
A y-smooth integer is one whose prime factors are all < y. We define ¢ (x,y) to
be the number of y-smooth integers up to z; and Y2 (x, y) to be the number of those
that are squarefree. By taking £ = m = 1 and n to be the product of all primes
<y, we deduce the following result from Proposition 1.5.

Corollary 1.7. Ifx > y are sufficiently large then there exists some positive integer
k < 23/5 for which

#{d‘ Hp: q=dk+1 is a prime <z} > 0_01/}2(332/5’?;).

ooty log x

Mand we still look at such primes < dz3/5.



We note that for any integers a, b, ¢, for which 0 < ¢ < b < a/2, we have

0 /()= () )

since (a —c—1)/(b—1) > (a — ¢)/b whenever 0 < i < b.

Estimates for 1 (z, y) have been carefully studied in many places (see for instance
[IT]). However we shall only need the lower bounds given by considering all possible
products of u of the 7(y) distinct primes < y. For z > e(1/2+9)¥ > ¢7(¥)/2 we can
take any u < m(y)/2 giving at least half of all the possible products!?, and so
Yo (z,y) > 27W -1 If 2 < e(1/2+4) then choose u = [logz/logy] so that, using (4)
with ¢ = 0,

(5) Yl ) > (”Ef’)) > (#) > (logx)u >

We make one further observation that will be used implicitly in the next section:

Lemma 1.8. For any sufficiently large finite set of primes P, if P’ is the larger
half of the primes in P then the sum of the reciprocals of the primes in P’ is < 1/60.

Proof. Suppose that P = {p1 < pa < --- < pp}, and P’ = {pr41 < pry2 < --- <
Pn}. Choose y and z so that m(y) = k and 7(z) = n; since n < 2k we see that
z < 3y. Evidently pp4; must be at least as large as the jth prime larger than y,
and so the sum of the reciprocals of the primes in P’ is at most

1 1 2z 6 1
> S <o <<
y<p§zp y ng ogz

if z, and thus n, is sufficiently large.

§2. Proofs

We shall start by proving a rather general result which will lead to the proofs of
all of our main results. To do so we will choose the parameters so that the various
hypotheses are satisfied.

Proposition 2.1. Let x be some positive integer, and for a given positive integer
N, let L be a product of primes q for which ¢ — 1 divides N. Let K be a positive
integer coprime to L, and let P be a set of primes p = 3 mod 4, each p < x,
for which K divides p — 1, and p — 1 divides KL. Let ¢ be a positive integer <
log(#7P)/log3, and suppose that t is an integer for which Nlog L <t < #P/(2-3%).
Then, for any set W of { integers, there exist at least (#P/(2t - 3%))(t—NlogL)
Carmichael numbers < xt, which have no witness in the set W.

Proof. Suppose that W = {wq,...,w;}, and consider the function y,y : P —
{1,0, —1}*, where

o= (2)-(3) - (3)) o

12Since the prime number theorem gives 1 < 7m(y)/(y/logy) < 1+ € once y is sufficiently large



8

w

and where <F> is the Legendre sybmbol. Since there are only 3¢ possible values

that xw (p) can take, there must be a subset Py of P, of order > 3 ¢#7P, on which
Xw remains constant.
Since A(L) divides N (by definition), A(L)logL < NlogL < t < #Py/2

by hypothesis. Thus, by Corollary 1.4 and (4), there are > (#f‘)) / ([N#ig)u) >

(#P/(2t - 3%))t=NlosL) distinct nonempty subsets of Py, each containing < t el-
ements, whose product is a Carmichael number. Moreover, each such product is
evidently < 2zt and, by Corollary 1.2, has no witness in the set W.

Corollary 2.2. Let x be a sufficiently large positive integer, and for given positive
integer N, let L be a product of primes q for which ¢ — 1 divides N, such that L
has < z'/* prime factors, and such that the sum of the reciprocals of the primes
dividing L is < 1/60. Let R = (co/2)#{d|L : d < 2*/°}/logx, let £ be any positive
integer < log R/log3, and suppose that t is an integer for which NlogL < t <
R/(2-3%). Then, for any set W of { integers, there exist at least (R/(2t-3°))(t=NlogL)
Carmichael numbers < xt, which have no witness in the set W.

Proof. We construct the set of primes P in Proposition 2.1 by using Proposition
1.5 with / mod m = 3 mod 4. Then k and n in Proposition 1.5 equal K and L
in Proposition 2.1, respectively. We let R be the lower bound for #P given by
Proposition 1.5, where P is the set of primes in Proposition 2.1. The ‘sufficiently
large’ here depends on the ‘sufficiently large’ in Propositions 1.5 and 2.1.

Remark: Our primary objective is to maximize ¢ as a function of X = x*. How-
ever, one cannot deduce from the hypothesis of Corollary 2.2 a significantly bigger
function for ¢ than is obtained in Theorem 1: As R < 7(L) and L is squarefree, and
as 7(N) < N¢/loglog N for some constant ¢ > 0 for all integers N (see [W]), thus

¢ <logR <log7(L) <w(L)<7(N) < (logX)C/ loglog log X
since N <t < log X, where w(L) denotes the number of prime factors of L.

We begin by applying Corollary 2.2 to essentially the construction of [AGP].
Thus turns out to be straightforward; however, we can get better results with a
slight variant. The main difference is that in our first construction we take N to be
the product of powers of the primes < y, and the primes ¢ dividing L are no larger
than a fixed power of y; whereas in our second construction we take N to be some
integer k times the product of the primes < y (as obtained by Corollary 1.7), and
then the primes ¢ dividing L get to be much larger than any fixed power of y.
Applying the construction from [AGP]: A theorem of Friedlander (see [F])
implies that there exists a constant cy > 0 such that there are at least coy®/logy
primes ¢ < 33 for which the largest prime factor of ¢—1 is < 7, once ¥ is sufficiently
large. Let L be the product of the larger half of these primes, and take N =
[1,<, " where pr is the largest power of p that is < y®. Note that N' = e(3t+o(M)y
by the prime number theorem, and logL = O(y?). We let t = eGteto)y ip
Corollary 2.2.

To satisfy the hypothesis of Corollary 2.2 we need that z > R > N > e(+o())y,
Since the largest divisor of L can be no bigger than L = eo(ys), we may assume x is
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no bigger than this. Therefore we write z = e ' for some 0 < p < 2. Evidently
the product of any ¢ = [2cy**?/15logy| primes dividing L is < /%, and so

3
R co 3_5(02@/ /2logy)> co (esy

302 = Jlogx
2.3 4logx 12 2logx

Let X = zt. In Corollary 2.2 we produce > X 2(2=,=¢)/15 guch Carmichael numbers.
Moreover, since logz = O(y?) evidently loglog X ~ logt ~ (3 + €)y; and therefore
¢ > (loglog x)t*+r+o(), Selecting € = (2 — p)/16 we have now proved the following
result which may be compared to Theorem 4.

Theorem 2.3. For any fized p, 0 < p < 2, there exists a constant c, > 0, such
that for any set W of < (loglog x)1+p+°(1) integers, there are more than X(2-r)/8
Carmichael numbers n < X which have no witnesses in the set W.

Remark: We can replace 3 by any B < 2 /e in Friedlander’s result above, and
then get a corresponding improvement in Theorem 2.3.

A new construction, using Corollary 1.7 in Corollary 2.2: Let ¢ > 0 and
0 < n <1-—4e be small, fixed constants that we will determine later. Select Q) > y
sufficiently large so that we can apply Corollary 1.7 (with z = Q). We will insist

5/2
that Q > y'%/¢, and restrict Q < (Hp<y p) < e (since we will not obtain any

further primes ¢ from Corollary 1.7 for larger Q). For p > 0, let £ = [Q(1~73)7]
and z = Q°¢/2.

Let L be the product of the larger half of the primes obtained in Corollary 1.7
(taking x there to be equal to @ here). One may check that the hypotheses for L
in Corollary 2.2 are satisfied (using Lemma 1.8). Let N = k[] .. p (with k as in
Corollary 1.7), and let t = e*Y N log L.

Now, since L is the product of < 7(N/k) primes each < @, thus logL <

7(N/k)logQ < 27W log(3y) = €. Moreover 1 < k < Q3/5 < e(3/2+o(1))y,
by the prime number theorem. Therefore elTetey < ¢ < Q3/5e(1+€"’0(1))y
e(5/2+e+o(1))y

By Corollary 1.7 we know that L is the product of > (co/2)12(Q%/%,y)/logQ
primes ¢ < Q. Since e%¥ > Q > y'%/¢, we can use (5) to note that

p<yP

4/e 3/

4/e C_
0 oy y)>6 ((4/8)10gy)4/82y,

o (Q*°,y) >

2 log Q 6y
for sufficiently large y, since ¢ < 1/3. In each case below we will choose p so that L
has > Q” prime divisors, and we see in the display immediately above that it will
be possible to select p so that @Q? > y3/¢. Note that logz = O(£log Q) = O(Q*) =
O(27W)) = ¥, Thus if X = 2! then logt ~ loglog X.

Since the product of any ¢ primes dividing L is < x%/°
obtain

¢
R _ a4 (Qp) . ¢ (Q_;) S QUIt2Ipt _ y(1+22)(20/5).
—Ylo 3 -

, we use (4) with ¢ =0 to

2.3~ 4logx

2—p)£ > e(4—2p—€)cy1+p/15 — .7,‘(4_2[)_6)/15.
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Since QP > y3/¢ we have ¢ > Q¥ > y> and Q(1t2e)r > y(3/e)2¢ — 16 and so
R/(2-3%) > QUrt2erl > 46v° > ¢1/e > ¢ Thus R/(2t-3%) > (R/(2-3"))" ° >

x(1t2e)(2p/5)(1=¢) ~ 2(n+€)(2p/5)  Therefore the number of Carmichael numbers
produced in Corollary 2.2 is > (x(172)(20/5) /1)t > g2tne/5 — X 21e/5,

Completion of the proof of Theorem 4: For any fixed 0 < § < 1, we can take p =
(2/5)(0—¢) for log @ = y* %, by (5). Let n = 1—4¢ with ¢ = /20 above. Therefore
we have > X39/25 such Carmichael numbers up to X. Moreover y ~ loglog X for
such @, so that ¢ = ecs(loglog X)) for some constant cs > 0.

5/2
Completion of the proof of Theorems 8 and 1: 1If we take Q = (Hpgy p> above,

then ¥5(Q%/5,y) = 27¥) and we can take p = 2log2/5logy. Let n = = 1/100 so
that £ > 2:97W) > (log X)1/4lesloglog X gince 1.01 4 o(1) < (loglog X)/y < 2.51 +
o(1). By the above we have > X*1082/2500logloglog X' ych Carmichael numbers up
to X.

§3. Upper bounds and heuristics
We shall prove

Proposition 3.1. For any x > 1 there is a set W of at most 3logz integers < x
such that there is a witness in YW for every odd, composite integer n < x.

Proof. As mentioned in the introduction, Monier [M] and Rabin [R] proved that at
least three-quarters of the integers a in the interval [1,n — 1] are witnesses for any
composite n. Since a + kn is a witness for n whenever a is, we see that the number
of witnesses up to x forn <z is >z — (n/4)([z/n]+ 1) > z/2.

We will select the elements of YV in as ‘greedy’ a way as possible: First select
wy to be that integer up to x which is most often a witness for composite n < x,
and discard those values of n. Next select wo to be that integer up to x which is
most often a witness for the remaining values of n, and then discard those values
of n. Then pick, in analogous way ws, wy, ... etc. until we have a witness for every
composite n < x. Note that after wq,...,w, have been selected, each remaining
n has at least /2 — k witnesses up to z; and so there must be some w which is a
witness to a proportion of at least (x/2 — k)/(x — k) of the remaining values of n.
We will see that k& < x/4 so that this proportion is > 1/3. Indeed we can select our
wy, with n <logz/log(3/2) < 3log .

Remark: The constant 3 can evidently be improved.
As a consequence of Corollary 1.2 we have

Corollary 3.2. Suppose that n is a Carmichael number, for which every prime
factor of n is congruent mod 8, and which are each = 3 mod 4. Then there is no
witness < @Q for n if and only if for each odd prime q < @, the quadratic residue

symbol (g) takes the same value for each prime divisor p of n.

Proof. By Corollary 1.2, if a and b are not witnesses for n then (%) takes the same

value for each prime divisor p of n, as does <%), and so (%’) does also; thus ab
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is not a witness for n. Therefore the least witness for n must be a prime; and so
there is a witness < @) for n if and only if there is a prime witness ¢ < @ for n.

Now, by hypothesis (}2—)) takes the same value for each prime divisor p of n, so 2

is not a witness for n. Moreover, since each p = 3 mod 4, thus (%) takes the same

value for each prime divisor p of n if and only if (%’ does, by the law of quadratic

reciprocity. The result then follows form Corollary 1.2.

Carmichael numbers which have exactly three prime factors are the product of a
prime triplet of the form ag+1, bg+1, cg+1 where a, b, c are pairwise coprime, and
g is selected mod abe so that abe divides g(be + ca + ab) + a + b + ¢. To guarantee
that each of these primes is = 3 mod 4 we take ¢ = 2 mod 4 and a, b, ¢ all odd. To
guarantee that the prime factors are all congruent mod8 we take a = b = ¢ mod 4.

Now let’s determine whether or not a prime g which divides abc can be a witness
for such a Carmichael number. Let’s assume that ¢ divides ¢ so that (%ﬁ) = 1.
Thus ¢ must divide gab+a+b, so that ga+1 = —a/b mod ¢ and gb+1 = —b/a mod q.
Therefore <“gq+1> = <b9+1> = 1 if and only if (_T“b> = 1. Thus we have proved

q

Lemma 3.3. Suppose that a,b and c are given odd, pairwise coprime integers which
are all congruent mod 4. Suppose that Carmichael number n is the product of three
primes ag + 1, bg+ 1, cg+ 1 where g =2 mod 4. Then none of the prime factors

q of abc are witnesses for n if and only if (%c) =1 for each prime p dividing a,

(7;“) =1 for each prime q dividing b, and (%‘”’) =1 for each prime r dividing c.

Remark: These criteria appear in a seemingly unrelated theorem of Legendre:
Suppose that a, b and ¢ are given pairwise coprime integers, not all having the same
sign. Then there exist non-zero integer solutions z, y, z to the equation az? + by? +

cz? = 0 if and only if there is a solution to az? +by?+cz? = 0 mod 8 and (‘Tl’c> =1

ca

. T _ . T —ab
for each prime p dividing a, . ) =1 for each prime ¢ dividing b, and (Ta) =1

for each prime r dividing c. Surely this is a co-incidence?

The proof of Theorem 2: We shall consider prime triplets of the form g + 1,59 +
1,99+ 1. We only allow g = 2 mod 4 and g = 15 mod 45, so that if all three of these
numbers are prime then their product n is indeed a Carmichael number. For every

prime ¢ < @ we will only allow g = 0 mod ¢, so that (%) = (5%%) = (%) =

1. Therefore the least witness for n is > ) by Corollary 3.2. The above congruence
conditions, when combined, fix ¢g in a congruence class modN = 6]] <01 We
thus apply the ‘Uniform prime triplets conjecture’ with a1 = N,as = 5N, a3 = 9N,
and deduce that there is such a prime triplet with g < y3N(45N3)42. The resulting
Carmichael number n is < ¢, N%43%3 and this is < x for Q = logz/(9A3 + 4) by
the prime number theorem.

In the above argument we could actually have chosen any ¢ mod ¢, for which

<g——qH) = <—59;1> = (—ggq+1>, for each prime 7 < ¢ < ). One can use Weil’s
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theorem!3 to show that this holds for ¢/ 4+0(,/q) of the congruence classes g mod gq.
We thus can construct N/ 4(+o()m(@) guch prime triplets, and apply the ‘Uniform
prime triplets conjecture’ to each such triplet. This gives the second part of the
theorem

One could state a plausible variant of the prime triplets conjecture with the
criterion (9%;1> = (%) = (%) for each prime 7 < ¢ < @, in the hypothesis.
Instead we wish to be a little more general'*: Consider all triplets of the form
g+ 1,59+ 1,99 + 1 where g = 150 mod 180. For any non-square integer q < x, we

can prove that (%1) = (%f) = <%) for at least a quarter of the congruence

classes modg. Thus for a set of ¢ such integers g we expect these identities with
the Jacobi symbols to hold for all ¢ simultaneously, for at least csz'/3 /4% values
of g < x'/3/3. Now, the usual heuristic is that a proportion > 1/(logz)? of these
triples will be simultaneously prime. Therefore we expect that

There are at least x'/® Carmichael numbers up to & without a witness from any
given set of £ = 1—11 log x distinct integers < x.

Combining this with Proposition 3.1 it seems that we really do know the size of
the optimal set of reliable witnesses < x, up to the constant.

If we take our set of integers here to be the set of primes ¢ up to Q = % log x loglog x
then, by Corollary 3.2 we expect that

There are at least x'/° Carmichael numbers n < x, each of whose least witness
is > 1—12 log n loglogn.

On the other hand, we do not expect there to be any values of g < x'/? such

that (QT“> = <59;'1> = (99;‘1) for each of the smallest log x primes ¢ (since the

‘expected’ number of such g would be & 2'/3/41°8% < 1 /). Thus we would expect
that

Every composite number n has a witness < {1 + o(1)} lognloglogn.

§4. Further remarks

In [AGP] we claimed that we could prove the following result, which we now
prove here.

Theorem 4.1. For any fixed non-zero integer a, there exist infinitely many square-
free, composite integers n for which p — a divides n — 1 for every prime p dividing
n.

Note how this generalizes Korselt’s criterion in a natural way. This result pro-
vides ‘pseudoprimes’ to all bases for various compositeness tests.
We will need the following Lemma which is proved exactly as Theorem 3.1 in

[AGP]'

13That is, the ‘Riemann Hypothesis for curves®

4and hopefully still plausible

15Except that now we need to use the same bounds for 7r(d:v3/5, D,a) (with D = d or dq); and
we shall again pick B = 2/5.
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Lemma 4.2. If x is sufficiently large and if m is any squarefree integer, coprime
to a, which is not divisible by any prime bigger than x*/19, such that the sum of the
reciprocals of the primes dividing m is < 1/60, then there exists a positive integer
k < a3/%, coprime to am, such that

Co
log

#{dm : dk + a is a prime <z} > #{dm:1<d < z¥°}.

Proof of Theorem 4.1. We again modify the proof in [AGP]. By using the theorem
of Friedlander (see [F]) we know that there are more than y?/logy primes g which
do not divide a, in the range y°/2 < ¢ < y?, for which the largest prime factor of
g — 1 is < y, once y is sufficiently large. Let m be the product of these primes, so
that m < %", and A(m) < e(3+e)y,

We apply Lemma 4.2 with = m®/2. Therefore there exists an integer k < m?3/?
such that the number of primes of the form dk + a where d divides m is

> 2¢oT(m)/5logm > u*/2logy > A(m) logm.

By Theorem 1.1 (modified analogously to our Proposition 1.3) there is some non-
trivial subset of these primes whose product n = 1 mod mk. Therefore p—a divides
dk, which divides mk, which divides n — 1, for each prime p dividing n.

There are two related questions that highlight the depth of our ignorance on this
topic, and provide interesting problems for further research:
1. Are there infinitely many composite integers n for which p? — 1 divides n — 1
for every prime p dividing n ?

In this question we have no idea how to prove the necessary analogue of Propo-
sition 1.5 (or Theorem 3.1 in [AGP]).
2. Are there infinitely many composite integers n for which p+ 1 divides n + 1 for
every prime p dividing n 7

In this question we have no idea how to prove the necessary analogue of Propo-
sition 1.3 (or Theorem 1.1 in [AGP]).
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