The lattice points of an n—dimensional tetrahedron f
by

Andrew Granville

at the Institute for Advanced Study in Princeton.

Summary

We show that the number of ordered m-tuples of points on the integer lattice, inside or
on the n—dimensional tetrahedron bounded by the hyperplanes X; =0, X, =0,...X,, =0
and w1 X1 +ws X, + ...+ wpX,, = X, with the property that, for each j, no more than k

such points have non—zero jth ordinate, is asymptotically

() X ()

j=1
as X — oo, where (Z) = n!/[] ¢!, this product and the sum above are taken over
all sets {c; : I C {1,...m}, |I| = k} of non—negative integers which sum to n, and
di: =) ;. ;e cr for each i.

As a consequence we deduce estimates for functions that have been used to provide

lower bounds for the smallest exception to the first case of Fermat’s Last Theorem.
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We count sets of lattice points, that satisfy certain orthogonality
conditions, in n—dimensional tetrahedra. Our estimates are related
to studies of Fermat’s Last Theorem.

1. Introduction.

In this paper we consider the set of integer lattice points inside or on the boundary of

the n—dimensional tetrahedron bounded by the hyperplanes

(1.1) X1=0, Xo=0, ..., X,=0

and

(1.2) w1 X, +we X, +...+w, X, =X

where wq,ws,...,w, are given positive real numbers. In other words, the n—tuples of
non—negative integers (ay,as, ..., a,) for which

(1.3) a 1wy + aswy + ...+ apw, < X.

Our interest in this question comes from number theory for, if each w; = logp; for some
prime p; (with the p;’s distinct), then this is equivalent to considering the set of positive
integers < e, whose prime factors belong to P = {p1,p2,...,pn}. In particular, if P is
the set of primes up to some prime y, then the question of estimating the size of this set

has received considerable attention (see [No| or [HT], for instance).

* The author is supported, in part, by the National Science Foundation (grant number

DMS-8610730)
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The following simple arguments allow us to obtain bounds on the number of integer
lattice points within our tetrahedron:

Draw a box, of size 1 in each dimension, in the positive direction from each lattice
point in our tetrahedron. The resulting shape S has volume equal to the number of lattice
points. Now the tetrahedron, which we began with, is clearly contained inside S and so

provides a lower bound for the volume of S; that is
(1.4) vol S > X" / nlp(w)

where p(w) := wyws ... w,. On the other hand, S is contained in the tetrahedron defined

by the bounding hyperplanes in (1.1) together with

(1.2) w1 (X1 — 1) +we(Xo—1)+ ... +w,(X, — 1) <X,
and so we get the upper bound

(1.5) vol S < (X + s(w))"™ / nlp(w)

where s(w) :=wy + wy + ...+ w,. Thus, in the range

(1.6) X > ns(w),

the number of lattice points is

0 i 10 (7))

(This argument is usually credited to [En|, though it is implicit in earlier works.)

Upper and lower bounds that improve those above were given in the beautiful paper
[Le] of D.H. Lehmer. It is, however, impossible to obtain much stronger estimates, in

general: Take each w; = 1, then the number of lattice points is
(X]+n 1 n+1 1 5

— — [ IxI™ X" X"
() = (e ("5 e o

_ % <X” n <(n~; 1) _ n{X}) X1y O(X”_2)>
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where {X} := X — [X] denotes the fractional part of X. Thus the coefficient of X"~1
‘oscillates’ as X — oo. By a similar argument it may be shown that this coefficient
‘oscillates” as X — oo, whenever the ratios w;/w; are all rational; and otherwise this
coefficient is fixed (see [HL]). Spencer [Sp] showed that for ‘almost all’ choices of the
w;, one can obtain an asymptotic series that counts the points in our tetrahedron with
error O(log" "¢ X); however one can also exhibit sets of w;, linearly independent over the
rationals, such that the coefficient of X" ~2 ‘oscillates’ as X — oco. We do not investigate
such questions here; we just note that there are significant difficulties when trying to
improve (1.7).

Estimates for the size of the set of lattice points, when wy; is the logarithm of the jth
smallest prime, have many applications in number theory — for instance, to finding large
gaps between primes, to Waring’s problem, to primality testing and factoring algorithms,
to finding ‘popular’ values for Euler’s totient function, as well as to bounds for the least
prime kth power residues and non-residues (mod n) (when k divides ¢(n)). This last
application leads to a method of obtaining lower bounds for the exponent in any exception
to the first case of Fermat’s Last Theorem. The method goes as follows:

In 1909, Wieferich showed that if the first case of Fermat’s Last Theorem is false for prime
exponent p (that is that there exist integers =, y and z, coprime to p, such that a?4y? = 2P)
then 2 is a pth power residue (mod p?); and this has been extended recently [GM] to ¢ is a
pth power residue for each prime ¢ < 89. There are only p residue classes (mod p?) whose
entries are pth power residues, so we get a contradiction if we can show that the primes
< 89 generate more than p residue classes (mod p?). Thus, by counting those integers < p?
with only such ‘small’ prime factors, Lehmer and Lehmer [LL] gave lower bounds on p for
which the first case of Fermat’s Last Theorem is false. In 1948, Gunderson [Gu] instead
counted pairs of coprime integers < p with only ‘small’ prime factors, and improved the
Lehmers’ result. Recently Coppersmith [Col counted pairs (m, n) of coprime integers, with
only ‘small’ prime factors, satisfying m? +n? < p?, and got the best result yet — the first

case of Fermat’s Last Theorem is true for all exponents < 7.568 x 10'7.

Gunderson and Coppersmith both developed interesting methods to obtain strong

lower bounds for the functions that they defined, but did not obtain asymptotic estimates.
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In [Gr| we obtained sharp estimates for the number of pairs of coprime integers < z, free

of prime factors > y, when z is ‘small’ (z < eyl/(2+s))

, and here we shall do so when z is
‘large’ (z > ey2) — the range in—between is much harder, and probably there is no ‘smooth’
estimate there. We use combinatorial methods to provide upper and lower bounds for a

much more general function:

2. The results.

Theorem. Suppose that k is an integer > 2 and wq,ws,...w, and x1 < o < ... < T,

are positive real numbers such that (1.6) is satisfied for X = x1. The number of ordered

sets (A1, Ag, ..., Any) of n—vectors of non-negative integers (that is A; = (a;1,...,0in))
such that
(21) a;1w1 + a;owo + ...+ AWy S ZI;

for each i, and such that a;; is non—zero for no more than k values of ¢ for each j, is given

by

2:2) o ()< ()

where (%): = nl/[[c;!, this product and the sum in (2.2) are taken over all sets {cr : I C

{1,...m}, |[I| = k} of non-negative integers which sum to n, and d;: = ) ;. ,.; cr for

each 1.
The number theory applications come from

Corollary 1. Suppose that k is an integer > 2, P: = {p1,pa,...,Pn} is a set of n primes,

and x a real number satisfying logxz > nlog(Ilp), where Il p is the product of the elements

in P. The number of ordered sets (ry,ra,...,ry) of positive integers < z, all of whose

prime factors come from the set P, such that no k + 1 have a common divisor, is given by
k

nlogIlp log x n 1
(23) {1+O( log )}X Hlogp > (C) I[Z, dit’

pEP =1
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where the sum, c¢; and d; are as in the Theorem.

Corollary 1 follows from the Theorem by taking each w; = logp; and each x; = logx.
We have been unable to find a more elegant expression for the sum in (2.3); though
the current one is suitable for examining certain special cases:

(i) E = m: Here we are just counting the number of ordered m—tuples of lattice points,

m
and the main term in (2.3) is (n, [Ler igg;) as expected.

(i) k =m — 1: Now we are counting the number of ordered m—tuples of such integers
which do not all have a common factor. Letting e; = ¢; where I = {1,...m} \ {i} for each
i, the sum in (2.3) becomes

1
SESED N 1 (4
e1+...+tem=n 1

This last sum is precisely the coefficient of X™ in ((1+ X)™)™ = (1 + X)™" which equals
(™"). Thus the main term in (2.3) is

nm 1 H log x
n n! log p
peP

m—1

(iii) k=1: Now we are counting the number of ordered m—tuples of such integers that

are pairwise coprime. The main term in (2.3) is easily seen to be

2
S Gl o) eI
o . ,
J1sJ2s -+ 5 Jm nl oplogp

Jit+je+...+im=n

The expression for £ = 2 is rather complicated; it would be interesting to find a
simplification.
Define ¥(z,y) to be the number of integers < x, whose prime factors are all < y.

If we take k = m = 1 in (iii) above, and use the Prime Number Theorem to note that

m(y) ~y/logy and 3 _ logp ~ y, then we have

» v =z 1 (1) {140 (s

for all y < log'/? 2. Next taking k=1, m = 2 in (iii) gives
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Corollary 2. The number of pairs of coprime integers, each < x, whose prime factors are

all <y, is

& (e (oo ()

for all y < logl/2 x.

Remark: Gunderson [Gu| gave the lower bound

n—1
2 n—2\(n ; ;
——— , ) log? zlog" ™7 &’
n![],<,logp ; (J - 1) <J)

for the number of pairs (a,b) of coprime integers, free of prime factors > y, with a < z

and b < 2/, where n = 7(y). By our Theorem we have the better estimate

1 "\ ; ; y?
= Z() log” zlog" ™’ CL‘/{l—{—O(i)}
n! Hpgy log p = \J log zlogy

uniformly in the range y < log'/?z and z < 2'.

Finally, for Coppersmith’s function we will obtain

Corollary 3. The number of pairs of coprime integers (m,n) with m? + n? < x, whose

prime factors are all <y, where y < log*/? z, is given by (2.5).

3. The proofs.

The Proof of the Theorem: We shall assume that X > s(w). Suppose that
(Ay,...,A),) is an ordered set that we are counting in the theorem. For each subset I of
{1,2,...,m} let Br be the set of integers j,1 < j < n such that a;; # 0 if and only if
i€1I. Then {By:IC{l1,2,...,m}} gives a partition of {1,2,...,n} and we know, by the
hypothesis, that B; is empty if I has more than k elements.

An upper bound may thus be obtained by summing, over the partitions of {1,2,...,n}
into sets C7 with |I| = k, the number of ordered sets (A, ..., A,,) of n—vectors of non—

negative integers (where A; = (a;1, ai2, - . ., ain)) such that (2.1) holds and a;; can be >0
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only if j € C} for some I which contains i. (One can see that this is an upper bound by
supposing that each By with |J| < k is included in some unique C; with J C I.) So let
D; = Ur.;c1Cr. Then, by (1.5), the number of possibilities for each A; is

<« L I1 (xiJereDi wk)
- d;! w;
v jeD; J
1 x; s(w)\ %
<o (G ()
v jeD; J v

where d; denotes the cardinality of D, for each 7. Thus the number of possibilities for

(Al,AQ, .. ,Am) is

ST 40 (I () (+4)

Therefore, summing over all possible partitions {C7 : |I| = k}, we get the upper bound in
(2.2), in the range (1.6).

A lower bound may be obtained by summing over the same partitions as above, but
this time also ensuring that each a;; > 1 whenever j € D;. (We are thus counting precisely
all possibilities where exactly k values of a;; are non—zero for each fixed j.) Now the number
of n—vectors of positive integers (ay,aq,...,a,) satisfying (1.3) is equal to the number of

n—vectors of non—negative integers (b1, bo, ..., b,) satisfying
bywy + bows + ... + byw, < X — s(w),

which may be seen by taking each b; = a; — 1. Thus, by (1.4), the number of possibilities

for each A; is

> i H T — ZkGDi Wk
dz' . w;
JED;
- 1 H x; - s(w)\ "
- dz‘ . w; Z; ’
JED;
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The rest of the argument follows exactly as for the upper bound, but with the inequalities
reversed.

The Proof of Corollary 3: An upper bound on the number of pairs here is given by
the number of pairs counted in Corollary 2. On the other hand a lower bound is given by
the number of pairs counted in Corollary 2 when z is replaced by z/ V2. The result then

follows as

log x logy

U(z/V2,y) = U(z,y) {1 +0 <y72) }
by (2.4).

Acknowledgements: I'd like to thank both referees for doing a very careful job.
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