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Introduction

The distribution of squarefree binomial coefficients.

For many years, Paul Erdos has asked intriguing questions concerning the prime divi-

sors of binomial coefficients, and the powers to which they appear. It is evident that, if &

n
k

and often to high powers. It is therefore of interest to enquire as to how infrequently (Z)

2n
n

is not too small, then ( ) must be highly composite in that it contains many prime factors

is squarefree. One well-known conjecture, due to Erdds, is that ( ) is not squarefree once
n > 4. Sarkdzy [Sz| proved this for sufficiently large n but here we return to and solve the

original question:
Theorem 1. (2:“) is not squarefree for any n > 4. |

Our proof is much like Sarkozy’s in that we convert the problem into one about
exponential sums, but we must do a lot more work to get explicit upper bounds on these
sums. We shall succeed in proving, via such bounds, that (27?) is divisible by the square
of some prime > /n, when n > 21617, Since (2:) is divisible by 4 if n is not a power of 2,
we need only verify that (2;:1) is not squarefree for each k in the range 2 < k < 1617 to
complete the proof of Theorem 1. In fact all such binomial coefficients are divisible by 9

27 . . o e e 3 2 29 . . o e . 2 2 .
except (26) which is divisible by 5°11“, and (28) which is divisible by 7913“. We discuss

the (easy) computer verification of this in section 2.

Erdos (B33 in [Gu]) asked for the largest n for which (27?) is not divisible by the
square of an odd prime. Erdés and Graham [EG] asked whether (27?) is divisible by the

square of arbitrarily large primes once n is sufficiently large; evidently this is answered by

* Both authors have been supported, in part, by the National Science Foundation. The first author is
an Alfred P. Sloan Research Fellow.

T Velammal [Ve] has also proved this result recently.
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the argument above for large n, but it is desirable to state such a result for n < 21617,
Applying the primality testing ideas of Brillhart, Lehmer and Selfridge [BLS], we shall
indicate in section 2b how the following result is proved (details of the computation will

be given by Cutter [C]):
Theorem 1%*. (2:) is divisible by the square of some prime > /n/5, for all n > 2082.

This cannot be much improved since (3528) is divisible by 223452, but not by the
square of any larger prime. Another surprising one is (1758762), which is divisible by 24, but
not by the square of any larger prime; and is, in fact, the largest (2;;) that is not divisible

by the square of an odd prime.

Recently Sander [Sal| has proved that (Z) is not squarefree if k is “close” to n/2, so
generalizing the idea of Theorem 1. With a slightly different approach we show that (Z)

cannot, be squarefree unless k£ or n — k is very small:

Theorem 2. There exists a constant 7, > 0 such that if n is sufficiently large and (Z) is
squarefree then k or n — k is < exp (71 (log n)?/3(log log n)1/3).
The primes p in our proof, for which p? divides (Z), are close to either vk or \/n.

In a recent preprint Wirsing ([W], Theorem 3) proved, amongst other things, a strong

quantitative version of our Theorem 2: If n® < k < n/2 then

1
Z SLEON (1 —log 2) log k.
p
P?(%)

Wirsing also shows that if we count with p| in place of p?| then we get log 2 in place of
1 —log 2 (see also [Sa3]).

We believe that the squarefree entries in Pascal’s Triangle must be much nearer still

to the edge:

Conjecture 1. There exists a constant T > 0 such that if n is sufficiently large and (Z)

is squarefree then k or n — k is < 72(log nlog log n)?.

If true, this is more-or-less best possible since we prove, in the other direction,
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Theorem 3. There exists a constant 73 > 0 such that there are infinitely many pairs of

integers n and k for which (Z) is squarefree, with tslog *n < k < n/2.

There are even some rows of Pascal’s Triangle which begin with lots of squarefree

entries:

Theorem 4. There exist infinitely many integers n such that (Z) is squarefree for all
k< %1og n.

From Theorem 2 it is evident that there are only finitely many rows of Pascal’s Triangle
in which all of the entries are squarefree. In section 2 we show that this occurs only in

rows 1,2,3,5,7,11 and 23 (a result proved by Erdés long ago).

In the other direction we show that there are no squarefree entries, other than the ‘1’s
on either end, in a positive proportion of the rows of Pascal’s Triangle. Indeed that, on
average there is a constant number of squarefree entries in a row; and even that there is a

‘distribution function’. Specifically we prove (answering a question in [EG, p. 72]):

Theorem 5. The sequence of integers n, for which the nth row of Pascal’s Triangle has
exactly 2m + 2 squarefree entries, has asymptotic density. If we denote this density by 1,
then there exists a constant 74 > 0 for which 0 < n,, < exp (—74y/m/log (2m)) for any
m > 1.

The key ideas to gaining such a precise understanding of the distribution of the square-
free entries in Pascal’s Triangle are Theorem 2 and the following result, which we prove

using Brun’s method:

Theorem 6. For any positive integer k, the sequence of integers n, for which (Z) is

squarefree, has asymptotic density. We denote this density by ci, and prove that 0 < ¢ =
e—{aro(}Vk/logk where

2%\ . 1 1
O‘:Z(JC(JH/Q)W -3 | ~ 1825008,

j>1 i>j
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and ((s) is the Riemann zeta-function. In fact, if N > exp(500av/k) then the number of

integers n < N for which (Z) is squarefree is, uniformly,

1
ceN <1+O (klogN)) .

We see that Theorem 3 follows immediately from Theorem 6. Moreover Theorem 6

provides the heuristic basis upon which we make Conjecture 1.

In order to arrive at Theorem 5 (given Theorems 2 and 6) we certainly need some

result that gives us an understanding of the distribution of squarefree binomial coefficients

(Z) when

exp (7'1 (log n)?/3(log log n)1/3> > k> log *n.

To do this we shall apply the large sieve to prove:

Theorem 7. For any given 175 > 0, there exists a constant 7¢ > 0 such that if N is
sufficiently large then there are < N'~7Ts/loglog N pairs of integers n and k satisfying
m5log 2N < k < n — m5log 2N and N/2 < n < N, for which (Z) is squarefree.

Applying Theorem 7 with 75 < 1/(500)?, together with Theorem 6, implies

Corollary 1. On average, there are approximately ten-and-two-thirds squarefree entries
in a row of Pascal’s triangle. More precisely, there are ~ ;N squarefree binomial coeffi-
cients (Z) with 0 < k <n < N, where 77 = QZkZO cr ~ 10.66....

Most binomial coefficients are divisible by the squares of many small primes. However
they are also usually divisible by the squares of large primes; indeed one can modify the

proof of Theorem 7 to ascertain

Corollary 1*. For any fixed prime q, there exists a constant k, > 0 such that there are
~ kN binomial coefficients (Z), with 0 < k < n < N, which are not divisible by the

square of any prime p > q.

We give a related application of our methods: Erdés, Lacampagne and Selfridge [ELS]
recently conjectured that if the least prime factor of (Z) is > k then n is bigger than an

arbitrary power of k. This follows from
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Theorem 8. If the least prime factor of (Z) is > k then there exists an absolute constant

¢ > 0 such that
n > exp <c (log *k /log log k) 1/2> )

Bounds on exponential sums.

This paper fills what we believe to be a lacuna in the existing literature concerning
upper bounds on exponential sums. Although it has always been evident that many of
the known estimates can be made explicit, it is a non-trivial problem to actually do so.
In particular so that the constants involved do not render the explicit estimates useless in

practical applications.

We have used the practical bounds that are needed to prove Theorem 1 as motivation
for our results here, though we hope that this work will be applicable to a variety of other
problems which routinely apply these or related exponential sum estimates. In particular
our results here can be used to say something about the questions of estimating the number
of integers free of large prime factors in short intervals (see [FL]), and of the largest prime

factor of an integer in an interval (see [J]).

Our key result is

Theorem 9. If k is a positive integer and y < %x3/5 then

1
50 x )Y
Z A(n)e(z/n)| < 3 <—m> (log 16y)'1/4,
Y

y<n<y’ :

for any y <y’ < 2y. (Here, as usual, A(n) is Von Mangoldt’s funtion and e(t) = e*™!.)

The bound in Theorem 9 is minimized when £ is the smallest integer satisfying

log x

1
1 14+ = (k+27F) > .
(1) tabrah) > o

For this value of k£ we deduce that

1 r |V 1

We can thus deduce
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Corollary 2. Ify < %a:?’/ ® and k is the smallest integer satisfying (1) then

50
Y Aln)e(z/n) S§91_1/2k+3(10g16y)11/4,

y<n<y’
for any y <y’ < 2y.
For larger values of y we have the following result.

Theorem 9°. Ifz >y > 222/3 then

Z A(n)e(xz/n) <5y<%>%(log16y)5/2,

y<n<y’
for any y <y’ < 2y.
The contents of this paper.

We begin, in section 1, by discussing Kummer’s fundamental Theorem for understand-
ing the prime power divisors of binomial coefficients. We immediately apply this to show
that Theorem 1 is true for n < 2199:000 Next we show that the nth row of Pascal’s triangle
contains only squarefree integers for n = 1,2,3,5,7,11 or 23, and no other n values. We
start section 2 by proving a strong form of Theorem 4. We then indicate how Theorem 1*

is proved, and discuss the computations necessary for that.

In section 3 we discuss more detailed ways of applying Kummer’s Theorem, in par-
ticular those that we shall use later in the paper. We also prove a non-uniform version of
Theorem 6, and specify the values of the constants cx. In section 4, we prove a uniform

version of Theorem 6 using Brun’s method. This implies Theorem 3 also.

In section 5, we explain how our subject is related to exponential sums and discuss the
relevant results in the literature. We prove Theorems 2 and 7. We then prove the estimate
for log ¢y, given in Theorem 6, and show how the value of « is determined. We also apply

such methods to prove Theorem 8. In section 6, we complete the proof of Theorem 5.

In section 7, we indicate how Theorems 1 and 1* for n > 21617 follow from Theorem

9. Then, in section 8, we give explicit upper bounds on exponential sums of the form
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Y e(z/n), and in section 9 on exponential sums of the form ) e(xz/p), where p is prime,

so giving the proof of Theorems 9 and 9’.

Details of computations are available by email request from andrew@math.uga.edu

Acknowledgements: We would like to thank Professor J.W. Sander, as well as Professors
Erdos, Montgomery, Pomerance, Sarkozy, Sargos, Tenenbaum, Vaughan and the anony-

mous referee, for their helpful comments.

1. Kummer’s Theorem and some straightforward consequences.

In 1855 Kummer observed that the power to which prime p divides the binomial
coefficient (:;;) is given by the number of ‘carries’ when one adds m and n — m written in
base p. We shall, henceforth, refer to this as Kummer’s Theorem. We leave the entertaining

task of proving this delightful observation to our enthusiastic reader.

A useful alternate way to state Kummer’s Theorem is that the power of prime p
dividing (") is given by the number of integers j > 0 for which {m/p’} > {n/p’}, where
{t} denotes the fractional part of ¢ (since this is equivalent to a carry occurring in the p/~!

column).

la. Theorem 1 for n < 10°.

Any integer n in base 2 is of the form Zle 2% where the a;’s are distinct. Adding n
to itself in base 2 we get exactly k carries, and so 2 divides (2:) by Kummer’s Theorem.

Therefore
Proposition 1.1. Ifn > 1 then 4 divides (27?), unless n is a power of 2.

Thus we need only verify Theorem 1 where n is a power of 2, and it seems likely that 9

will divide (%,

2% (mod 3%°) with Kummer’s Theorem: Write

) once k is sufficiently large. We tested this for £ < 100, 000 by examining

28 = al0] + a[l] * 3" + a[2] 3% + ... +a[39] * 3%? (mod 3°).
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If a[i] = a[j] = 2 or a[i] = 2, a[i +1] = 1 then we shall have two carries when we add 2* to
itself in base 3, and so, by Kummer’s theorem, 9 divides (2;:1), Here is a Maple program

to test this:

al0] :=1: for i from 1 to 39 do ali] :=0 od :

for k from 0 to 100000 do c:=0: t:=0:

for 4 from 0 to 39 do ali] :=2x*ali]+c: ¢:=0:

if ali] > 2 then afi] :=afi]—=3: c:=1: t:=t+1: fi: od:
if ¢t <2 then print(k) fi;

od :

This program ran in slightly under 75% minutes cpu time on a Sun 3-260. The print
out was just k = 0,1,2,6 and 8. In the latter two cases one has 53112 divides (27), and

26
72132 divides @Z) This gives

Corollary 1.2. Either 4 or 9 divides (*") for 4 < n < 2190000 except in the following

two cases where 5% divides (16248); and 7% divides (gég)

Remarks: Goetgheluck [Go] proved this for 4 < n < 212205181 with an almost identical
algorithm. Sander [Sad| has conjectured that 4 or 9 divides (27?) for all n except 1,2, 4,64
and 256.

1b. Rows whose entries are all squarefree.

We shall next return to the problem, raised in the introduction, of finding all those

rows of Pascal’s triangle whose entries are squarefree. We start by proving

Lemma 1.3. Suppose that p is a prime for which p? does not divide ( ) for all0 < m < n.

n
m

Then p"—! divides n + 1, where p"*! >n > p".

Proof. Write n in base p so that

n = arpr + arflpT_l + ...+ aop,



Explicit bounds on exponential sums 9

where 0 < a; < p—1 and a, > 1. If p"~' does not divide n + 1, then there exists some
integer ¢ < r—2 such that a; # p—1. Let I be the smallest such integer. Taking m = p"—1

I+1

we get carries in columns p! and p when we add m and n — m in base p, which gives

that p? divides (), a contradiction.

Corollary 1.4. If (::L) is squarefree for all 0 <m < n thenn =1,2,3,5,7,11 or 23.

Proof: If n > 25 then n > 5% and 2", where 2"t! > n. Therefore, by Lemma 1.3, 27715
divides n +1. Thus n+1 > 2715 > 5n/4, which is impossible. If 24 > n > 9 then
12 divides n + 1 by Lemma 1.3, giving only the possibilities n = 11 and n = 23. By
considering the power of 2 that must divide n+ 1 (because of Lemma 1.3) when n < 8, we
are left with the possibilities n = 1,2,3,5,7. From explicit computations we then get the

result.

2. Further elementary consequences of Kummer’s Theorem.

2a. Lots of successive squarefree binomial coefficients.
Theorem 4 follows from

Theorem 2.1. There exist infinitely many integers n such that (Z) is squarefree for every
positive integer k < (% — 0(1)) log n.

log y

Proof: Fix integer y and let m = Hp<y p[log p]+1; then m = e!2T°(} by the prime number

theorem. We shall consider the powers of primes that divide (2), where £k <y and n = —1
(mod m).
If pis a prime < y then n = —1 (mod p[%]ﬂ), (by definition), so that the p’th

digit of nisp—1, for 0 < j < [igg y]. Therefore there cannot be any carries when we add
gp

lo
k to n — k in base p (since k <y < p[%]ﬂ); and so p does not divide (Z) by Kummer’s

Theorem.
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If p is a prime > y(> k) then p can divide at most one of the integers n,n—1,...,n—

(k—1). So if p? divides (Z) then p? divides n — j for some non-negative integer j < k — 1.

Combining the remarks in the two paragraphs immediately above we have that (Z)
is squarefree for all 0 < k <y when n = —1 (mod m), provided that p? does not divide
any of the integers n,n —1,...,n— (y — 1), for any prime y < p < \/n.

Now, the number of integers n < z with n = —1 (mod m), for which one of n,n —

1,...,n— (y—1) is divisible by the square of a prime in (y, /x| is

T x 1 x
< > y(—2+1)§y—2—2+y\/5<< +y\/z.
mp m P mlog y
y<p< = P>y
This is less than [(z 4+ 1)/m], the number of integers n < x withn = -1 (mod m), once

z > m2y2. Therefore there exists n < el4to(W}v for which (Z) is squarefree for every

positive integer k < y.

2b. Theorem 1* for n < 21617,

Using Theorem 9 we shall prove, later in this paper, that (2:) is divisible by the square
of some prime > \/n, for every n > 21617,

Theorem 1* may be verified for n < 2081 by factoring each (277) This is most easily

2(n—1)
n—1

achieved, by induction on n = 1,2,..., by multiplying ( ) already factored, through
by 2(2n — 1) /n already factored. The values of n for which p? does not divide (27?) for any
prime p > /n/5 are 1, 2, 4, 21-22, 28-31, 36-37, 50-60, 77, 80, 110, 133-136, 143, 156-161,
170-171, 210-212, 330-331, 345-346, 368-379, 391-402, 414-420, 442-445, 529-535, 651-652,

754-756, 783-786, 902, 1045, 1653-1655, 2024-2035, 2074-2081.

To verify Theorem 1* for 2081 < n < 2!%17 we shall use the following immediate
consequence of Kummer’s Theorem, since it guarantees a carry in the p® and p' digits

when we add n to n in base p.
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Lemma 2.2. If p is a prime for which {n/p},{n/p*} > 1/2 then p* divides (2:)

Corollary 2.3. Ifp is a prime for which {N/p}, {N/p®} > 1/2 then p? divides (*") for
each integer n in the range N <n < p(1 + [N/p]) — 1.

Proof: If N < n < p(1+ [N/p])—1 then {n/p} = (n — N)/p+ {N/p} > 1/2 and
{n/p?} = {N/p?} > 1/2, so the result follows from Lemma 2.2.

We verified Theorem 1* for 2082 < n < 10! by directly using Corollary 2.3, as follows:
Suppose we have already verified Theorem 1* for 2082 < n < N — 1. Let p be the largest
prime < v/2N. We check whether {N/p?} > 1/2 and {N/p} > 1/2. If so then Corollary
2.3 implies that Theorem 1* holds in a longer interval. If not then we try the next smallest
prime p. We keep checking whether smaller and smaller primes p can satisfy the hypothesis
of Corollary 2.3; and in each case we did find such a prime p. Once we have found such
a prime, and thus a new (and longer) interval in which Theorem 1* holds, we apply the

algorithm to this new interval.

At each step this algorithm gives an interval around N of length < N1'/2. This is
too small to allow us, in practice, to get out as far as 2!617. Instead we use the following,

somewhat different, consequence of Lemma 2.2 to do that:

Proposition 2.4. If m is a positive integer for which p = 6m + 1, ¢ = 12m — 1 and
r = 12m + 1 are all primes then at least one of p?,q¢* or r? divides (27?), for each n €

[96m? — 2m, 108m? + 3m — 2|, with the one exception, namely m = 1,n = 104.

Proof:  We verify this directly for m = 1. The next value of m for which p,q and r are

all prime is m = 5, so henceforth assume that m > 5.

For —1 <17 < m — 1, consider those integers n in the interval
Qi =[(9m —1—1i)g+6m,(9Im —i)g — 1].

Evidently both {n/q} and {n/q¢*} > 1/2 so that ¢* divides (27?) by Lemma 2.2.
Similarly, for 0 < i < m — 1, we consider those integers n in the intervals
Ri=[9m—-2—dr+6m+1,(9m—1—id)r—1]
and P; = [(18m —4 —2i)p+3m+1,(18m — 3 — 2i)p — 1.
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Since {n/r} and {n/r?} > 1/2 for n € R;, and {n/p} and {n/p?} > 1/2 for n € P;, we
have that r2 and p? divide (27?), respectively, by Lemma 2.2.

The result then follows since the (consecutive) intervals

mela Rmflapmfla Qm727 Rm72aPm727 ey Rl; Plv Q07R07P07 Q,1

cover all of the integers in [96m? — 2m, 108m? + 3m — 2.

Each time we find an integer m as in Proposition 2.4, it will give us an interval around
N of length > N. Thus, by using Proposition 2.4, it is now a practical computational

problem to establish Theorem 1* for all n satisfying 1010 < n < 21617,

The biggest difficulty in applying Proposition 2.4 arises when the integers involved are
large since then it is difficult to prove that p, ¢ and r are all prime in a reasonable amount
of time (in general, this is a difficult task for primes larger than 21999). However, there
are relatively quick techniques to verify the primality of prime numbers of certain special
forms. D.H. Lehmer, in 1928, realized that if p— 1 = FR, where F > p'/? is factored, then
there is, in practice, a quick way to show that p is prime. In 1975 Lehmer, with Brillhart
and Selfridge [BLS], extended this so that one needs only have the factored F' > p'/3 to get
a quick test; and very recently Konyagin and Pomerance [KP] have shown how to extend
this to F' > p3/10,

In order to be able to apply the primality testing method of [BLS] to finding primes
p,q and r as in Proposition 2.4 we need only have the factorizations of part of m and
6m — 1. To do this we proceed as follows: For given odd integer /¢, let k be the smallest
integer for which 2* > 5°. We select mg to be the least positive integer satisfying the
two congruences mg = 0 (mod 2¥) and my = (5 +1)/6 (mod 5%). For any m = my
(mod 2%5%) we have that 2* divides m and 5¢ divides 6m—1. If m < 53¢~! then the factored
part of p—1,¢—1 and r — 1 are > p'/3,¢'/3 and r'/3, respectively; and so we can use the
Brillhart-Lehmer-Selfridge test to determine whether each of p,q and r is prime. These
computations, as well as various generalizations, have been performed by Pam Cutter, and

will be described in detail in her paper [C].
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Remark: One can prove other results that are similar to Proposition 2.4. For ex-
ample, if ¢,p = ¢+ 2 and r = ¢ + 4k are all prime, where k is a positive inte-
ger and ¢ > 12k + 20, then at least one of p?,¢? or r? divides (2:), for each n €
[2¢° + Bk +2)q, (2 + &) > + (3k + 1)q].

3. Further applications of Kummer’s Theorem.

3a. Primes near to /n.

Proposition 3.1. Suppose that (Z) is squarefree with 1 < k < n/2. For any prime p in

the range n — k < p* < n we must have

- (551}

where {t} is the fractional part of t.

Proof: Since k <n —k < p?> we have k = ap + b and n — k = c¢p + d when writing in base
p. However n > p?, and so there must be a carry in the p' column when we add k and
n — k. Since (Z) is squarefree, we know, by Kummer’s Theorem that there can be no more
than this one ‘carry’ when we add k and n — k in base p. Thus there is no carry in the p°

column, which implies that (3.1) holds.

As is usual, we define ¢(t) = 0 if ¢ is an integer, and ¥(t) = {t} — 3 otherwise. If p
divides k(n — k)n then it is straightforward to see that

(@) () (5
(@) o) (5943

depending only on whether there is a carry in the p° column when we add k and n — k in

Otherwise

base p. Specifically, from (3.1) we deduce that

() ()

and so, summing over all primes in this interval we obtain
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Corollary 3.2. Suppose that (:) is squarefree with 1 < k <mn/2. If P is a set of primes
p in the range n — k < p? < n then

33) | Lo (%) ozn|+ X o (L) tons] + [T o (2 logpl 25 X tosp

eP eP cpP pEP
P p P plhk(n—k)

3b. Primes near to Vk.

Proposition 3.3. Suppose that (Z) is squarefree with 1 < k < n/2. Let P be a set of
primes p in the range vk < p < 2+/k, which do not divide k(n — k)n. If {n/p*} < 0.81
then (3.2) holds. In particular

Z¢(%) log p| + |3 v (g) logp| +| 3 4 (”Tj’“) log p| >

(3.4) peEP peEP 1 peEP
> 5 lgp— }  logp.
peP pEP
{(n/p2}>.81

Proof: If {n/p*} < 0.81 < {k/p?} then there is a carry in the p' column when we add k

n
k

can be no more than this one ‘carry’ when we add k and n — k in base p. Thus there is no

and n — k in base p. Since ( ) is squarefree, we know, by Kummer’s Theorem that there
carry in the p? column, which implies that (3.1) and consequently (3.2) holds. Summing
this result together for all p € P, and taking into account the remarks in section 3a, we
deduce (3.4).

3c. How often does p? divide (Z) ?

First consider primes p > k. Evidently p? divides (}) if and only if p? divides n — j
for some integer j, 0 < j < k — 1. Therefore the proportion of integers n for p? does not
divide () is

Chpi=1— k/p?, for primes p > k.

Now consider primes p < k. Write k in base p, say as k = ag + a1p + ... + agp’. If

p? does not divide (Z) then there can be no more than one carry when we add k£ ton — k
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in base p. If n = ng+nip+ ...+ nept (mod p**?) then either each n; > a;, or
there exists n; < a; with n;11 > a;4+1 + 1 and otherwise n; > a;. Thus the proportion of

integers n for which p? does not divide (7}) is

T a; " aj(p—1—aji)
ap=[(1-=)31+>]

palen p = P —a;)(p—aj41)

By an application of the combinatorial sieve we deduce the first part of Theorem 6:

Proposition 3.4. The number of integers n < N for which (2) is squarefree is ~ ¢y N as

N — oo, where ¢, = Hp Ck,p, and the cy , are as defined above. As examples, ¢; = 6/7r2

and cg = %szg, (1 — 1%)

In the next section we shall use some deeper sieve theory, and develop the ideas here,

to prove the first part of Theorem 6.

The cx may be computed with any desired required accuracy. For £k =1,2,3,...,50,

the values of ¢ are (to three significant digits):

k: 1 2 3 4 5 6 7 8 9 0

00:  .608, .484, .251, .36,  .191, .189, .0625, .106, .204, .216
10:  .0772, .11,  .0477, .0255, .0271, .11,  .0282, .0872, .0219, .0656
20:  .0592, .0275, .00533, .00716, .0153, .00696, .0271, .0533, .0226, .0222
30:  .00649, .0517, .0476, .0232, .0185, .0937, .0331, .0145, .00694, .026
40:  .00605, .0213, .00432, .00276, .0123, .00441, .000695,.00158, .0027, .0102

From our computations ) . <500 ¢k = 5.3275, with an error term bounded by .012, which
leads to the value of 77 given in Corollary 1. In section 5d we shall prove the asymptotic

formula for log (ci) stated in Theorem 6.
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4. Squarefree (}), with k fixed.

Proof of the last part of Theorem 6: We shall use Brun’s method: Let z = k?log , and
let a,, be the product of those primes p < z for which p? divides (Z) Let D be the product
of all of the primes < z. From section 3b, we know that p does not divide a,, if and only
if n belongs to one of ¢y ,p**?2 residue classes  (mod p‘*2). Thus, letting w(p) = 1 — cx
and W (p) = w(p)p**? be multiplicative functions, we have that the number of n < z for
which a,, is divisible by d is w(d)x + O(W(d)), for d|D. So, by the inclusion-exclusion

principle, we have for any I > 0,

2741 _
)RR EDBCHIED DB
n<z, ap=1 1=0 d|D n<z
Q(d)=i dlan
2741 . 2741
> (1> wdz-0| > Y W(d)
i=0 d|D i=0 d|D
Q(d)=1 Q(d)=i
2041 4 ’
>a | [[a-we)- > Y w@|-0| > | > W
p<z i>21+1 in;)D:Z i=0 = \p<z
i 2141 4,
oo 2 G)-o(2 )
i>2T+1 v i=0 v

since W (p) < kp? < 22 for all p, and

> w(p) < Ci=—) log (1 —w(p))

p<z p<z

so that

d|D <z
Q(d)=i P=

Selecting I = [log x/16log 2] we thus get
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An analogous argument gives an upper bound of the same size, so we have proved

Z 1=ze (14 0(e 1)) +0(z'/?),

n<lz, ap=1

in our range. However we have yet to take account of those primes p bigger than z whose
squares divide (Z) In each case this happens for exactly k residue classes (mod p?).
If p < 2'/* then we split up the values of n according to their residue class (mod p?),
and now consider a,, as above to get an upper bound on the remaining n for which (Z) is
divisible by p2. Thus
Z 1 <<k‘£2e_c+:1:1/2.
n<z. an=1, p|(}) P

If 2'/4 < p < 2'/2 then there are evidently < kz% such n. Combining all of these estimates,
we find that the number of squarefree (Z) with n < x is

zeC <1 +0 <e_I 4k )) + O(ka®/*).

zlog z

Finally note that

_ _ k
=y [JO =R/ =y (H—O(zlogz))’

p>z

and the result follows.

5. How exponential sums get involved.

5a. Estimates in the literature.

To estimate exponential sums involving primes one usually writes the characteristic
function of these primes as a linear combination of suitably chosen bilinear forms. In 1974
Jutila [J] did this for exponential sums involving reciprocals of primes. His results have
since been improved by Sander who used Vaughan’s identity (which was discovered since
Jutila’s paper) instead of the more complicated technique of Vinogradov. Sander has also

shown how to consider reciprocals of powers of prime p. We shall apply, from [Sa2],
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Lemma 5.1. Fix ¢ > 0 and integer J > 1. There exists a constant ¢ > 0 such that for

any y < z'/7, there are
0109...057m(y) + O ((yl—c(log y/logw)? | yj/2+1—|—ax—1/2> (log x)4J>
primes p <y for which {x/p’} < o; for j=1,2,...,J.

By partial summation one can deduce (with J = 1) that

o ;e

p<y

1—c(log y/log )2 3/2+¢,,—1/2 5
(5.1) < |y +y x log °x

5b. No squarefree binomial coefficients near the center of Pascal’s Triangle.

Proof of Theorem 2: Fix ¢ > 0 sufficiently small.

We begin by proving Theorem 2 for n/2 > k > n'~? for sufficiently large n. First
note that

Zlogpz Z log p — log (nk(n — k)) > k/n'/?%,
peP nl/2—k/3n1/2<p<nl/2
by Hoheisel’s Theorem (where P is as in Corollary 3.2). Inserting this and (5.1) into (3.3)

we get
k < nt nl—c/8 + n3/4 + nl—(c/8)(logn/10g k)2 + ’I’L5/4/k1/2> ’

which is false for & > n'~° and n sufficiently large. Thus by Corollary 3.2 we know that

(Z) cannot be squarefree.

Next we prove Theorem 2 for n' =% > k > exp (T1 (log n)?/3(log log n)1/3).

We shall use Proposition 3.3 assuming that (Z) is squarefree. Taking J = 2,01 =
1,00 = .81,z = n and both y = vk and y = % k in Lemma 5.1, we have that the right
side of (3.4) is

31 1 1/2—(c/8)(log k/log n)® | pl+e —1/2 8
il c o ogn 1)1
(900+O<logk>)\/%+o<(k +k T n + ) og n)
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using the prime number theorem. Meanwhile, using Lemma 5.1 we get the upper bound
< (kl/Q—(c/8)(logk/log n)? + k1/4+5> log °n

for the left side of (3.4). Combining these two estimates we have a contradiction in the

range indicated, and so (Z) is not squarefree.

By taking € < § we can combine the results above and deduce Theorem 2.

5c. Where there are few squarefree binomial coefficients.

In this section we look to bound the number of squarefree binomial coefficients in the

range for k£ between those given by Theorems 2 and 6; that is we assume that
mslog n < k < exp (7’1 (log n)?/3(log log n)1/3> :

Let P now be the set of primes > 5 in the interval (\/E, 2 k:] for which {k/p} > 2/3.
By Lemma 5.1 we find that |P| ~ (2/27)Vk/log k, using the prime number theorem. Note
that {k/p*} < 81/100 for every such prime p.

Let Q, denote those residue classes m (mod p?) for which {m/p} < 2/3 and
{m/p?} < 81/100. Thus |Q,| ~ 27p?/50. If n = m (mod p?) for some m € €, then
{k/p} > {m/p} = {n/p} and {k/p*} > {m/p*} = {n/p?}, so that p* divides (}) by

Kummer’s Theorem.

We wish to get a good upper bound on the number of n < x for which (Z) is squarefree.
From what we have written above this means that n ¢ €, (mod p?) for all p € P. We
may thus apply sieve methods. For small values of k, that is mslog 2 < k < log 'z, we

shall use the following trivial method:

Fix constant 73 > 0 sufficiently small and let D be the product of 7glog z/log log
distinct primes from P. Evidently 7g must be chosen sufficiently small so that this size

subset exists, and also so that D < z1/3.

For m = 1,2,..., D? consider those integers
n < x which are =m (mod D?). Evidently if m € , (mod p?) for some p dividing D

then (Z) is not squarefree. By the Chinese Remainder Theorem we see that the number
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of m (mod D?) for which m ¢ Q, (mod p?) for all p dividing D is 1_[p|D(p2 — |2)).

Therefore the number of squarefree (Z) with n < x is

21 o D? x x
< H(p - | p|) (ﬁ + ( )) < 97glog z/log log = ﬁ < e27clog z/log log z
p|D

Therefore we have proved

Lemma 5.2. There are < x exp(—7glog z/log log ) squarefree binomial coeflicients (7)

with n < z and Tslog %z < k < log %%z, for sufficiently large .

Now consider k in the range log 100, < k < 2'/5. We shall use the arithmetic form
of the large sieve, though with squares of primes rather than with primes (the proof of
Théoréme 6, given in [Bo|, can be modified to allow one to sieve with any set of pairwise
coprime integers, rather than with just primes — see also [Ga]). Note that |Q,|/(p*>—|Q,|) ~
27/23 and is therefore > 1 if x is large enough and p € P. Therefore the number of n < z
for which (}}) is squarefree is < (z + 2?)/G(z) where

6= X w7z X

d<V/z, pld A<z,
pld=peP pld=peP

v v

G(z) > <|P|> > (@ B 1)” > 1:(49/100+0(1)v - :L,49/200—|—o(1)’

so that the number of n < z for which (Z) is squarefree is < 2151/200+0(1)  219/25 if 1 ig

large enough. This implies

24/25

Lemma 5.3. There are < x squarefree binomial coefficients (") with n < x and

k
log 1% < k < 2'/5, for sufficiently large z.

Combining the last two lemmas with Theorem 2 gives Theorem 7.
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5d. An asymptotic formula for log (c).

We shall study the size of the ¢, as defined in section 3c. Fix ¢ > 0. The first
thing to note is that each one is a positive rational number with denominator pt+? < kp?.

Therefore

Z log cpp| < ﬂ .
p<eVk/log k log k
Suppose that £ > p > e 'Vk,sothatif k =ap+bthenl1 <a<e?pand 0 <b<p-—1.
Then, taking b < p in the expression for ¢ ,, we find that cx, > (1 — (a +1)/p) >
(1 — 2k/p?). Combining this lower bound with cx , = 1 — k/p? when p > k, we have

10 C < \/E
E g Ck,p 1 A .
p>e—Vk

So all remaining primes p lie in the interval J = [ 'Vk,eVE/log k], and we can write
k = dp? + ap + b where 0 < d < log 2k, and a > e2p if d = 0.

Now, if b/p > 1 — &2 /log %k then p divides k +i for some i < pe? /log °k < evk/log *k.
However as all of the primes in .J are > (k +i)/3 we see that each such k + i can have no

more than two such prime factors. Thus

evk
Z log ¢ p| < i

logk ’
b/p>1—e2/log 2k

where the sum here is only over primes p € J.

If, for a given d, we have a/p > 1 —¢/log 2k then prime p lies in an interval of length
< \Ek/(d+1)(g/(d+ 1)log k), immediately above \/k/(d + 1). Thus

Z log ¢ »| < =VE Z ! < vk
& Chip log k <~ (d + 1)3/2 " logk

a/p>1—¢/log %k
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Thus we may also assume henceforth that 1 — b/p, 1 —a/p > £2/log °k. Inserting

these assumptions on a and b, as well as the range for d, into the definition of ¢ , we get

that ) )
c;f,p:<1—9>(1—9)<1+ ? +L><1+O<w))
D D p—a p—b>b D
—9 2
(1) (o (555)).
P P

Therefore, collecting the estimates above, we have

ab evVk
(5.2) log ¢, = > log (1 — ?) +0 <logk> ,

eVk/log k<p<e— 1Vk
a/p, b/p<1—c2/log 2k

where k = ap+b (mod p?).

From Lemma 5.1 we know that the value of b/p is very well equi-distributed on [0, 1),
as p runs through relatively short intervals of primes. By the prime number theorem with
a reasonable error term, we know that a/p is also so distributed. Thus we may estimate
(5.2) via partial summation. Without going through the straightforward though lengthy
details we simply note that, for fixed integer d > 0, the sum in (5.2), restricted to those
primes p with [k/p?] = d, is

B l(:fk (/0 @ (-t (1= 1) dt+0<e)) .

We now sum this formula over all integers d > 0, taking x = d + t so that ¢t = {z}, and
noting that (1 —¢~")log (1 —1) =1 = =35, t7/j(j + 1), to get

Cp = ef{ozﬁ—o(e)}\/ﬁ/log lc’

= 71 oo:cja:_/Qw
(5.3) O"_j;j(jﬂ)/o {zV 23 dx,

Letting & — 0 gives the asymptotic formula for log (¢x) in Theorem 6, though we still need

to find the value of a:
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First we split the integral back up, and integrate by parts to get

o0 j! (20)! i
2Vip—3/2dy — 2Vip—3/2dy — It VT vt —ie1/2
[evmeg Lo ot
n—1
= (J+1) 222 12‘ = = (7 +1)! 22— 14
Therefore
! 1 4!
5.4 = ~ ((i+1/2 where 6; := — —
o4 Z /20 2LGENG+7
and ((s) is the Riemann zeta-function. Now
(=10 = (G4~ G+ 1) s e =0 = S AT
—1)b; = — — — oy = Vi1 — WA
= i@ +1) G +)! = (G +9)!
Moreover, integrating by parts, we get
£t /tit—l j=1
N ——dt = ffﬂ_gt J,
i(a!) i! ; (7 +19)!
so that, above,
) . (1 —2)! , 1
(i=1) (i = 2)!6i i(a!) (i = 2)!0is i?(i—1)
1 : 1
— 10, o — —9, —
(i =3)10: (i—1) (i—12(-2) ! Zm2(m—1)

B Z 1 B Z 1 1 1 - 1 1
= m2(m—1) & (m—1) m m2) i ~ m?
m>i+1 m>i+1 m>i+1

Substituting this into (5.4), we get the formula for « given in the statement of Theorem 6.

To compute a we insert the third to last expression into (5.4) to get

(5.5) a=>)_ (2;) 2231 Cli+1/2) > m

i>1 m>it+1
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Of course ((i +1/2) =1+ O(27%) so we start by investigating

m—1 . .
21\ ¢ 1 1 20\ ¢
0‘1—2 (Z')Q%—l Z m2(m — 1) _mz>2m2(m_1) (i)22¢—1'

i>1 m>it1 i=1

Now, by the binomial theorem, 1/(1—z)'/2 =37, &) ;TZ Therefore Y7 (%) grizr i
the coefficient of 2™ in /(1 — z) times 2/(1 —2)3/2, that is 22 /(1 — 2)®/2, and thus equals

2 (QHT) n;(ﬂfll ) Therefore

4 1 /2m\ 1
=3 o ( m > e
m>2
We may integrate the above expansion of 1/(1—z)'/? to note that 2log (2(1—+/1 — z)/z) =

wm

S st () 74z Taking z = 1 we find that a; = (8log 2 — 2)/3 ~ 1.181725815. . .

Above we saw that ¢; = 37 .., m < 1/i. Also (2;)/(?) = [lo<;<i(25(25 —
1)/5(5 — 1)) < 22079 50 that (¥') 528y < 1. If s > 1 then ((s) — 1 <275+ [, t7%dt =

27%(s41)/(s —1); so that ¢(i 4+ 1/2) — 1 < 27(=2) for any i > 1. Now by (5.5)

a—ap = Z (22> 2;611 (C(t+1/2) — 1) + Error(I),

. 7
1 <I

where

Error(I) = Z (22> 2;01'1 (Ci+1/2)—-1) < Z 9—(i=2) _ 9=(I-2)

i>1 i>1

To facilitate the computation of the ¢; we note that ¢; =2 —72/6 and ¢; = ¢; 1 — %
Using Maple we then computed o up to an error smaller than 10~% by applying the above
with I = 22 and got that a — oy ~ .6433819 and so a ~ 1.825108.

5e. The Erdos-Lacampagne-Selfridge problem.

The proof of Theorem 8: Suppose that the smallest prime factor of (n+1)(n+2)---(n +

k)/k!is > k. That n > k?/log k has been proved in [ELS], so we may assume this. Let

p be any prime in the interval & < p < £(1 + &) where ¢ = 1/10 say. Then p | k! but

p? fk!, so that p | (n+1)...(n + k) but p>f(n +1)...(n + k). Consider the multiples
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p ([%] + 1) and p <[%] + 2) of p. Evidently both are > n. However they can’t both

divide (n 4+ 1)...(n+ k) so

p([g] +2) >+ k.

Thus 5k>2p—k>n—p{ﬁ}:p{ﬁ}
p p

n ek ek 1
< — R _— = = —
so that 0_{p}< » <k/2 2¢e 5
n 1 1)\ €k
and then Z 1/1<5> log p| > (5—3)7>>k.

b<p<i(l+e)
This contradicts (5.1) for our range of n, and thus implies the Theorem.

The reader may care to look at the interesting data collected by Scheidler and Williams
[SW] where, for each k& < 140, they find the smallest n for which all prime factors of (2)
are greater than k. Scheidler and Williams inform us that they have been continuing their

computations since then and will soon publish a sequel with many more such n.

6. The proof of Theorem 5.

Fix integer m > 0 and select another integer M, much larger than m. By Theorems 6
and 7 we see that the number of integers n < N for which there is some k, M < k <n/2
for which (}) is squarefree is < N exp(—{a + o(1)}v'M /log M).

Now suppose that the set of integers K := {k; < ks < ... < k,} and prime p are
given. Just as in section 3c, we can compute the proportion, cx ,, of integers n for which
p? does not divide any of (:1), (;‘2), e (IZ«) For example, if p > k, then cx, = 1 —k,./p*.
In general the value of ¢k, is well defined and is a rather complicated function of the base
p digits of ky, ko, ..., k.. It is not, however, necessary to compute cg ,, though we do note
that it is > 0 since p? does not divide any of (,?1), (,?2), . (]g) when n = —1 (mod p*)

where p* > k,.
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Thus, by the combinatorial sieve, the number of integers n < N for which

(:1), (:2), e (,Z) are all squarefree is ~ cx N where cx =[] cx p-

A rather different application of the inclusion-exclusion formula tells us that the pro-
portion of integers n < N, for which the set of integers £ < M such that (Z) is squarefree

is exactly a given set K of m integers, is

cxto(l) —(m+1) > . cL+(m2+2) S

which equals ¢ 5, + o(1), for some constant cj 5, as N — oco. Let nm s be the sum
of g py over all m element subsets K of {1,...,M}. Therefore the number of integers
n < N for which there are exactly 2m integers 1 < k < n — 1 with (Z) squarefree is ~
N (nm,M +o(1)+ 0O (e_{o‘+0(1)}m/1°gM>>. Letting M — oo, the first part of Theorem

5 follows with 7, = limas—c0 M, a1

For the second part of Theorem 5, note that if there are m integers k, 1 < k < n/2
for which (Z) is squarefree then the largest of them is > m. Thus, from Theorems 6 and
7 we have that

Ny < Z cp < e lato()}vm/log (2m)

k>m
Remark: It is perhaps worth noting that the ¢, are not multiplicatively independent, in
the sense that ¢; ; # c;c;. For example ¢1 2 = (5/6)ce but ¢; # 5/6 (see Proposition 3.4

for the values of ¢; and ¢3). It is true in general though that if k is the largest element of

K then cg /¢ is a rational number between 0 and 1.

7. Proving Theorem 1 for (explicit) large n.

We shall assume throughout this section that (2:) is squarefree.
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Corollary 3.2 holds with ‘prime’ p changed to ‘prime power’ p in the hypothesis (the
changes in the proof are straightforward). Replacing k£ and n in Corollary 3.2 by n and

2n, respectively, we now have

> p(2n/d)A

del

(7.1) % > Aa),

del, (d,2n)=1

where I is the set of integers d in the range /n < d < v/2n.

)| +2

> w(n/d)A(d)| >

del

Theorem 18 and the display following (7.17) from [Va] give the following (also using
Theorem 6 and (6.5) from [Val):

Lemma 7.1. For any positive integer R, we have

1
+ <
v < 55+ Z<Ra Fe(rt),

r#0

where

+ i kd r Id 1 ]
S LA IO (1 IR S i (R L S
TR+ (W( 112+1)C°t(R+1)+ r) T 2R+2 R+1

Therefore we get

i%qﬁ(%)/\d < 1 QdEZIA(d)—I—OqTZERaf (;%%) A(d))
< 1 2%;A(d)—l— Z |a| > . ;e(§>A(d)

0<|r|<R

Taking R = 10, we deduce from (7.1) (and the appropriate computations) that

(7.2) ZA < —  max Ze (2) A(d)| + Elog n,
del

8

n<x<20n

since Zdel, (d.2n)>1 A(d) < log n.

The entry for b = 30 in the table on page 358 of [Sch] means that | >, A(d) —z| <
x/(4-10°) for > €3°. Therefore

241 11
E A(d ——10gn>(\/§—1)\/ﬁ—\/_7+\/ﬁ——logn
4-10° 8
del
9999
>—0-(V2-1
— 10000 (f Wn = 105\/7

for n > €%, Substituting this into (7.2) we get
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2n
n

Lemma 7.2. Suppose that ( ) is not divisible by the square of any prime > \/n. If
n > e% then
T 2
Z > /n.
2 2 e(d) Ald)| 2 gz v
Vn<d<v2n

Now, if we take k = 2 in Theorem 9 we find that for n > 5'° we have

x
[ max Z e (E) A(d)| < (3.2)n3/%8 (log 256m) /4.

Vn<d<v/2n

Comparing this to Lemma 7.2 we find that n < (56)*®(log 256m)'32, which gives a contra-

diction for n > 21617

8. Explicit bounds on exponential sums over integers.

We now give several lemmas which provide explicit upper bounds for the size of certain
exponential sums. The main results are given in Propositions 8.1 and 8.2, where the reader
may recognize the exponent pair (1—k/(2Ft1—2),1/(28*1—2)). (For an historical account,
the reader is referred to chapter V of Titchmarsh’s book [Ti] ). It is worth mentioning that

in our work we omit the truncated Poisson summation formula from the usual theory.

Proposition 8.1.
(a) If A> (2x)Y/? then

> (52

A<n<B

(b) If k is a positive integer, = a positive real number and 1000 < A < B < 2A with
A < 423/% then

x 2x /(28 =2)
(8.1) > oe(f) =3 (Am) Ay/log A.
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Remark: Note that Proposition 8.1(b) follows from Proposition 8.1(a) for (2z)'/? < A <
423/ Tf A < (2x)'/? the right side of (8.1) is minimized when k is the largest integer
satisfying

(8.2) k4 217% <log (2z)/log A
(note that £ > 1). Thus Proposition 8.1(b) follows if we just prove it for this one particular
value of k.

Proposition 8.1(b) follows from the more general (and technical).

Proposition 8.2. Let k > 1 be an integer. Suppose that, on the interval [A, B], f(t) is
(k + 2)-times differentiable with f**1)(t) monotonic. Let m; and M, be the minimum
and maximum values of f*+1)(t) on [A, B, respectively. Let Q = (2Mk)_1/(2_27k+1) and
suppose that N is an integer such that there are < N integers in |A,B]. If 0 < my <
My < 1/(2-4%) and Q < N then

1/2%
1 1 3 M, (logQ\"
sy 2 o) S{@me—k(@)} |

A<n<B

To prove this we shall need various lemmas. First a version of the Weyl-van der
Corput lemma (the following can be proved by making suitable (minor) modifications to

the proof of Lemma 2.7 in [GK] *):

Lemma 8.3. Suppose that A\, \o,..., Ay is a sequence of complex numbers, each with

I\i| <1, and define A, = Ay A A = AgrAm and
Arl,...,rk,sAm — (Arl,..mk>\m+s)(Ar1,...,rk)\m)-

Then for any given k > 1, and real number @ € [1, N,

| X 2* ) ) e @ N
IR §@+WZ > 2 % Ary i Am| -
m=1 ri=1 ro=1 re=1 m=1

We also need a version of the Kusmin-Landau lemma (see Theorem 2.1 and the notes
at the end of of chapter 2 in [GK]):

*

There is a slight misprint there. One needs to change the first ¢ to a .
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Lemma 8.4. Suppose that, on the interval [A, B], f(t) is a differentiable (real-valued)
function, with f'(t) monotonic and 0 < m < f'(t) < 1. Then

Z e(£f(n))| < cot — < —.

A<n<B

Proposition 8.1(a) follows by taking f(t) = —z/t in Lemma 8.4 — we leave the details

to the reader.

Now define fO(t) = f(t)v fT‘(t) = f(t + T) - f(t)v and fr,s(t) = fr(t + S) - fr(t) in

general. We have
Lemma 8.5. If f(t) is (k + h)-times differentiable in [t,t + 1 + ...+ rg] then

fh) () =rirg -1 OO+ 00 + ..+ Opry)

1T T
for some 6;, 0 < 0; < 1.
Proof : By definition fy 4(t) = fr(t + d) — fr(t). Differentiating h times we have
fed ) = £+ d) = £ (2)
= df "D (t 4 0d)

for some 0, 0 < # < 1, by the Mean-Value Theorem. The Lemma follows from iterating

this k times.

Proposition 8.2 follows easily from

Lemma 8.6. Let k > 1 be an integer. Suppose that, on the interval [A, B], f(t) is
(k + 2)-times differentiable with f**+1)(t) monotonic and

0<my < f(k+1)(t) < 1/2Q2_27k+1

for some integer Q € [2%, N|. If N is an integer such that there are < N integers in the
interval |A, B] then

2k
1 1 3k=5  log*Q
il E + il . .
SN M) <507 Zrmen Q22

A<n<B
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Proof : Let C be the smallest integer in |A, B]. Let A\, = e(f(C —1+m)) for any integer m
in the range 1 < m < [B] —C+1, and \,, = 0 otherwise, so that A\, = e(fe(C —1+m))
for all m > 1. Using Lemma 8.3, we get that the left side above is

Q2()Q2 1 0?2~ k+1

1 (1 1
Sg @+Q2 2 k1 Z Z Z N Z e(Efr(n)

ri=1 ro=1 re=1 A<’nSB7T17T27...*7"k

In each term of the final sum (when r is fixed) we find that

i) =ry-- .ka(kJrl)(y)

for some y € (t,t +r1 + ...+ 1) C (A, B), by Lemma 8.5. Therefore

g—k+1 2 k+1 g—k+1

0< fit) <miom /2077 QT QY /202" = 1)2

in the required interval. Moreover f”(t) has the same sign as f1+2)(y) for some y €
(A, B) by Lemma 8.5 (and the sign of f(**2)(y) is fixed in this interval according to the
hypothesis), and so f/(t) is monotonic in the required interval. Thus the hypotheses of

Lemma 8.4 are satisfied for the function f.(¢), and so the last term above is

Tt @t
e D D Sl )
ri=1 ro=1 rr=1 A<t<B—ri—...—1g
. 1 (5 in o
CATN @ L es W) S )\ AL T

1 log @ log @)
< g+ osQ) (14759 (14 222

since Zle % <1+log R. Now Q > 2% and so

log @ log @ \"
< 1+klog2)... (14222
ok~ )- (klogQ (1+Klog2) T

The result follows by establishing that

(1+1log@).. (1 +

1+ klog2)... 1—|—l€107%2 <6k klog 2)"
2k—1



32 Andrew Granville and Olivier Ramaré
for all integers k£ > 1. This is easily checked for £ < 7. For k > 8 we use the upper bounds

277 klog 2 exp(27 /(klog 2)) for j <1

—J < .
L +2 kg2 < {exp(2_9klog 2) for j >1

where [ is an integer, chosen so that 27! < klog 2 < 2!, to get

. . 2! 2klog 2
H(1+2 Tklog 2) < H 277 klog 2 eXp(klog2+ o )
j=0 0<j<l

!
< <2’(l’1)/2klog 2) ed < lH1)/203 < 6k’§(klog 2)'C

for k£ > 8.

Proof of Proposition 8.1(b): As noted in the remark following the statement of the result,

1/2

we need only prove (8.1) for A < (2x)'/* and k the largest integer satisfying (8.2).

Take f(t) = (—1)k*12/t in Proposition 8.2 so that My, = z(k+1)!/A**2, my = 2(k+
1)!/B**2 and thus (Mj,/my) = (B/A)*2 < 4.2k Also let N = [A] +1; we easily deduce
that Q@ < N from (8.2). We may assume that M, < 1/2-4F else 2 /A2 > 1/2-4%(k +1)!
and the bound given in (8.1) is worse than that given by trivially bounding every term in

the sum by 1.

Using the fact that Q < N < A+ 1, the upper bound given by Proposition 8.2 is

1 12 [2log N\" 3k
SSN(@*E( Nz ))

1

kY 2F
2k+1—2 —k 1 12 2
log N )*2 S B

(log ) {8(logN)k+ T (\/E) } ’

)
\ { 1 12 ( 2 )k}* 1001y/Tog 1001
)

2z(k + 1)!

= 8N< Ak+2

Vk

<8k41)FTE 22
<8(k+1) 3(log 1000)F | = 1000+/Tog 1000 .

since 1000 < A < N < A+1. The maximum value of the constant two lines above is 31.34

which is attained when k = 1; the result follows.
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9. Explicit bounds on exponential sums over primes.

One can deduce bounds for exponential sums over primes from bounds for exponential
sums over integers, using the celebrated idea of writing A as a linear combination of bilinear
forms. We do so by using Vaughan’s identity, and get non-trivial results for a wide range

of values of y (see Theorems 9 and 9’ and Corollary 2 above).

9a. The general principle.
We apply Vaughan'’s identity (see section 24 in [Da]) to get the following:

Lemma 9.1 (Vaughan’s identity). Let f be any function, and N, K, M > 0 real num-
bers satisying 2K < N. Then

Y. Amf(m)= Y pm)oglf(m)— Y bf(r)— Y al(k)f(kD),
N/2<n<N N/2<Ilm<N N/2<Ir<N N/2<kI<N

m<M r<MK E>K, I>M

where

a; = Zu(m) and b, = Z pu(m)A(k).

mr=I1 mk=r
m<M m<M,k<K

We shall take N = y/ and K = M = y'3 later on, but for now we keep the more

general notation.

By Vaughan’s identity (Lemma 9.1) we have, for K <y <y’ <2y < /2, that

> Alme(S) =%V -3y, -8, - o
n ) )

y<n<y’
where .
¥ = Z w(m) Z logle(%>,
m<M Ty
x
= b Y ()
rSM vy
x
Moo Y 0 Y e(2)
M<r<MK  y 9

o= Y w Y AR ()

/7 /7
M<i<¥% K, ¥<k<¥-
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We shall need the following straightforward lemma:

Lemma 9.2. )ZS:A e (%) log n‘ <log <BTZ) Max A<¢<B )ZASngte (%)

Proof. By partial summation we obtain

®
VRS
S8
N—
~%

ie(%)lognzlogE Z e(%)—/AB

n=A A<n<B

and the result follows.

By Lemma 9.2 we have

2
1XY] < Z Z e(%)logl < Z log <fn—y) Jpax y Z e<%

msM\ v <y m<M Yop<z
m — m

Also, since |b.| < log r, we have

S5al={> b Y e(%) <y logr e(%) .

r<M £<l§y_' r<M £<l§y_'
Adding these two expressions together we get
?/2 T
9.1 SV 4|2y, | <log (L max e (—) .
(9.1) 51+ [28,4] < g(y) yei > mn
m<M %<n<%

Lemma 9.3. If M < y?/2x then

8 y?
PHERIY HES ;;log2(4y)-

Otherwise, for any positive integer k,

2k —1 2u M+ T
|z%|+\2%,1|364( )y(yT) log /2 (49)

kE+1
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provided y > 1000M and y < 4375,

Proof: If M < y?/2x then (y/m) > (22/m)'/? for all m < M and so by Proposition 8.1(a)

we have
12 12

T 2y 2y
— ) < 1+log M
yrgzagy/ Z € (mn) - mgM T™mx ~ X ( tog )

m<M L<n< £
8 2 2
< 8 e (%) ,
T 2x

since M < y?/2z. The first estimate of the Lemma follows once we insert this bound into

(9.1), and note that ey?/2z < 4y.
If M > y?/2x then, using Proposition 8.1(b), we get

T
)<
<2y (4) ()_F
m<M

< 32y 21~:+1 2 x2k+l 2 4 /log y Z —

m<M m -~ 2kFT_2

k42 k41

<64 21 y1 2k +1— 2:02’““ 2 M2Ft1-2 /log y
- k+1

The second estimate in the Lemma now follows from inserting this bound into (9.1).

In order to get an upper bound for |212’72|, we split the range of summation for r into

ranges R < r < min(2R, MK) with R = M,2M,22M, .. .; we also split the relevant range

for [ into two parts y/2R <1 <y'/2R and y'/2R < | <3'/R. Thus we get

log K
ol <2 (g +1) i | X ¥ he(p)

log 2 Yy/2R<L<y'/2R |R<r<R’' L<I<L’
y<lr<y’

2log (8y'
(9.2a) SM yérfz)iys > > be<l7~>

log 8 y/2R<L<y/R |R<r<R' L<I<L’
y<lr<y’
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when we take M = K = y'3; where R’ and L’ denote real numbers such that R < R’ <
min (2R, y'3) and L < L' < min (2L,y'3). Similarly

log <i%?> max T
& y/2L<RLy'/2L |R<r<R’' L<I<L’
y<lr<y’

2log (8y’)  max x
Togd JEcn<y'? Z Z aiA(r)e <ﬁ> .

y/2L<R<y/L |R<r<R’ L<I<L’
y<ir<y’

(9.2b)

IA

In order to bound such exponential sums we prove the following result.

Proposition 9.4. Suppose that we are given sequences of complex numbers, o, sup-

ported on U, 2U], and (3, supported on |V,2V], where U,V > 10 are integers.

(a) If U?V > 2z then, for any interval I,

2

(9.3)

> aune(2)

uvel

uv)s\ 2
<2 [lel3l81I5 <U+8 (( ﬂw) ) ) .

(b) If U > 1000 and if k is a positive integer for which

v (VUmch)m 21 and V <VU$k+2>ﬁ = (U/2)305/3V2

then, for any interval I,

2

1
Z 2kF1 o
(94) <68 |al3I81BUV (sers) ™ Viog2U.

> wuse(2)

uvel

Remarks: The Cauchy-Schwarz inequality gives the ‘trivial’ upper bound ||«||3]|3||3UV .
Corollary 9.7 will provide an easy way to apply Proposition 9.4 to the equations (9.2).

To prove Proposition 9.4 we shall use the following lemma, which is easily deduced
from Theorem 19 of [Va]. Let x, ., be the characteristic function of [u,v] + Z; that is,

Xu,»(t) = 1 if there exists an integer in the interval [u —t, v —t], and x, () = 0 otherwise.
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Lemma 9.5. Fix u and v. For any positive integer L, there exist complex numbers
{Cét(L)}mgL, such that

> e (L)e(tt) < xuo(t) < Y cf (D)e(et),

le|<L [¢|<L

where, for ¢ = ¢t or c™,

(D] < Jeo(L)| = v = ut 7.

Corollary 9.6. We have

> [Buy Bua| < (84 +2)]|3]]3-

|v;1—v;1|§A/V2

Proof: Since (3, is only supported on |V, 2V], we have

S BuBul= D 1BuBul< Y. BBl

log vy <A/ V2 lv1—v2|<4A 8lvi—v2|/(4A)<6

where 6 > 0 is a parameter to be chosen later. We apply Lemma 9.5 to x_s,s, for some

positive integer L, so that

06(vy —
Z |6v15v2| < Z |Bv15v2| Z Cﬁ (QZTUQ)>

dlv1—v2|/(AA)<6 V1, V2 4| <L
vld
< Z e (L |€< )‘
[¢|<L
vlo
(25+—+ ) =[S (52)]
[|<L| v

4A
< (254 7 ) 113 (v+25),

by the large sieve inequality (as in Théoreme 4 of [Bo]) provided (2L + 1) < 4A. Now
choose 0 = 4A /(2L + 1), while letting L — oo (running through integer values only), and

the result follows.
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Proof of Proposition 9.4 : In (a) we shall let A = (UV?3/mz)Y/?; in (b) we shall let
A = V(z/VU**2)2F77=2  which is > 1 by the hypothesis. Applying the Cauchy-Schwarz

inequality to our exponential sum we get the upper bound

(g (o x G0

V1,2 u€lU2UINgs 1N 1

max x*
<ol | G2+ 2IBU + VIS vesitnc | e (%)
F2e 2 |Ui<u<Us
where z* = z(1/v; — 1/v3), and the first term is obtained by bounding the exponential
sum by U if 2* < Az/V?2, then applying Corollary 9.6; and the second term is obtained
from the remaining terms by applying the Cauchy-Schwarz inequality to > |3y, Bvs|-

For (a) we apply Proposition 8.1(a) to the remaining exponential sum, and the result

follows.

For (b) we apply Proposition 8.1(b) to the remaining exponential sum and, since
U > 1000 and 2U < 4(Axz/V?)3/® by hypothesis, we deduce that the above is

TS 10
< Jal3IB13UV Viog 20 (15 ) {m+32-2},

and the result follows.

Corollary 9.7. Suppose that we are given sequences of complex numbers, «,, supported
on |U, 2U], and f3,, supported on |V,2V], where U and V are integers satisying (2y)?/% >
U>V >10 withy/2 < UV <y.

(a) Suppose that x > y > x3/°/5 are given real numbers. If U?V > 2z then, for any
interval I,
y3 1/4
95) > ausie (L] < st falalile (L)
uvel

(b) Suppose that z3/°/5 > y > 5000 are given real numbers, and k is a given positive
integer. If U > 1000 then, for any interval I,
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(9.6)

> wuse ()

uvel

1/2 x D 1/4
<10.54 2| B]]2y / Y log / (6y).
y 2

Proof : To prove (a) we apply Proposition 9.4(a) and note, by hypothesis, that the upper
bound there is < 2||c||3]|3]|3 %

(20)/% + 8(y* /) /2 < (P /)2 {(162° /7)1 + 8/,

and the result follows since 23 /y° < 5°.

To prove Corollary 9.7(b) we shall apply Proposition 9.4(b), so we must verify the
hypotheses there. The first inequality is 22, > VUF*2. This may be re-arranged
as (UV)QHI*Sx > U2""7'+k-1 Now since UV > y/2, x > (5y)°/3 and U < (2y)?/3,
the above follows since (y/2)2k+1*3(5y)5/3 > (2y)§(2k+1+k*1) for y > 5000. The second
inequality there is («V)2"" "2z > ((U/2)%/3V2)2"7" "2y U*+1 This may be re-arranged
as (z/UV)?" " =1 > (U?/32)5 """
UV <y, this follows since (2 - 55/3(2y)2/9)2k+1_1 > 25/3(2y)2k/3-4/9,

—2)U*. Using the inequalities above, and the fact that

To deduce (9.6) from (9.4) we use the inequalities in our hypothesis, as well as
VU2 > (UV)# > (y/Q)# since U > V. The upper bound that we get contains
the main term above times the constant (68)1/2(2/3)1/42(k+3)/8(2k_1) < 10.54.

9b. Putting everything together: the proof of Theorem 9.
We now assume that k is a given integer > 1 and
éx3/5 >y >2-10°.

By Lemma 9.3 we have

1

2k — 1 2rMFFLY 21—z
(9.7) 1XY] + |E§/’1| <64 ( E T ) Y (W) log 3/2(4y).

To estimate the exponential sums in (9.2) we can apply Corollary 9.7 with U > V equal
to the numbers R and L: it is easy to check that the hypotheses of Corollary 9.7(b) are
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satisfied for each sum. Note that V' > 5/2(2y)%/3 > 40. We also need bounds on ||a||2|| 3|2
for each sum:

For ‘Zg’2|, we have the bound

a3z < | > 12 ST 82| <UVieg?(2U)

L<I<2L R<r<2R
< ylog *(2(2y)*"*) < (0.023)ylog *(16y),
since each |b,| <logr, and y > 2 x 10°.

For |X¥| we have, using Proposition 10.1 (see section 10),

W

ldB1813={ > o D A’ | <gLlogM+3) | > A(r)?

L<I<2L R<r<2R R<r<2R

Now, by (3.35) and (3.16) of [RS] for R > 125, and by direct computation for 125 > R > 40,
we obtain

Y A(r)* <log (2R)(¢(2R) — ¢(R)) < 1.285Rlog (2R),

R<r<2R

Therefore, since y > 2 x 109,

lal311813 < —1 285y (log M + 3)*log (2R) < (0.62)ylog *(16y).

Inserting these bounds into Corollary 9.7(b), we deduce from (9.2) that

|5 o] + 28] < (10.54)

2 4(2F—1)
3log (0-023>1/2+<0.62)1/2}y< ) log '/ (16y)

yT

x 4@t 11/4
(9.8) < (9.52)y [ log "1/4(16y).
y

2

If 2 < y*= and y > 22" then we can combine (9.7) and (9.8) to deduce the bound in
Theorem 9. The bound

S Amela/m)| <| 3 Aw) smg( ) S logp

y<n<y’ y<n<2y <2y

(9.9) < log (2%) + v/2ylog (/2y) < 2ylog 2 + \/y/2 log (2y).
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is evidently better than that given in Theorem 9 when =z > y%. It is also better when
1<z <y* andy < max{22°,2- 10}, as may be shown from just taking = 1 and

performing the pertinent computations.

9c. Applying Corollary 9.7(a).

If we try to apply Corollary 9.7(a) we find that it is only for large y that the hypotheses
are satisfied: in order that U?V > 2z we need that y > 222/3. If we assume this then

Lemma 9.3 gives
8 (¥
S+ 158,40 < = v (2) log(4).

Proceeding as in section 9b, we deduce from Corollary 9.7(a) and (9.2) that

1
ISY,] + 19| < (4.61) (0.023)'/2 + (0.62)"/2}y (£) " 1og 7/*(16y)

2
5t
3log 2

1
<417y (9> log #/2(16y).
T

These bounds combine to give Theorem 9’ for iy > 2 - 106.

In the remaining range y < 2 - 105, the upper bound given is (as before) bigger than
that in (9.9) since x < (y/2)3/2 < 10°.

10. Some explicit estimates.

In this section we shall prove

Proposition 10.1. For any N,z > 1 we have

2

Z Zu(d) < gN(logz—l-B)z.

N<n<2N \ dn
d<z

Remark : This sum was also investigated in [DIT].

Before starting on the proof we need some preparatory lemmas:
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Lemma 10.2. For any integer d and any N > 1 we have

ZM

n<N
(n,d)=1

Proof: We may assume that N is an integer. Let d’ be the product of all of the primes up
to N which do not divide d. Then

ST MID WTOED SRTO1

m<N m<N nlm n<N
(m,d’)=1 (n,d)=1 (n,d)=1
p(n) N
=N DL ST g
n<N n<N
(n,d)=1 (n,d)=1

Now, since {N/1} = 0 thus

e NP B

n<N n<N
(n,d)=1 (n,d)=1 or (n,d’)=1

Lemma 10.3. For any N > 1 we have

12 ( u()

(log N +3) and Z
n<N n<N

7(n) < =(log N + 3)2,

OOI[\'J
Ol =~

where 7(n) denotes the number of divisors of n.

Proof: We can put an upper bound on the number of squarefree integers up to N by just
counting those that are not divisible by either 4 or 9; this gives us < (1—-1/4)(1—-1/9)N +
2271 = (2/3)N +2. If N > 49 then we can remove the numbers 25 and 49 from our count,
leaving < (2/3)N. By explicit computations up to N = 49 we thus get

S W2 (n) < (2/3)(N +2)

n<N
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equality being attained when N = 7. The first result above is then deduced through partial

summation. The second result from writing out each factorization n = ab to get

2

SONRES 0Oy § Y0

— I

n
n<N ab<N a<N

and then substituting in the previous estimate.

We now complete the proof of Proposition 10.1:

Proof : The left side above is

w(dy)p(d
Nl % %+ S ()R (da).
dy,da<z 1 2] dy.,do<z
l[dy,d2]<2N [d1,d2]<2N

Let d = (d1,ds) and dy = da, ds = db. Then (b,ad) = 1, b < z/d and b < 2N/da so that

the first sum is

N(log z + 3),

@|r-l>

b 2(d,
SNZM Z Z #SNdzM(

di<z d|d1 b<min (z/d 2N/dq)
(b,d1)=1

using Lemma 10.1 and then the second part of Lemma 10.2.

The second sum above is

S S OTOND SRR § Sy N gliUN IR

a,b<z d<2N/ab a<z b<z
(a,b)=1 -

using the first part of Lemma 10.2. The result follows from adding the two bounds above

together.
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