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1. Introduction

Hardy and Ramanujan showed that almost all integers n have ∼ log log n prime21

factors (whether or not they are counted with multiplicity). The set of numbers
{log log p : p|n} is therefore typically a set of ∼ log log n numbers inside the interval23

(log log 2, log log n). How might we expect these numbers to be distributed within
the interval? Other than near the beginning and end of the interval we might, for25

want of a better idea, guess that these numbers are “randomly distributed” in some
appropriate sense given that the average gap is 1. That guess, correctly formulated,27

turns out to be correct. We formulated “randomly distributed” as:
A sequence of finite sets S1, S2, . . . is called “Poisson distributed” if there29

exist functions mj , Kj, Lj → ∞ monotonically as j → ∞ such that Sj ⊆
[0, mj] and |Sj | ∼ mj; and for all λ, 1/Lj ≤ λ ≤ Lj and integers k in the range31

∗L’auteur est partiellement soutenu par bourse de la CRSNG du Canada.
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0 ≤ k ≤ Kj, we have1

1
mj

mj∫
0

#{Sj ∩ [t, t + λ]} = k

1dt ∼ e−λ λk

k!
.

Our main result is that there is a set of integers N , containing all but o(x) integers3

≤ x, such that the sets {log log p : p|n}n∈N are indeed “Poisson distributed”:

Theorem 1. Let y = log log log x/(log log log log x)2. There exists a set of integers
N such that #{n ≤ x; n /∈ N} ≤ x/2y/20, for which

µn(L; k) :=
1

log log n

log log n∫
t = 0

#{p|n : t ≤ log log p < t + L} = k

1dt = e−L Lk

k!
{1 + O(2−y/20)}

(1.1)

for every n ≤ x with n ∈ N , for all L in the range 1/y ≤ L ≤ y/50 and all integers5

k ≤ y/(log y)2.

There are related results in the literature, but none which seem to imply this.
Galambos [3], and DeKoninck and Galambos [2], proceed a little differently (and
their proofs are significantly different): Let p1(n) ≤ p2(n) ≤ · · · ≤ pw(n) be
the prime divisors of n. Galambos [3] shows that if j and w − j → ∞ then
log log pj(n) is normally distributed with mean j and variance j. Moreover, he shows
that log log pj+1(n)− log log pj(n) is distributed as a Poisson random variable with
parameter 1. DeKoninck and Galambos [2] extend this to show that for any fixed k,

(log log pj+1(n) − log log pj(n), log log pj+2(n) − log log pj+1(n), . . . ,

log log pj+k(n) − log log pj+k−1(n))

is distributed as a k-tuple of independent Poisson random variables with7

parameter 1. These results are certainly not implied by Theorem 1, and we can-
not see how they imply Theorem 1, though it seems plausible that this should be9

so. The results are compatible and show how the sets {log log p : p|n} do typically
take on “random structure”.11

Using our methods, we are able, in Section 6, to go somewhat further along the
same lines as [2].13

Theorem 2. For sufficiently large k, suppose k0 = 1 < k1 < k2 < · · · < km−1 < km

are integers with k1 → ∞, and log log x − log log log x − km → ∞, and otherwise15

kj+1 − kj = 1 or → ∞. Then the values

(log log pk1(n), log log pk2(n) − log log pk1(n), . . . , log log pkm(n) − log log pkm−1(n))17
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over n ≤ x are distributed as m independent random variables with1

log log pkj+1(n) − log log pkj (n)

(i) Poisson with parameter 1 if kj+1 − kj = 1;3

(ii) Normal with mean and variance kj+1 − kj if kj+1 − kj → ∞.

Evidently (1.1) can only hold in the range given in Theorem 1 if ω(n) ∼ log log n5

(where ω(n) denotes the number of distinct prime factors of n). So what happens
if ω(n) is considerably smaller or larger? In other words, for a given k, 1 ≤ k ≤7

log x/ log log x, what do the sets {log log p : p|n} typically look like when we consider
only those n ≤ x with ω(n) = k? In this case, the average gap between elements9

is (log log n)/k so we might expect a Poisson distribution with this parameter.
However, there are several obvious problems with this guess:11

• If k is bounded then there cannot be a non-discrete distribution function for
gaps between elements of {log log p : p|n} for each individual n since there are a13

bounded number of elements of this set. We deal with this case separately and
prove in Section 7:15

Theorem 3. For large x and 2 ≤ k = o(log log x) consider Sk(x) the set of integers
n ≤ x with ω(n) = k. Let p1(n) < p2(n) < · · · < pk(n) be the distinct prime factors17

of n. The elements

{log log pi(n)/ log log n : 1 ≤ i ≤ k − 1}19

are distributed on (0, 1) like k − 1 random numbers, as we vary over n ∈ Sk(x).
More precisely, for any ε ∈ (1/(log log x)2, 1/k), for any α0 = 0 < α1 < α2 < · · · <21

αk−1 ≤ αk = 1 with αj+1−αj > ε, there are (k−1)!εk−1{1+O(k/ log log x)}|Sk(x)|
integers n ∈ Sk(x) with log log pi(n)/ log log x ∈ (αi, αi + ε) for each 1 ≤ i ≤ k − 1.23

• We cannot have many i with pi(n) > nlog k/k, evidently no more than
k/ log k = o(k) if k → ∞. So we must restrict our attention to {log log p ∈25

(0, log((log n)/k)) : p|n}. Notice that the average gap between these points is
∼ log((log n)/k)/k.27

We will prove in Section 8, using deep and difficult results on Sk(x) due to
Hildebrand and Tenenbaum [4] (by modifying the proof of Theorem 1), that for all29

but o(S�(x)) of the integers n ∈ S�(x), the sets


log log p
1
�

log log(n1/�)
: p|n, p ≤ n1/�




31

are indeed Poisson distributed.

Theorem 4. Let A(x) → ∞ as x → ∞ (but very slowly). Suppose that �33

is an integer with � ≤ (log x)/(log log x)A(x) and � → ∞ as x → ∞. Define
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ν = log(log x/(� log �)) and y = [(log ν)1/4]. There exists a set of integers N ⊂ S�(x)1

such that #{n ≤ x; n /∈ N} ≤ |S�(x)|/2y1/4, for which

1

log
(

log n

�(log log n)3

)
log((log n)/�)∫

t = 3 log log log n
#{p|n : t ≤ log log p < t + λν/�} = k

1dt = e−λ λk

k!
{1 + O(y−1/13)}

3

for every n ∈ N , for all λ in the range 1/ log y ≤ λ ≤ (1/4) log y and all integers
k ≤ log y/(log log y)2.5

Arratia, Barbour and Tavaré [1] discuss how many statistics of the sets
{log log p : p|n}, as we run through the integers, are strongly related to the statis-7

tics of

{log d1(σ), . . . , log dm(σ) : σ ∈ Sn}9

as we run through the permutations σ on n letters, with cycle lengths d1(σ) ≤
d2(σ) ≤ · · · ≤ dm(σ). Indeed our Theorems 1, 3 and 4 do have an analogy in this11

setting, results that we have proved in another paper.
In [1], the authors discuss formulating the statistics of the sets {log log p : p|n} in13

terms of the Poisson–Dirichlet distribution, and this has been taken a lot further by
Tenenbaum [5]. If one could prove that the statistics of {{log log p : p|n} : n ≤ x} are15

sufficiently close to the Poisson–Dirichlet distribution, that is with enough unifor-
mity, then all of our results here would follow (with some linear conditioning). How-17

ever, we have been unable to do so with what is currently proved in this direction.
One question of interest would be to prove analogous results for the prime divi-19

sors of {f(n) : n ≤ x} where f(t) ∈ Z[t]. Here the results would necessarily reflect
how f(t) factors mod p on average over primes p, and it would be interesting to see21

how much things vary depending on the choice of f .

2. Some Simple Lemmas23

Lemma 2.1. If C is a finite set of positive numbers then

0 ≤
(∑

c∈C

c

)k

−
∑

ci ∈ C
ci distinct

c1c2 · · · ck ≤
(

k

2

)∑
c∈C

c2

(∑
c∈C

c

)k−2

.

25

Proof. Expanding (∑
c∈C

c

)k

we get
∑

c1,...,ck∈C

c1 · · · ck

27

which are all positive terms. This gives the first inequality. If the {ci} are not all
distinct then there exists 1 ≤ i < j ≤ k with ci = cj . There are (k

2 ) choices of i29
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and j. For a given choice of i and j, our sum becomes1

≤
∑
cj∈C

c2
j

∑
cg∈C

g �=i,j

∏
g �=i,j

cg =
∑
cj∈C

c2
j

(∑
c∈C

c

)k−2

.

Throughout we shall use the fact, deduced from the prime number theorem,3

that ∑
u<p<v

1
p

= log
(

log v

log u

)
+ O(e−

√
log u). (2.1)

5

Define

M = M(B, x; k, L) :=
∑

p1 < p2 < · · · < pk−1 < pk < peL

1
B ≤ p1 ≤ x

(
L − log

(
log pk

log p1

))
1

p1p2 · · · pk
.

7

Lemma 2.2. If k, 1/L = eo(
√

log B) and x > B2 then

M(B, x; k, L) =
Lk

k!
log
(

log x

log B

)
{1 + O(e−{1+o(1)}√log B)}.

9

Proof. If p1 and pk are given then the sum here is∑
p1<p2<···<pk−1<pk

1
p2 · · · pk−1

.
11

By Lemma 2.1 this is best approximated by

1
(k − 2)!

( ∑
p1<p<pk

1
p

)k−2

13

with error term

≤ 1
(k − 2)!

(
k − 2

2

) ∑
p1<p<pk

1
p2

( ∑
p1<p<pk

1
p

)k−4

.
15

Since pk < peL

1 this is

� 1
(k − 2)!

k2

p1 log p1
(L + O(e−

√
log B))k−4

17

by (2.1). This provides an error term for M of

�
∑

B<p1≤x

1
p1

∑
p1<pk<peL

1

L

pk

1
(k − 2)!

k2

p1 log p1
(L + O(e−

√
log B))k−4

� k2Lk−2

(k − 2)!

∑
B<p1≤x

1
p2
1 log p1

(
1 + O

(
e−

√
log B

L

))k−3

� k2Lk−2

(k − 2)!B2 log B

by (2.1), which is acceptable in our error term.
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The main term is, by (2.1),

1
(k − 2)!

∑
B < p1 ≤ x

p1 < pk < peL

1

(
L − log

(
log pk

log p1

))
1

p1pk

(
log
(

log pk

log p1

)
+ O

(
e−

√
log B

))k−2

=
Lk

k!

∑
B<p1≤x

1
p1

{
1 + O

((
k +

k2

L

)
e−

√
log B

)}

by the prime number theorem, since k, 1/L = eo(
√

log B),1

=
Lk

k!
log
(

log x

log B

)
{1 + O(e−{1+o(1)}√log B)}

for x > B2.3

3. Preparatory Estimates

For a given x we consider integers n ≤ x, and let Q(n) be the prime divisors of n5

in the interval

I = [exp((log x)δ), exp((log x)1−δ)]7

where δ = δ(x). We assume

1
log log log x

≤ L ≤ log log x and k = o(log log log x/ log log log log x).
9

Define

Ak,L(n) =
∑

p1 < p2 < · · · < pk ∈ Q(n)

pk < peL

1

{
L − log

(
log pk

log p1

)}
,

11

so that

1
x

∑
n≤x

Ak,L(n) =
∑

p1 < p2 < · · · < pk ∈ I

pk < peL

1

{
L − log

(
log pk

log p1

)}
1
x

[
x

p1 · · · pk

]
.

13

Note that p1 · · · pk ≤ pk
k ≤ x since k < (log x)δ.

In each of those terms we have15

1
x

[
x

p1 · · · pk

]
=

1
p1 · · · pk

+ O

(
1
x

)

so that the accumulated error terms are17

� L

x

∑
p1···pk≤x

1 � L

log x

(log log x + O(1))k−1

(k − 1)!
. (3.1)



2nd Reading

February 5, 2007 16:19 WSPC/INSTRUCTION FILE 00077

Prime Divisors are Poisson Distributed 7

The main term is1 ∑
p1<p2<···<pk∈I

pk<peL

1

{
L − log

(
log pk

log p1

)}
1

p1 · · · pk

which lies between M(B, z1; k, L) and M(B, z2; k, L) where3

B = exp((log x)δ), z2 = exp((log x)1−δ)

and z2 = zeL

1 .5

Therefore, by Lemma 2.2, we have a main term

Lk

k!
{(1 − 2δ) log log x + O(L)}7

and combining this with (3.1) gives

1
x

∑
n≤x

Ak,L(n) =
Lk

k!
{(1 − 2δ) log log x + O(L)}. (3.2)

9

We also have
1
x

∑
n≤x

Ak,L(n)2 =
∑

p1 < · · · < pk ∈ I
q1 < · · · < qk ∈ I

pk < peL

1

qk < qeL

1

{
L − log

(
log pk

log p1

)}{
L − log

(
log qk

log q1

)}
1
x

×
[

x

Lp,q

]
where Lp,q = LCM [p1 · · · pk, q1 · · · qk]. We proceed in a similar way to above. Now
Lp,q has between k and 2k prime factors. For a given such number with k + i prime
factors, there are (k+i

k ) choices for p1 · · · pk; then the remaining i primes are amongst
the qi so there are ( k

k−i ) choices for the other qi. Thus our error term is

� L2

x

k∑
i=0

(
k

k − i

)(
k + i

k

) ∑
r1···rk+i≤x

1

� kL2

log x

k∑
i=0

(log log x)k+i−1

i!2(k − i)!
� kL2

log x

(log log x)2k−1

k!2

since k <
√

1
2 log log x. The main term is the square of what we had before except

that we need to account for terms where Lp,q < p1 · · · pkq1 · · · qk.11

This error term is

≤ L2
∑

p1 < · · · < pk ∈ I
q1 < · · · < qk ∈ I

pk < peL

1 , qk < qeL

1
some pi = qj

1
LCM [p1 · · · pk, q1 · · · qk]

.

13
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Now1

qk < qeL

1 ≤ qeL

j = peL

i ≤ peL

k < pe2L

1 ,

and similarly pk < qe2L

1 .3

Moreover, if LCM [p1 · · · pk, q1 · · · qk] = r1 · · · rk+i then, as above, there are
(k + i)!/i!2(k − i) choices for p1 · · · pk, q1 · · · qk. Therefore the above is

≤ L2
k−1∑
i=0

∑
r1 < · · · < rk+i ∈ I

rk+i < re2L

1

1
r1 · · · rk+i

(k + i)!
i!2(k − i)!

� L2
k−1∑
i=0

(k + i)!
i!2(k − i)!

(2L)k+i−1

(k + i − 1)!
log log x

� log log x
(2L)2k

k!2
(1 + 1/L2k)kO(k).

Combining the above gives, since (k(1 + 1/L))k = (log log x)o(1),

1
x

∑
n≤x

Ak,L(n)2 =
L2k

k!2
{(1 − 2δ)2(log log x)2 + O(L log log x + (log log x)1+o(1))}.

(3.3)

Therefore, by (3.2) and (3.3), we deduce that

1
x

∑
n≤x

∣∣∣∣ Ak,L(n)
(1 − 2δ) log log x

− Lk

k!

∣∣∣∣
2

� L2k

k!2

(
L

log log x
+

1
(log log x)1−o(1)

)
. (3.4)

5

4. Proof of Theorem 1, Almost

Remember that y = log log log x/(log log log log x)2 and k = o(y/ log y). Let m =7

[y/4] and 1/y ≤ L ≤ y/16e, and select B so that y < eo(
√

log B). Define P (n) =
{log log p : p ∈ Q(n)} and9

σk,L(n) :=
1

(1 − 2δ) log log x

(1−δ) log log x∫
δ log log x

#{P (n) ∩ [t, t + L]} = k

1dt.

Now

∑
k≥K

(
k

K

)
σk,L(n) =

1
(1 − 2δ) log log x

∑
p1<···<pK∈Q(n)

(1−δ) log log x∫
t = δ log log x
t ≤ log log p1

log log pK < t + L

1dt

= AK,L(n)/(1 − 2δ) log log x.
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Therefore1

σk,L(n) =
∑
K≥k

(−1)K−k

(
K

k

)
AK,L(n)/(1 − 2δ) log log x

so that3

σk,L(n) − e−LLk

k!
=
∑
K≥k

(−1)K−k

(
K

k

){
AK,L(n)

(1 − 2δ) log log x
− LK

K!

}
. (4.1)

We break the sum on the right of (4.1) into two parts: Those K ≤ m and those
K > m (and note that k = o(m)). For small K, we use (3.4) and for large K, a
trivial estimate:

1
x

∑
n≤x

AK,L(n)
(1 − 2δ) log log x

� L

log log x

∑
p1∈I

1
p1

∑
p1<p2<···<pk<peL

1

1
p2 · · · pk

� L
1

(K − 1)!
(L + O(e−

√
log B))K−1

by (2.1), so that, taking K = k + r,

1
x

∑
n≤x

∑
K > m

(
K

k

) ∣∣∣∣ AK,L(n)
(1 − 2δ) log log x

− LK

K!

∣∣∣∣
�

∑
r>m−k

(r + k)
(L + O(e−

√
log B))r

r!
Lk

k!

� e−LLk

k!
1

2y/4
(4.2)

for any fixed C, 0 < C < 1
16 (log 4 − 1/e). From (3.4), using Cauchy’s inequality we

obtain, taking K = r + k,

1
x

∑
n≤x

∣∣∣∣∣∣
∑

k≤K≤m

(−1)K−k

(
K

k

){
AK,L(n)

(1 − 2δ) log log x
− LK

K!

}∣∣∣∣∣∣
2

≤
∑

k≤K≤m

1
∑

k≤K≤m

(
K

k

)2 1
x

∑
n≤x

∣∣∣∣ AK,L(n)
(1 − 2δ) log log x

− LK

K!

∣∣∣∣
2

� m
∑

k≤K≤m

(
K

k

)2
L2K

K!2
1

(log log x)1−o(1)

� L2k

k!2
y

(log log x)1−o(1)

∑
r≤m−k

L2r

r!2
� L2k

k!2
e2L

(log log x)1−o(1)
� e−2LL2k

k!22y/2
.

(4.3)
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Write the right-hand side of (4.1) as σn = an + bn where an is the sum of terms1

with K ≤ m, so that, by Cauchy’s inequality,

1
x

∑
n≤x

|σn| =
1
x

∑
n≤x

|an| + 1
x

∑
n≤x

|bn| ≤

 1

x

∑
n≤x

|an|2



1/2

+
1
x

∑
n≤x

|bn|.
3

Thus by (4.2) and (4.3) we obtain

1
x

∑
n≤x

∣∣∣σk,L(n) − e−L Lk

k!

∣∣∣� e−L Lk

k!
2−y/4. (4.4)

5

5. Proof of Theorem 1, Completed

Let N begin as the set of all integers, and Lj = y−1(1 + 2−y/12)j for 0 ≤ j ≤ J :=7

[2y/12+1 log y]. For each j, remove from N those n for which∣∣∣∣σk,L(n) − e−L Lk

k!

∣∣∣∣ ≥ 1
2y/12+1

e−L Lk

k!
.

9

There are � 2−y/6x such n ≤ x for each pair k ≤ y/(log y)2 and j ≤ J by (4.4).
This gives a total of ≤ 2−y/13x such n ≤ x, which is acceptable.11

Now if Lj ≤ L < Lj+1 then, since e−Lj+1
Lk

j+1
k! = e−Lj

Lk
j

k! {1 + O( y
2y/12 )},

σk,L(n) =
∑
i≤k

σi,L(n) −
∑

i≤k−1

σi,L(n) ≤
∑
i≤k

σi,Lj (n) −
∑

i≤k−1

σi,Lj+1 (n)

≤ e−L Lk

k!
+ O


 y

2y/12

∑
i≤k

e−L Li

i!


 = e−L Lk

k!
+ O

( y

2y/12

)
.

Now, in our range for k, we have e−LLk/k! ≥ e−L+O(y/ log y) and so σk,L(n) ≤
e−LLk/k!× (1+O(ey/50+o(y)/2y/12)) = e−LLk/k!× (1+O(1/2y/20)). Moreover, we13

get an analogous lower bound from the inequality

σk,L(n) ≥
∑
i≤k

σi,Lj+1(n) −
∑

i≤k−1

σi,Lj (n).
15

Now let δ = 3 log log log log log x/ log log x so that y ≤ eo(
√

log B) where B =
exp((log x)δ). Since µn(L; k) = σk,L(n) + O(δ) we deduce the result.17

6. Local Distributions

The fundamental lemma of the sieve implies:19

Lemma 6.1. If m is a product of primes ≤ x1/u then

#{n ≤ x : (n, m) = 1} =
φ(m)

m
x{1 + O(u−u) + O(e−

√
log x)}.21
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Corollary 6.2. Let p1 < p2 < · · · < pr be primes and let m be the product of all
the primes ≤ z, excluding p1, . . . , pr. If zr = xo(1) with pr ≤ z, and z → ∞ then

#{n ≤ x : p1 · · · pr|n and (n/p1 · · · pr, m) = 1)}

∼ e−γ

log z

x

(p1 − 1)(p2 − 1) · · · (pr − 1)
.

Our next preparatory result is rather tricky, but important.1

Proposition 6.3. For integer r ≥ 0 and real z ≥ 1, with r = o((log log z/ log log log
log z)2), we have3 ∑

p1<p2<···<pr≤z

1
(p1 − 1)(p2 − 1) · · · (pr − 1)

∼ c(r/ log log z)
(log log z)r

r!
(6.1)

where5

c(u) = eγu
∏
p≤y

(
1 +

u

p − 1

)(
1 +

1
p − 1

)−u

with y = exp((log log log z)2).7

Proof. By Lemma 2.1, the left-handside is

1
r!


∑

p≤z

1
p − 1




r

+ O


 r2

r!

∑
p≤z

1
p2


∑

p≤z

1
p − 1




r−2



=
(log log z + O(1))r

r!
+ O

(
r2 (log log z + O(1))r−2

r!

)

∼ (log log z)r/r! (6.2)

if r = o(log log z).
For r such that r/ log log z 
 1, but r = o((log log z/ log log log log z)2), let9

y = exp((log log log z)2). By (2.1) we have∑
y<p≤z

1
p − 1

= log log z − 2 log log log log z + O

(
1

log log z

)
11

which when inserted into the argument in (6.2) gives

∑
y<p1<p2<···<pj≤z

1
(p1 − 1)(p2 − 1) · · · (pj − 1)

∼

(
log
(

log z

log y

))j

j!
,

13

for all j ≤ r. Writing T = log(log z/ log y), this then gives∑
p1<p2<···<pr≤z

1
(p1 − 1) · · · (pr − 1)

∼
r∑

j=0

T r−j

(r − j)!

∑
p1<p2<···pj≤y

1
(p1 − 1) · · · (pj − 1)

. (6.3)
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Now1

T r−j

(r − j)!
=
(

T r

r!

)(
r

T

)j j−1∏
i=2

(
1 − i

r

)
.

Note that
∏j−1

i=2 (1− i/r) ∼ 1 if j = o(
√

r). This product is always ≤ 1 so the terms3

j > ε
√

r contribute

� T r

r!

∑
j>ε

√
r

( r

T
(log log y + O(1))

)j

j!
�ε

T r

r!2
√

r
= o

(
T r

r!

)
.

5

Thus the right-handside of (6.3) is

∼ T r

r!

∏
p≤y

(
1 +

r/T

p − 1

)
. (6.4)

7

On the other hand

∏
p≤y

(
1 +

1
p − 1

)r/T

=
(

eγ log y

{
1 + O

(
1

log log z

)})r/T

∼ eγr/T
(
1 +

log log y

T

)r

∼ eγr/ log log z(log log z/T )r.

The result follows since r/T − r/ log log z � r log log log log z/(log log z)2.

With this preparation we can now proceed to our main task, reproving and9

improving the works of [2] and [3].
Suppose we select z and integer r ≥ 0 so that11

zr = xo(1) and r = o((log log z/ log log log log z)2).

Let p1(n) < p2(n) < · · · be the distinct prime factors of n. With m as in Corollary
6.2, we note that

1
x

#{n ≤ x : pr(n) ≤ z < pr+1(n)}

=
∑

p1<p2<···<pr≤z

1
x

#{n ≤ x : p1 · · · pr|n and (n/p1 · · · pr, m) = 1}

∼ e−γ

log z

∑
p1<p2<···<pr≤z

1
(p1 − 1) · · · (pr − 1)

(6.5)

∼ e−γc(r/ log log z)
log z

(log log z)r

r!
. (6.6)

Note that c(1 + δ) = eγ + O(δ) for δ = O(1), so if r ∼ log log z, say r = log log z +13

τ
√

log log z with τ = o((log log z)1/6), then (6.6) becomes

∼ e−τ2/2/
√

2π log log z. (6.7)15
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Moreover, if rz(n) is the number of prime factors of n which are ≤ z then (6.5)
gives

1
x

#{n ≤ x : |rz(n) − log log z| > (log log z)1/2+ε}

�
∑

|r−log log z|>(log log z)1/2+ε

1
log z

(log log z + O(1))r

r!

� exp
(
−1

3
(log log z)2ε

)
� 1

log log z
.

Thus, summing up over (6.7) we deduce the result of Galambos [3]:1

1
x

#{n ≤ x : rz(n) ≤ log log z + �
√

log log z} ∼ 1√
2π

∫ �

−∞
e−t2/2dt, (6.8)

provided log z = o(log x/ log log x). This can be rephrased as: if r → ∞ and r <3

log log x − 2 log log log x then

1
x

#{n ≤ x : log log pr(n) < r + �√
r} ∼ 1√

2π

∫ �

−∞
e−t2/2dt.

5

Suppose r and k → ∞ with k + r = O(log log x). We will study the distribution
of log log pk+r(n) − log log pk(n). We will do this assuming p1(n), p2(n), . . . , pk(n)7

are given (say p1, . . . , pk), and indeed the powers to which they appear in n, say
a1, . . . , ak, all ≥ 1; thus let d =

∏k
i=1 pai

i and suppose d = xo(1). The number of such9

integers with pk+r(n) ≤ z < pk+r+1(n), where pk(n) < z < exp(o(log x/ log log x)),
is11 ∑

pk<q1<q2<···<qr≤z

#{n ≤ x : dq1 · · · qr|n and (n/dq1 · · · qr, m) = 1}

where m is the product of the primes ≤ z except q1, . . . , qr. Proceeding as before,13

since zrd = xo(1) the above is

∼ e−γ

log z

x

d

∑
pk<q1<···<qr≤z

1
(q1 − 1) · · · (qr − 1)

∼ e−γ

log z

x

d

(log(log z/ log pk))r

r!15

by (2.1), provided r = o(log( log z
log pk

) e
√

log pk). The total number of integers for which
the smallest k prime factors have product d is, for m =

∏
p≤pk

p,17

#{n ≤ x : d|n and (n/d, m) = 1} ∼ e−γ

log pk

x

d
;

so the proportion for which the next r smallest prime factors are ≤ z (but not the19

next r + 1) is ∼ (1/T )(logT )r/r! where T = log z/ logpk; in other words, this has
a Poisson distribution with parameter T . Therefore we deduce that21

log log pk+r(n) − log log pk(n)
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is normally distributed with mean r and variance r if r → ∞ and restricted as1

above. This is true for each possible value of pk(n) < z, and so for pk(n) in general.
Moreover, this means that such distributions are independent of one another. That3

is, if k = 1 < k1 ≤ k2 < · · · < km−1 < km = log log z with kj+1 − kj → ∞ for
j = 0, 1, . . . , m − 1, then5

log log pkj+1(n) − log log pkj (n), j = 0, 1, . . . , m − 2

are statistically independent normal distribution with mean and variance kj+1 − kj7

for each j.
More can be said: if j ≥ 1 we can allow kj+1 − kj to be fixed. To simplify the9

proof, we insert all integers from kj to kj+1 into our sequence so that if kj+1 − kj

is fixed, it equals 1. Again suppose p1, . . . , pk are given, k → ∞, and by the above11

argument the proportion of such integers with log log pk+1(n) > log log pk(n) + t is

∼ e−γ

log(pet

k )
x

d

/
e−γ

log pk

x

d
= e−t.

13

Since this is true no matter what the values of p1, . . . , pk, thus log log pk+1(n) −
log log pk(n) is Poisson with parameter 1, independent of what went before. This15

concludes the proof of Theorem 2.
We note here one relatively easy result: For t → ∞, log log x − u → ∞ and

u = t + λ with λ bounded, with m the product of the primes in [eet

, eeu

],

1
x

#{n ≤ x : n has exactly k prime factors in [eet

, eeu

]}

=
∑

eet <p1<···<pk<eeu

1
x

#{n ≤ x : p1 · · · pk|n and (n/p1 · · · pk, m) = 1}

∼ e−λ
∑

eet <p1<···<pk<eeu

1
p1 · · · pk

∼ e−λ λk

k!

by (2.1).17

7. Integers with a Given Small Number of Prime Factors

Let Sk(x) = {n ≤ x : n has exactly k prime factors}. It is well known that19

|Sk(x)| ∼ x

log x

(log log x)k−1

(k − 1)!
(7.1)

for k = o(log log x). We note that almost all integers n ∈ Sk(x) are squarefree: for,21

if not, n = pam for some prime p, integer a ≥ 2, and m ∈ Sk−1(x/pa), and∑
pa,a≥2

|Sk(x/pa)| � |Sk−1(x)| � |Sk(x)|k/ log log x = o(|Sk(x)|)
23

by (7.1).
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To prove Theorem 3 we wish to determine how many squarefree integers in1

n ∈ Sk(x) have log log pi(n)/ log log x ∈ (αi, αi +ε) for each 1 ≤ i ≤ k−1. Evidently
the number is3 ∑

p1 ∈ I1, p2 ∈ I2, . . . , pk−1 ∈ Ik−1

π

(
x

p1 · · · pk−1

)

where Ij = (exp((log x)αj ), exp((log x)αj+ε)). Note that p1 . . . pk−1 ≤ exp
(k(log x)αj+ε) = xo(1) by hypothesis (as k(log x)αj+ε = o(log x) since k � log log x

and αj + ε < 1). Therefore π(x/(p1 . . . pk−1)) ∼ x/(p1 . . . pk−1 log x) and so the
above sum becomes, since the intervals IJ are disjoint,

x

log x

k−1∏
j=1

∑
pj ∈ Ij

1
pj

{
1 + O

(
1

log x

)}

=
x

log x
(ε log log x)k−1

{
1 + O

(
k

(log x)α1

)}
.

8. Integers with a Given Large Number of Prime Factors5

Let ν = log(log x/(� log(� + 1)) where � → ∞ and � � log x/(log log x)2 (so that
ν → ∞). In [4], Corollaries 3 and 4 imply that7

|S�+1(x)|
|S�(x)| =

ν

�

{
1 + O

(
log ν

ν

)}
; (8.1)

and if 1 ≤ d ≤ √
x then9

|S�(x)|
d|S�(x/d)| =

(
log x

log(x/d)

)�/ν−1

exp
(

O

(
1
ν

+
�(log d)(log ν)

ν2 log x

))
. (8.2)

We deduce that if d is the product of k distinct primes with k ≤ min{log �, ν/11

(log ν)2}, where each prime factor of d is ∈ [(log x)2, x1/�], then

#{n ∈ S�(x) : d|n} =
(

�

ν

)k |S�(x)|
d

{
1 + O

(
(log �)2

�
+

1
log ν

)}
. (8.3)

13

Proof. Select m so that d|m and (m, n/m) = 1, where p|m implies p divides d.
If 0 ≤ j ≤ k then ν�−j/(�−j) = ν/�(1+O(j/�)). Therefore multiplying together15

(8.1) for � − 1, � − 2, . . . , � − k we find that

|S�−k(x)|
|S�(x)| =

(
�

ν

)k {
1 + O

(
(log �)2

�
+

1
log ν

)}
;

17

replacing x by x/d here adds, at worst, an error term O(k log d/ logx log log log x) =
o(k2/�). The right-hand side of (8.2) is exp(O(k/ν + k/�)), and so we have proved19

that

|S�−k(x/d)| =
(

�

ν

)k 1
d
|S�(x)|

{
1 + O

(
(log �)2

�
+

1
log ν

)}
. (8.4)

21
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Now writing n ∈ S�(x) for which d|n as n = dm, we see that if p|(m, d), then1

n/dp has between � − k and � prime factors. Thus

0 ≤ #{n ∈ S�(x) : d|n} − #{m ∈ S�−k(x/d) : (m, d) = 1} ≤
∑
p|d

k∑
i=0

S�−i(x/dp).
3

On the other hand, if m ∈ S�−k(x/d) and p|(m, d), then m/p ∈ S�−k(x/dp) or
S�−k−1(x/dp), so that5

0 ≤ |S�−k(x/d)| − #{m ∈ S�−k(x/d) : (m, d) = 1} ≤
∑
p|d

k+1∑
i=k

S�−i(x/dp).

Replacing x/d by x/dp in (8.4) we deduce from the last two equations that

|#{n ∈ S�(x) : d|n} − |S�−k(x/d)||

≤
∑
p|d

k+1∑
i=0

S�−i(x/dp) �
∑
p|d

k+1∑
i=0

(
�

ν

)i 1
dp

|S�(x)|

� 1
log x

(
�

ν

)k 1
d
|S�(x)|

since p ≥ (log x)2; and the result then follows from (8.4).7

Theorem 4 for small �, that is � ≤ (log log x)2/3 is an easy consequence of
Theorem 3.9

In order to prove Theorem 4 for � > (log log x)2/3 we will suitably modify the
proof of Theorem 1. We will replace the interval [exp((log x)δ), exp((log x)1−δ)] there11

by the interval [exp((log log x)3), x1/�]. We assume

1
log y

≤ λ ≤ 1
4

log y and k ≤ log y

(log log y)2
where y := [(log ν)1/4], (8.5)

13

with λ = �L/ν (and remember that ν ≤ log log x). Note that 1/L ≤ log x ≤
exp(o((log log x)3)) so that the hypothesis of Lemma 2.2 is satisfied.15

In Section 3, we now average only over n ∈ S�(x) rather than all integers n ≤ x

so we must modify the proof there. We replace the line above (3.1) with17

(
�

ν

)k 1
p1 . . . pk

{
1 + O

(
1

log ν

)}
,

by (8.3). Then ignoring (3.1) but following through there the argument for the main19

term gives the right-hand side of (3.2) with L replaced by λ, and multiplied through
by 1 + O(1/ log ν), for the average of Ak,L(n) over n ∈ S�(x).21

Proceeding in the same way for the mean square of Ak,L(n) over n ∈ S�(x), we
again replace the trivial estimate for the ratio that comes up by an application of
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(8.3), so we multiply the ith term in the sum in the display above (3.3) through by
� (�/ν)k+i. This leads to

1
|S�(x)|

∑
n∈S�(x)

∣∣∣∣ Ak,L(n)
log(log x/(�(log log x)3))

− λk

k!

∣∣∣∣
2

� λ2k

k!2

(
1

log ν
+

L

log log x
+

ν

�(log log x)1−o(1)

)

in place of (3.4). But since ν ≤ log log x the quantity in parentheses here becomes1

O(1/ log ν). Thus (4.3) can be replaced by the bound

� λ2k

k!2
y

log ν

∑
r≤m−k

λ2r

r!2
� λ2k

k!2
ye2λ

log ν
� e−2λλ2k

k!2
1

(log ν)1/2
.

3

To develop the analogy to (4.2) we need a version of (8.3) where d has arbitrarily
many prime factors. To find this we start with (8.4) (in our range (8.5)): given d5

with lots of prime factors (though no more than � and all from [(log x)2, x1/�]), we
rewrite d as d1d2 · · ·dt where ω(di) = y for 1 ≤ i ≤ t − 1 and deduce from (8.4)7

that |S�j−1−ω(dj)(x/Dj)| ≤ (�j−1/νj−1)ω(dj)|S�j−1(x/Dj−1)| exp(O(1/ log νj))/dj

for j = 1, 2, . . . , t, where Dj = d1d2 · · ·dj and D0 = 1, with �j = � − yj ≤ �9

and also νj = log(log(x/Dj)/(�j log(�j + 1))). Now, as each prime factor of d

is ≤ x1/�, therefore � logDj ≤ yj log x and so � log(x/Dj) ≥ �j log x, which11

implies that νj ≥ ν. Therefore we have proved that |S�j−1−ω(dj)(x/Dj)| ≤
(�/ν)ω(dj)|S�j−1(x/Dj−1)| exp(O(1/ log ν))/dj , and then multiplying these alto-13

gether gives, since t � ω(d)/y,

|S�−k(x/d)| ≤
(

�

ν

(
1 + O

(
1

y log ν

)))k 1
d
|S�(x)|.

15

Then, by the same argument used to deduce (8.3) from (8.4), we obtain

#{n ∈ S�(x) : d|n} �
(

�

ν

(
1 + O

(
1

y log ν

)))k |S�(x)|
d

. (8.6)
17

Therefore, in our argument, we have the analogous estimate to the display above
(4.2) but now multiplied through by ((�/ν)(1+O(1/y log ν)))K , which leads to (4.2)19

with L replaced by λ.
Combining the above we obtain the analogy to (4.4) where in the right-hand21

side we replace L by λ, and 2−y/4 by 1/y.
Finally we need the analogy to Section 5: Here N starts out as S�(x), we let23

λj = (log y)−1(1 + y−1/3)j for 0 ≤ j ≤ J := [2y1/3 log log y]. For each j, remove
from N those n ∈ S�(x) for which we get an error term ≥ (1/2y1/3)e−λλk/k!. There25

are � |S�(x)|/y2/3 such n ∈ S�(x) for each pair k ≤ log y and j ≤ J . This gives a
total of ≤ |S�(x)|/2y1/4 such ∈ S�(x), which is acceptable.27

We then proceed as in Section 5, so long as k ≤ log y/(log log y)2 and obtain
|σk,L(n) − e−λλk/k!| ≤ e−λλk/(k!y1/13) . The result follows.29
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