CORRIGENDUM FOR
 PRIME DIVISORS ARE POISSON DISTRIBUTED

Andrew Granville

Kevin Ford pointed out that the proof of Theorem 3 of [1] contains several significant mistakes (perhaps I did not check it over carefully enough because it is the most easily proved result in the paper!). We give here a correct proof of a slightly modified version of that Theorem.

Almost all integers up to x have $\sim \log \log x$ distinct prime factors. In our article [1] we examined the distribution of the sizes of those prime factors, and Theorem 3 looked at the integers with far fewer prime factors than is typical. If $S_{k}(x)$ denotes the set of integers $n \leq x$ which have exactly k distinct prime factors then it is well-known that

$$
\begin{equation*}
\left|S_{k}(x)\right|=\frac{x}{\log x} \frac{(\log \log x)^{k-1}}{(k-1)!}\left\{1+O\left(\frac{k}{\log \log x}\right)\right\} \tag{1}
\end{equation*}
$$

for $k=o(\log \log x)$. We will denote by $p_{1}(n)<p_{2}(n)<\cdots<p_{k}(n)$ the distinct prime factors of $n \in S_{k}(x)$. Theorem 3 of [1] shows that the numbers

$$
\left\{\log \log p_{i}(n) / \log \log n: \quad 1 \leq i \leq k-1\right\}
$$

are distributed on $(0,1)$ like $k-1$ random numbers, as we vary over $n \in S_{k}(x)$, for $k=o(\log \log x)$. More precisely we prove the following:
Theorem 3 (of [1]). Suppose that $2 \leq k=o(\log \log x)$. Let $\epsilon \in[1 / \log \log x, 1 / k)$ and $\alpha_{0}=0<\alpha_{1}<\alpha_{2}<\cdots<\alpha_{k-1} \leq \alpha_{k}=1$ where $\alpha_{j+1}-\alpha_{j} \geq \epsilon$ for each j and $\alpha_{k}-\alpha_{k-1} \geq \epsilon+\log \log \log x / \log \log x$. Then there are

$$
(k-1)!\epsilon^{k-1}\left|S_{k}(x)\right|\left\{1+O\left(\frac{1}{\epsilon \log \log x}\right)\right\}
$$

integers $n \in S_{k}(x)$ for which $\log \log p_{i}(n) / \log \log x \in\left[\alpha_{i}, \alpha_{i}+\epsilon\right)$ for every i in the range $1 \leq i \leq k-1$.

[^0]Proof. The number of $n \in S_{k}(x)$ for which $\log \log p_{i}(n) / \log \log x \in\left[\alpha_{i}, \alpha_{i}+\epsilon\right)$ for each $1 \leq i \leq k-1$, equals

$$
\begin{equation*}
\sum_{p_{1} \in I_{1}, p_{2} \in I_{2}, \ldots, p_{k-1} \in I_{k-1}} \sum_{a_{1}, a_{2}, \ldots, a_{k-1} \geq 1} \pi^{*}\left(p_{k-1} ; \frac{x}{p_{1}^{a_{1}} \ldots p_{k-1}^{a_{k-1}}}\right) \tag{2}
\end{equation*}
$$

where $I_{j}=\left[\exp \left((\log x)^{\alpha_{j}}\right), \exp \left((\log x)^{\alpha_{j}+\epsilon}\right)\right)$, and $\pi^{*}(b ; T)$ counts the number of prime powers $p^{a} \leq T$ with prime $p>b$. By the prime number theorem we have $\pi^{*}(b ; T)=$ $T / \log T(1+O(1 / \log T))$ if $b \leq T / \log T$, and we always have $\pi^{*}(b ; T) \leq T$.

Since $(\log x)^{\alpha_{j+1}} \geq(\log x)^{\alpha_{j}+\epsilon} \geq e(\log x)^{\alpha_{j}}$, we deduce that

$$
\log \left(p_{1} \ldots p_{k-1}\right)<\sum_{j=1}^{k-1}(\log x)^{\alpha_{j}+\epsilon} \leq(1-1 / e)^{-1}(\log x)^{\alpha_{k-1}+\epsilon}<2 \frac{\log x}{\log \log x}
$$

This implies that in each term of the outer sum in (2) we have $x /\left(p_{1} \ldots p_{k-1}\right)>x^{1-o(1)}$ and $p_{k-1} \leq x^{o(1)}$. In order to estimate the inner sum in (2) we treat the terms differently depending on whether $p_{1}^{a_{1}} \ldots p_{k-1}^{a_{k-1}}$ is smaller or larger than x^{δ}, where $\delta=100 / \log \log x$. The terms with $p_{1}^{a_{1}} \ldots p_{k-1}^{a_{k-1}} \leq x^{\delta}$ each contribute

$$
\begin{equation*}
\frac{x}{\log x} \frac{1}{p_{1}^{a_{1}} \ldots p_{k-1}^{a_{k-1}}}\left\{1+O\left(\frac{1}{\log \log x}\right)\right\} \tag{3}
\end{equation*}
$$

The terms with $p_{1}^{a_{1}} \ldots p_{k-1}^{a_{k-1}}>x^{\delta}$ each contribute $\leq x^{1-\delta}$ and there are $\ll(\log x)^{k} / k!$ such terms (since we must have $p_{1}^{a_{1}} \ldots p_{k-1}^{a_{k-1}} \leq x$). Thus their total contribution is $\ll x^{1-\delta / 2}$. Therefore summing up (3) over all values of the a_{i} we find that the inner sum in (2) equals

$$
\begin{equation*}
\frac{x}{\log x} \frac{1}{\left(p_{1}-1\right) \ldots\left(p_{k-1}-1\right)}\left\{1+O\left(\frac{1}{\log \log x}\right)\right\} . \tag{4}
\end{equation*}
$$

Therefore the sum in (2) becomes, since the intervals I_{J} are disjoint,

$$
\begin{equation*}
\left\{1+O\left(\frac{1}{\log \log x}\right)\right\} \frac{x}{\log x} \prod_{j=1}^{k-1} \sum_{p_{j} \in I_{j}} \frac{1}{p_{j}-1} \tag{5}
\end{equation*}
$$

Now $\sum_{a<p<b} 1 /(p-1)=\log \log b-\log \log a+O(1 / \log a)$, so that

$$
\sum_{p \in I_{j}} \frac{1}{p-1}=\epsilon \log \log x+O\left(\frac{1}{(\log x)^{\alpha_{j}}}\right)=\epsilon \log \log x+O\left(\frac{1}{e^{j}}\right)
$$

and hence (5) equals

$$
\frac{x}{\log x}(\epsilon \log \log x)^{k-1}\left\{1+O\left(\frac{1}{\epsilon \log \log x}\right)\right\} .
$$

The result follows by comparing this to (1).

REFERENCES

1. Granville, A. (2007), Prime divisors are Poisson distributed, Int. J. Number Theory 3, 1-18.

Départment de Mathématiques et Statistique, Université de Montréal, CP 6128 succ Centre-Ville, Montréal, Québec H3C 3J7, Canada.
andrew@dms.umontreal.ca http://www.dms.umontreal.ca/~andrew/

[^0]: L'auteur est partiellement soutenu par une bourse de la CRSNG du Canada. Thanks are due to Kevin Ford for finding my mistake and for reading over this corrigendum.
 Key Words: Prime divisors, Local distribution, Permutation, Poisson, Hardy-Ramanujan, factorization. MSC 2000 subject classifications: Primary 11A51; Secondary 11N60, 11N05, 62E17, 62E20, 11Y05.

