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LARGE CHARACTER SUMS: PRETENTIOUS CHARACTERS
AND THE PÓLYA-VINOGRADOV THEOREM

ANDREW GRANVILLE AND K. SOUNDARARAJAN

1. Introduction

The best bound known for character sums was given independently by G. Pólya
and I. M. Vinogradov in 1918 (see [4], pp. 135-137). For any nonprincipal Dirichlet
character χ (mod q) we let

M(χ) := max
x

∣∣∣ ∑
n≤x

χ(n)
∣∣∣,

and then the Pólya-Vinogradov inequality reads

(1.1) M(χ) � √
q log q.

There has been no subsequent improvement in this inequality other than in the
implicit constant. Moreover it is believed that (1.1) will be difficult to improve since
it is possible (though highly unlikely) that there is an infinite sequence of primes
q ≡ 3 (mod 4) for which (p

q ) = 1 for all p < qε, in which case M(( ·
q )) �ε

√
q log q.

The unlikely possibility described above involves a quadratic character, and one
might imagine that there are similar possibilities preventing one from improving
(1.1) for higher-order characters. Surprisingly, one of our main results shows that
we can improve (1.1) for characters of odd, bounded order.

Theorem 1. If χ (mod q) is a primitive character of odd order g, then

M(χ) �g
√

q(log q)1−
δg
2 +o(1),

where δg = 1 − g
π sin π

g .

Our proof of Theorem 1 is based on some technical results (described in the
next section) which allow us to characterize characters χ for which M(χ) is large.
Our characterization reveals that there is a hidden structure among the characters
having large M(χ). One example of this structure is the following:

Theorem 2. For 1 ≤ j ≤ g, let χj (mod qj) be primitive characters (not neces-
sarily distinct) with qj ≤ q for all j. We suppose that the product χ1 · · ·χg gives
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the principal character. If g is odd, then we have that
g∏

j=1

M(χj)√
qj

�g (log q)g− 1
2g + (log q)g− 1

7 .

If g is even, then

M(χg)√
qg log qg

+ (log q)−
2(g−1)

7 �g

g−1∏
j=1

( M(χj)√
qj log q

)2(g−1)

.

Roughly speaking, the first part of Theorem 2 tells us that if g is odd and
χ1 · · ·χg = 1, then at least one of the M(χj) is small. In particular, taking χ1 =
· · · = χk = χ with k = g − 1, if M(χ) is large, then M(χk) is small for small even
integers k. The second part of Theorem 2 tells us that if g is even and M(χ1),
. . ., M(χg−1) are all large, then so is M(χ1 · · ·χg−1) (since χg = χ1 · · ·χg−1 and
M(χg) = M(χg), by definition). In particular, taking χ1 = · · · = χk = χ with
k = g − 1, if M(χ) is large, then M(χk) is also large for small odd numbers k.

Another consequence of Theorems 1 and 2 is that if q is prime ≡ 3 (mod 4), and
M(χ) � √

q log q for some character χ (mod q) of bounded order, then M(( ·
q )) �√

q log q for the quadratic character ( ·
q ). One can deduce further results like this

from Theorem 2.
We give yet a third consequence. Suppose that q1, q2, q3 are pairwise coprime,

odd, squarefree integers in the interval [Q, 2Q], such that each M(( ·
qi

)) � √
qi log qi.

Then we have M(( ·
q1q2

)) � √
q1q2(log(q1q2))6/7, whereas M(( ·

q1q2q3
)) �√

q1q2q3 log(q1q2q3). Similar results can be proved for products of four or more
characters.

These bounds are larger than the expected maximal order of character sums.
In 1977, H. L. Montgomery and R. C. Vaughan [12] showed if the Generalized
Riemann Hypothesis1 (GRH) is true, then

(1.2) M(χ) � √
q log log q.

This bound is best possible, up to the evaluation of the constant, in view of R. E.
A. C. Paley’s 1932 result [13] that there are infinitely many positive integers q such
that

(1.3) M(( ·
q )) ≥

(eγ

π
+ o(1)

)√
q log log q,

where γ = 0.5772 . . . is the Euler-Mascheroni constant.2 Paley’s result gives large
character sums for a thin class of carefully constructed quadratic characters, and
one may ask if for each large prime q there are characters χ (mod q) with similarly
large M(χ). Our next result shows that there are indeed many such characters χ,
and moreover we can point these character sums in any given direction.

Theorem 3. Let q be a large prime and let θ ∈ (−π, π] be given. There is an
absolute constant C0 such that for at least q1−C0/(log log q)2 characters χ (mod q)

1In their results and in ours (when indicated), the Riemann hypothesis for all Dirichlet L-
functions is needed, not merely the Riemann hypothesis for the particular L(s, χ).

2Actually Paley’s method gives the constant “1/2” not “eγ”, but such an improvement ap-
peared subsequently in several places, for example [1].
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with χ(−1) = −1 we have
∑
n≤x

χ(n) = eiθ eγ

π

√
q
(

log log q + O((log log q)1/2)
)

for all but o(q) natural numbers x ≤ q.

In view of Theorem 3 it may be surprising that there are analogues of Theorems
1 and 2 which give a sharper upper bound than (1.2) for characters of small odd
order.

Theorem 4. Assume GRH. If χ (mod q) is a primitive character of odd order g,
then

M(χ) �g
√

q(log log q)1−
δg
2 +o(1)

(where δg = 1 − g
π sin π

g ).

On GRH, we can show that there exist arbitrarily large q and primitive characters
χ (mod q) of odd order g such that

(1.4) M(χ) �g
√

q(log log q)1−δg−o(1).

We believe that M(χ) �g
√

q(log log q)1−δg+o(1) for all primitive characters χ
(mod q) of odd order g, so that the exponent 1−δg is “best possible”. Perhaps this
can be achieved by further developing Lemma 4.3. It would also be interesting to
obtain the lower bound (1.4) unconditionally.

Assuming GRH, we will show (just after Theorem 2.5) that for any fixed even
g ≥ 2 there exist arbitrarily large q and primitive characters χ (mod q) of order g
such that

(1.5) M(χ) �g
√

q log log q.

Therefore (1.2) is best possible (assuming GRH) for all fixed even g, up to the
evaluation of the implicit constant. By suitably modifying the argument given
below, one should be able to obtain (1.5) unconditionally.

Theorem 5. Assume GRH. For 1 ≤ j ≤ g, let χj (mod qj) be primitive characters
with qj ≤ q for all j. We suppose that the product χ1 · · ·χg gives the principal
character. If g is odd, then we have that

g∏
j=1

M(χj)√
qj

�g (log log q)g− 1
2g + (log log q)g− 1

7 .

If g is even, then

M(χg)√
qg log log qg

+ (log log q)−
2(g−1)

7 �g

g−1∏
j=1

( M(χj)√
qj log log q

)2(g−1)

.

One can make deductions from Theorems 4 and 5 analogous to those conse-
quences we gave after Theorems 1 and 2.

The known estimates for character sums strongly resemble bounds for L(1, χ).
Unconditionally it is easy to show that |L(1, χ)| � log q. Assuming GRH, J. E.
Littlewood [11] proved that

(1.6) L(1, χ) ∼
∏

p≤log2 q

(
1 − χ(p)

p

)−1

,
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from which it follows easily that

(1.7) |L(1, χ)| ≤ (1 + o(1))2eγ log log q.

Apart from a factor of 2, the bound (1.7) is best possible, since S. D. Chowla [3]
showed that there exist arbitrarily large q and characters χ (mod q) such that

|L(1, χ)| ≥ (1 + o(1))eγ log log q.

Theorem 6. Assume GRH. If χ is a primitive character (mod q), then∣∣∣ ∑
n≤x

χ(n)
∣∣∣ ≤ (2eγ

π
+ o(1)

)√
q log log q.

Furthermore, ∣∣∣ ∑
x≤n≤x+y

χ(n)
∣∣∣ ≤ ( 4eγ

π
√

3
+ o(1)

)√
q log log q.

Regarding the second part of Theorem 6 we record that with minor modifications
to the proof of Theorem 3 we may prove that for any angle θ ∈ (−π, π] and any
large prime q there are at least q1−2/(log log q)2 characters χ (mod q) with χ(−1) = 1
such that

(1.8)
∑

q/3≤n≤2q/3

χ(n) ∼ eiθ 2eγ

π
√

3
√

q log log q.

If q ≡ 3 (mod 4) is a prime, then the condition χ(−1) = 1 is equivalent to χ
having odd order. Thus (1.8) shows that there are characters of odd order for
which M(χ) � √

q log log q, and so there is no improvement of (1.2) which holds
for all odd order characters.

Theorem 6 places the situation for large character sums on the same footing as
bounds for L(1, χ): the conditional O-results for character sums differ from Paley’s
Ω result by only a factor of 2. Moreover the maximal size of character sums in an
interval [x, x + y] is also determined up to a factor of 2. It is believed that the Ω
result represents the true extreme values of L(1, χ) (see [8] for arguments in the
case when χ is quadratic). Similarly we believe that (1.3) and (1.8) give the largest
possible character sums.

Conjecture 1. If χ is a primitive character (mod q), then∣∣∣ ∑
n≤x

χ(n)
∣∣∣ ≤ (eγ

π
+ o(1)

)√
q log log q

and ∣∣∣ ∑
x≤n≤x+y

χ(n)
∣∣∣ ≤ ( 2eγ

π
√

3
+ o(1)

)√
q log log q.

In the final section of this paper we use the improved upper bounds for L(1, χ)
given in [9] to obtain a modest improvement over Hildebrand’s results [10] on the
constant in the Pólya-Vinogradov inequality.

Theorem 7. Let χ be a primitive character (mod q), and set c = 1/4 if q is
cubefree, and c = 1/3 otherwise. If χ(−1) = 1, then

M(χ) ≤ 69
70

c + o(1)
π
√

3
√

q log q.
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If χ(−1) = −1, then

M(χ) ≤ c + o(1)
π

√
q log q.

In the case χ(−1) = 1 our result improves Hildebrand’s estimate by a factor of
69
70 . Hildebrand gives an estimate for a slightly different quantity than M(χ) when
χ(−1) = −1.

2. Detailed statement of results

If χ is a primitive character (mod q), then the sum
∑

n≤x χ(n) has a Fourier
expansion which is given quantitatively as (see Pólya [14])

∑
n≤x

χ(n) =
τ (χ)
2πi

∑
n∈Z

1≤|n|≤N

χ(n)
n

(
1 − e(−nx

q )
)

+ O
(
1 +

q log q

N

)
.

Here τ (χ) is the usual Gauss sum (see section 4), and e(t) = e2πit. Choosing N = q
above and noting that L(1, χ) =

∑
n≤q χ(n)/n + O(1) we obtain that

(2.1)∑
n≤x

χ(n) =
τ (χ)
2πi

(1−χ(−1))L(1, χ)−τ (χ)
2πi

∑
n≤q

χ(n)
n

(
e(−nx

q )−χ(−1)e(nx
q )

)
+O(

√
q).

All of our work here proceeds from the Fourier expansion (2.1). We wish to
understand when the terms appearing in (2.1) can be large. Littlewood’s result
(1.6) indicates that L(1, χ) is large only when χ(p) ≈ 1 for many small primes
p. We will find that the other terms appearing in (2.1) can be large only when
χ(p) ≈ ξ(p) for many small primes p, where ξ is a character of small conductor. A.
Hildebrand [10] first realized the possibility of such a result.

To formulate our results precisely we define for two characters χ and ψ,

(2.2) D(χ, ψ; y) :=
( ∑

p≤y

1 − Re χ(p)ψ(p)
p

) 1
2
.

We think of D(χ, ψ; y) as measuring the distance between the characters χ and ψ
(up to some point y). As we will see below (Lemma 3.1) the triangle inequality
holds:

(2.3) D(χ1, ψ1; y) + D(χ2, ψ2; y) ≥ D(χ1χ2, ψ1ψ2; y).

Note that 0 ≤ D(χ, ψ; y) ≤ (1 + o(1))
√

2 log log y.

Definition. Let χ and ψ be two characters and let δ > 0. We say that a character
χ is (ψ, y, δ)-pretentious if

D(χ, ψ; y)2 =
∑
p≤y

1 − Re χ(p)ψ(p)
p

≤ δ log log y.

Our main results, from which Theorems 1 and 2 will follow, are the following
two theorems.
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Theorem 2.1. Of all primitive characters with conductor below (log q)
1
3 let ξ

(mod m) denote that character for which D(χ, ξ; q) is a minimum.3 Then

M(χ) � (1 − χ(−1)ξ(−1))
√

qm

φ(m)
log q exp

(
− 1

2
D(χ, ξ; q)2

)
+
√

q(log q)
6
7 .

Thus M(χ) � √
q(log q)

6
7 unless ξ(−1) = −χ(−1) and χ is (ξ, q, 2

7 )-pretentious.

In the opposite direction we will show that if χ is close to a character with small
conductor (and opposite parity to χ), then M(χ) is large.

Theorem 2.2. Let ψ (mod 
) be a primitive character with ψ(−1) = −χ(−1).
Then

M(χ) +
√

q


φ(
)
log log q �

√
q


φ(
)
log q exp(−D(χ, ψ; q)2).

We next turn to results conditional on GRH. Given a real number y ≥ 1 we
let S(y) denote the set of integers all of whose prime factors are below y. We
are motivated by Littlewood’s conditional result (1.6) which shows that L(1, χ) is
well approximated by

∑
n∈S(log2 q) χ(n)/n. We will show that the terms in (2.1)

involving e(±nx/q) may also be replaced by sums involving only smooth numbers
n.

Proposition 2.3. Assume GRH. Let χ be a primitive character (mod q) and let
α be a real number. Then

∑
n≤q

χ(n)
n

e(nα) =
∑
n≤q

n∈S((log q)12)

χ(n)
n

e(nα) + O(1).

It follows at once from (1.7), Proposition 2.3 and (2.1) that
∣∣∣ ∑

n≤qα

χ(n)
∣∣∣ ≤

√
q

π
|L(1, χ)| +

√
q

π

∏
p≤(log q)12

(
1 − 1

p

)−1

+ O(
√

q)

≤ (14eγ + o(1))
√

q

π
log log q.

Thus Proposition 2.3 already gives a refinement of (1.2), and its proof (given in §5)
is simpler than the original proof of (1.2). With Proposition 2.3 in place we can
argue as in Theorems 2.1 and 2.2 and arrive at the following conditional analogues
from which we will deduce Theorems 4 and 5.

Theorem 2.4. Assume GRH. Of all primitive characters with conductor below
(log log q)

1
3 let ξ (mod m) denote that character for which D(χ, ξ; log q) is a mini-

mum. Then

M(χ) � (1−χ(−1)ξ(−1))
√

qm

φ(m)
log log q exp

(
− 1

2
D(χ, ξ; log q)2

)
+
√

q(log log q)
6
7 .

Thus M(χ) � √
q(log log q)

6
7 unless ξ(−1) = −χ(−1) and χ is (ξ, log q, 2

7 )-preten-
tious.

3If there are several characters attaining this minimum, then one can pick ξ to be any one of
those characters.
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Theorem 2.5. Assume GRH. Let ψ (mod 
) be a primitive character with ψ(−1) =
−χ(−1). Then

M(χ) +
√

q


φ(
)
log log log q �

√
q


φ(
)
log log q exp(−D(χ, ψ; log q)2).

Deduction of (1.5). For a given even integer g ≥ 4 we fix a character ψg of order
g. By Paley’s result (1.3) we may find a quadratic character χ (mod q) such that
M(χ) � √

q log log q. If we assume GRH, then Theorem 2.4 tells us that there
must be a primitive character ξ (mod m) with χ(−1)ξ(−1) = −1, m � 1, and
D(χ, ξ; log q) � 1. Now let us define χg to be the primitive character inducing χψg,
and note that χg will have order g and its conductor will be of size 
g q. Corre-
spondingly let us define ξg to be the primitive character inducing ξψg, and note that
ξg will have conductor �g 1, and moreover ξg(−1)χg(−1) = ξ(−1)χ(−1)ψ(−1)2 =
−1, and D(χg, ξg; log q) � 1 + D(χ, ξ; log q) � 1. Thus an application of Theorem
2.5 yields M(χg) �g

√
q log log q, which establishes (1.5). �

Our work also allows us to make the following refined version of Conjecture 1.

Conjecture 2.6. Let χ (mod q) be a primitive character. If 1 ≤ x ≤ q/2, then∣∣∣ ∑
n≤x

χ(n)
∣∣∣ ≤ (eγ

π
+ o(1)

)√
q log log q,

and equality holds here if and only if χ(−1) = −1, x ≥ q/(log q)o(1), and
∑

p≤log q

1 − Re χ(p)
p

= o(1).

Furthermore, if 1 ≤ x ≤ x + y ≤ q, then∣∣∣ ∑
x≤n≤x+y

χ(n)
∣∣∣ ≤ ( 2eγ

π
√

3
+ o(1)

)√
q log log q,

and equality holds here if and only if χ(−1) = 1, both |x − q/3| and |x + y − 2q/3|
are ≤ q/(log q)h(q) where h(q) → ∞ as q → ∞, and

∑
p≤log q

p�=3

1 − Re(χ(p)(p
3 ))

p
= o(1).

The main purpose of this paper was to improve (1.1) and (1.2) in as many situ-
ations as possible. Of course we believe in the Generalized Riemann Hypothesis so
that (1.2) should hold, and beyond that results such as Theorem 4. In the discussion
after Theorem 4 we explained that for primitive characters χ (mod q) of odd order
g we expect that the “best possible” result is M(χ) �g

√
q(log log q)1−δg+o(1), while

for even order g the estimate (1.2) cannot be improved in general. Analogously we
may expect our methods to give unconditionally that M(χ) �g

√
q(log q)1−δg+o(1)

when g is odd, and we do not expect an improvement over (1.1) for even g. Just
after (1.1) we gave an unlikely but possible scenario in which (1.1) could not be
improved for characters of order 2. If we had such examples then, arguing as in
the deduction of (1.5) (after Theorem 2.5), we could create characters of any fixed
even order g for which (1.1) could not be improved.

The exponents in Theorems 1, 2, 4, and 5 can all be improved by refining the
technical Lemmas 3.4 and 4.3. Although we can give some improvements to both
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lemmas, we have refrained from doing so in the interests of a simpler exposition.
We invite the reader to attain our objectives and reap the improved theorems, by
replacing the lower bound given in Lemma 3.4 by the best possible result, and to
replace the exponent ‘1/2’ by ‘1’ in the first part of Lemma 4.3 (perhaps at the cost
of an extra term of smaller order of magnitude).

3. The distance between characters, and deductions

In this section we gather together information on the distance between characters
defined in (2.2) and show how Theorems 1, 2, 4, and 5 may be deduced from
Theorems 2.1, 2.2, 2.4 and 2.5. Let z and w denote sequences (z(2), z(3), . . .) and
(w(2), w(3), . . .) indexed by the primes, and such that |z(p)| ≤ 1 and |w(p)| ≤ 1 for
all p. For two such sequences we define (generalizing (2.2))

D(z,w; y) =
( ∑

p≤y

1 − Re z(p)w(p)
p

) 1
2
.

Given two sequences z1 and z2 we will denote by z1z2 the sequence obtained by
multiplying componentwise: (z1(2)z2(2), z1(3)z2(3), . . .).

Lemma 3.1. With the above notation we have the triangle inequality

D(z1,w1; y) + D(z2,w2; y) ≥ D(z1z2,w1w2; y).

Proof. Since D(z,w; y) = D(1, zw; y) we may assume that z1 = 1 = z2. Using the
Cauchy-Schwarz inequality we see that (D(1,w1; y) + D(1,w2; y))2 is

=
∑
p≤y

(1 − Re w1(p)
p

+
1 − Re w2(p)

p

)
+ 2D(1,w1; y)D(1,w2; y)

≥
∑
p≤y

1
p

(
1 − Re w1(p) + 1 − Re w2(p) + 2

√
1 − Re w1(p)

√
1 − Re w2(p)

)

≥
∑
p≤y

1
p

(
1 − Re w1(p) + 1 − Re w2(p) + |Im w1(p)||Im w2(p)|

)

≥
∑
p≤y

1
p

(
1 − Re w1(p)w2(p)

)
,

which proves the lemma. �

More generally, given a sequence (a(2), a(3), . . .) of nonnegative real numbers we
could define the distance between z and w as (

∑
p≤y a(p)(1 − Re z(p)w(p)))

1
2 . A

simple modification of the proof above shows that this also satisfies the triangle
inequality.

We now turn to estimates on distances between characters. We first record a
consequence of the prime number theorem in arithmetic progressions that we will
find useful below. Suppose a (mod 
) is a reduced residue class. Then for any x
such that 
 ≤ (log x)A (A an arbitrary constant) we have that

(3.1)
∑

�≤p≤x
p≡a (mod �)

1
p

= (1 + o(1))
1

φ(
)
log log x.
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Lemma 3.2. Let χ (mod q) be a primitive character of odd order g. Suppose ξ
(mod m) is a primitive character such that χ(−1)ξ(−1) = −1. If m ≤ (log y)A,
then

D(χ, ξ; y)2 ≥ (δg + o(1)) log log y.

Proof. Since χ has odd order, χ(−1) = 1. Thus ξ(−1) = −1 and ξ must have even
order k ≥ 2 say. We have

D(χ, ξ; y)2 ≥
∑

−k/2<�≤k/2

( ∑
p≤y

ξ(p)=e(�/k)

1
p

)
min

zg=0,1
(1 − Re ze(−
/k)).

If ‖λ‖ denotes the distance of λ from the nearest integer, then we may check that

min
zg=0,1

(1 − Re ze(−
/k)) = 1 − cos( 2π
g ‖
g/k‖).

An application of (3.1) gives that∑
p≤y

ξ(p)=e(�/k)

1
p
≥ (1 + o(1))

1
k

log log y.

Writing g/k = g∗/k∗ in lowest terms (note that k∗ ≥ 2 is even) we deduce that

D(χ, ξ; y)2 ≥ (1 + o(1))
1
k

log log y · k

k∗

∑
−k∗/2<�≤k∗/2

(1 − cos 2π�
gk∗ )

∼
(
1 − sin(π/g)

k∗ tan(π/(gk∗))

)
log log y.

Since k∗ tan(π/(gk∗)) > π/g, the lemma follows. �
Deducing Theorem 1 from Theorem 2.1. Suppose χ has odd order g and let ξ be the
character with conductor below (log q)

1
3 with smallest D(χ, ξ; q). If χ(−1)ξ(−1) =

1, then Theorem 2.1 gives M(χ) � √
q(log q)

6
7 , which is stronger than Theorem 1.

If χ(−1)ξ(−1) = −1, then Lemma 3.2 gives that D(χ, ξ; q)2 ≥ (δg + o(1)) log log q,
and Theorem 1 follows at once from Theorem 2.1. �
Deducing Theorem 4 from Theorem 2.4. This is entirely analogous to the above de-
duction. �
Lemma 3.3. Let g ≥ 2 be fixed. Suppose that for 1 ≤ j ≤ g, χj (mod qj) is a
primitive character. Let y be large, and suppose ξj (mod mj) are primitive char-
acters with conductors mj ≤ log y. Suppose that χ1 · · ·χg is the trivial character,
but ξ1 · · · ξg is not trivial. Then

g∑
j=1

D(χj , ξj ; y)2 ≥
(1

g
+ o(1)

)
log log y.

Proof. We decompose D(χj , ξj ; y)2 as D0(χj , ξj ; y)2 + D1(χj , ξj ; y)2 where in D0

we sum over primes p ≤ y dividing the l.c.m. of q1, . . ., qg, and in D1 we sum
over all other primes p ≤ y. Then the triangle inequality holds for D1, and using
Cauchy-Schwarz we find that

g∑
j=1

D1(χj , ξj ; y)2 ≥ 1
g

( g∑
j=1

D1(χj , ξj ; y)
)2

≥ 1
g

∑
p≤y

p�q1···qg

1 − Re ξ1 · · · ξg(p)
p

.
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Trivially
g∑

j=1

D0(χj , ξj ; y)2 ≥
∑
p≤y

p|q1···qg

1
p
≥ 1

g

∑
p≤y

p|q1···qg

1 − Re ξ1 · · · ξg(p)
p

,

and so we deduce that
g∑

j=1

D(χj , ξj ; y)2 ≥ 1
g

D(1, ξ1 · · · ξg; y)2.

The lemma now follows from (3.1). �

Deducing Theorem 2 from Theorems 2.1 and 2.2. We first consider the case when
g is odd. For each 1 ≤ j ≤ g let ξj (mod mj) denote that primitive character with
conductor below (log qj)

1
3 for which D(χj , ξj ; qj) is a minimum. If for some j we

have χj(−1)ξj(−1) = 1, then Theorem 2.1 gives that M(χj) � √
qj(log qj)

6
7 and

our claimed bound follows. Suppose now that χj(−1)ξj(−1) = −1 for all j. By
Theorem 2.1, and since qj ≤ q, we see that

M(χj)√
qj

� (log qj) exp
(
− 1

2
D(χj , ξj ; qj)2

)
+ (log qj)

6
7

� (log q) exp
(
− 1

2
D(χj , ξj ; q)2

)
+ (log q)

6
7 .

Therefore
g∏

j=1

M(χj)√
qj

� (log q)g exp
(
− 1

2

g∑
j=1

D(χj , ξj ; q)2
)

+ (log q)g− 1
7 .

We know that χ1 · · ·χg is the trivial character, and since g is odd, (ξ1 · · · ξg)(−1) =
(−1)g = −1 and so ξ1 · · · ξg is not trivial. Lemma 3.1 now gives the bound of the
theorem.

Now we consider the case when g is even. If g = 2, then χ1 and χ2 are com-
plex conjugates and there is nothing to prove. Suppose now that g ≥ 4. If for
any 1 ≤ j ≤ g − 1 we have M(χj) � √

qj(log q)
6
7 , then the bound of the the-

orem holds trivially. Suppose now that for each 1 ≤ j ≤ g − 1 we have that
M(χj) � √

qj(log q)
6
7 . If ξj (mod mj) denotes the primitive character with con-

ductor below (log qj)
1
3 with minimum D(χj , ξj ; qj)2, then by Theorem 2.1 we have

that χj(−1)ξj(−1) = −1, and that

M(χj) �
√

qjmj

φ(mj)
(log qj) exp

(
− 1

2
D(χj , ξj ; qj)2

)

�
√

qjmj

φ(mj)
(log q) exp

(
− 1

2
D(χj , ξj ; q)2

)
,

so that (for j ≤ g − 1)

D(χj , ξj ; q)2 ≤ 2 log
( √

qjmj log q

M(χj)φ(mj)

)
+ O(1).

Now note that χg is the primitive character inducing χ1 · · ·χg−1 and so we let ψ

denote the primitive character inducing ξ1 · · · ξg−1. We note (using the triangle and
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the Cauchy-Schwarz inequalities, as well as an argument as in Lemma 3.3 to handle
the primes dividing q1 · · · qg−1m1 · · ·mg−1) that

D(χg, ψ; q)2 ≤ (g − 1)
g−1∑
j=1

D(χj , ξj ; q)2,

and that χg(−1)ψ(−1) = (−1)g−1 = −1. Appealing to Theorem 2.2 we obtain the
theorem. �

Deducing Theorem 5 from Theorems 2.4 and 2.5. This is entirely analogous to our
deduction above. �

Finally we record a lemma which will be useful later.

Lemma 3.4. Let χ (mod q) be a primitive character. Of all primitive characters
with conductor below log y, suppose that ψj (mod mj) (1 ≤ j ≤ A) give the smallest
distances D(χ, ψj ; y) arranged in ascending order. Then for each 1 ≤ j ≤ A we have
that

D(χ, ψj ; y)2 ≥
(
1 − 1√

j
+ o(1)

)
log log y.

Proof. Notice that

D(χ, ψj ; y)2 ≥ 1
j

j∑
k=1

D(χ, ψk; y)2 =
1
j

∑
p≤y

1
p

j∑
k=1

(1 − Re χ(p)ψk(p))

≥ 1
j

∑
p≤y

1
p

(
j −

∣∣∣
j∑

k=1

ψk(p)
∣∣∣).(3.2)

By Cauchy-Schwarz we have that

(3.3)
( ∑

p≤y

∣∣∣
j∑

k=1

ψk(p)
∣∣∣)2

≤
( ∑

p≤y

1
p

)( ∑
p≤y

1
p

∣∣∣
j∑

k=1

ψk(p)
∣∣∣2).

The first term in the RHS above is ∼ log log y. The second term is
∑
p≤y

1
p

(
j +

∑
1≤k,�≤j

k �=�

ψk(p)ψ�(p)
p

)
∼ j log log y,

by appealing to (3.1). Using these estimates to bound the quantity in (3.3), and
inserting that bound in (3.2) we obtain the lemma. �

4. Preliminary lemmas

Here we collect together some lemmas used below. For any character χ (mod q)
we recall the Gauss sum

(4.1) τ (χ) =
∑

a (mod q)

χ(a)e(a/q).

It is immediate that if (b, q) = 1, then

(4.2)
∑

a (mod q)

χ(a)e(ab/q) = χ(b)τ (χ).
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Lemma 4.1. Suppose that χ (mod q) is induced by the primitive character χ′

(mod q′). Then

τ (χ) = µ(q/q′)χ′(q/q′)τ (χ′).

If χ (mod q) is primitive, then |τ (χ)| =
√

q and (4.2) holds for all integers b.

Proof. Note that

τ (χ) =
∑

a (mod q)
(a,q/q′)=1

χ′(a)e(a/q) =
∑

d|(q/q′)

µ(d)χ′(d)
∑

a (mod q/d)

χ′(a)e(ad/q).

The inner sum vanishes unless d = q/q′ and the first result follows. The second
statement is well known; see for example [4]. �

Lemma 4.2. Let f be a completely multiplicative function with |f(n)| ≤ 1 for all
n. Suppose |α − b/r| ≤ 1/r2 with (b, r) = 1. For any 2 ≤ R ≤ r and any N ≥ Rr
we have ∑

n≤N

f(n)e(nα) � N

log N
+ N

(log R)3/2

√
R

and ∑
Rr≤n≤N

f(n)
n

e(nα) � log log N +
(log R)3/2

√
R

log N.

Proof. The first bound follows from Corollary 1 of Montgomery and Vaughan [12].
The second estimate follows easily from the first estimate and partial summation.

�

Lemma 4.3. If f is a multiplicative function with |f(n)| ≤ 1 for all n, then

∑
n≤x

f(n)
n

� 1 + log x exp
(
−

∑
p≤x

2 − |1 + f(p)|
p

)
� 1 + log x exp

(
− 1

2
D(1, f ; x)2

)
.

Furthermore, if y ≥ 2, then

∑
n≤x

n∈S(y)

f(n)
n

� log y exp
(
− 1

2
D(1, f ; y)2

)
.

Proof. For the first assertion see the remark after Proposition 8.1 of [7] and note
that if |z| ≤ 1, then 2−|1+ z| ≥ 1

2 (1−Re z). To see the second assertion note that
if y ≤ x, then

∑
n≤x

n∈S(y)

f(n)
n

� 1 + log x exp
(
−

∑
p≤y

2 − |1 + f(p)|
p

−
∑

y<p≤x

1
p

)

� 1 + log y exp
(
− 1

2
D(1, f ; y)2

)
� log y exp

(
− 1

2
D(1, f ; y)2

)
.

Moreover, if y > x, then log x exp(−1
2D(1, f ; x)2) � log y exp(−1

2D(1, f ; y)2), and
so the second assertion holds in this case also. �
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We remark that the second assertion of Lemma 4.3 cannot in general be im-
proved. To see this, pick any x < y and take f(p) = 1 for p ≤ x and f(p) = −1 for
x < p ≤ y; then it is easy to check that

∑
n≤x

f(n)
n

= log x + O(1) � log y exp
(
− 1

2
D(1, f ; y)2

)
.

Lemma 4.4. Let f be a completely multiplicative function with |f(n)| ≤ 1 for all
n. Then for any integer 
 ≥ 1 we have

∑
n≤x

f(n)
n

=
∏
p|�

(
1 − f(p)

p

)−1 ∑
n≤x

(n,�)=1

f(n)
n

+ O((log log(
 + 2))2).

Proof. Writing n as uv where u is composed only of primes dividing 
 and v is
coprime to 
 we see that

∑
n≤x

f(n)
n

=
∑

u
p|u =⇒ p|�

f(u)
u

∑
v≤x/u
(v,�)=1

f(v)
v

=
∏
p|�

(
1 − f(p)

p

)−1 ∑
v≤x

(v,�)=1

f(v)
v

+ O
( ∑

u
p|u =⇒ p|�

log u

u

)
.

The error term is seen to be � (
∑

p|�
log p

p )
∏

p|�(1 + 1/p) � (log log(
 + 2))2. �

5. Proof of Proposition 2.3

We begin by recalling a consequence of GRH. If ψ (mod m) is a nonprincipal
character, then for all x ≥ 2,

∑
n≤x

ψ(n)Λ(n) �
√

x log x log(mx).

This follows from standard arguments: for example, take T = x2 in (13) on page
120 of [4] and use GRH. It follows from the above and partial summation that

(5.1)
∑
p≤x

ψ(p) �
√

x log(mx).

Lemma 5.1. Assume GRH. If χ (mod q) is a primitive character and x < q3/2,
then, uniformly for all θ, we have that

∑
p≤x

χ(p)e(pθ) � x5/6 log q.

Proof. First we show that if (b, r) = 1 with r < q, then for any x ≥ 2,

(5.2)
∑
p≤x

χ(p)e(bp/r) �
√

rx log(qx).
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To see this, note that∑
p≤x

χ(p)e(bp/r) =
∑
p≤x

(p,r)=1

χ(p)e(bp/r) + O
(∑

p|r
1
)

=
1

φ(r)

∑
ψ (mod r)

ψ(b)τ (ψ)
∑
p≤x

χ(p)ψ(p) + O(log q).

Since r < q and χ is primitive we know that χψ is a nonprincipal character
(mod qr). Appealing now to (5.1) and using that |τ (ψ)| ≤

√
r from Lemma 4.1

we obtain (5.2).
We now turn to the proof of the lemma. Set R = x2/3 and find r ≤ R such that

θ = b/r + β where (b, r) = 1 and |β| ≤ 1/(rR). If x < q3/2, then r < q and by
(5.2) we obtain that

∑
p≤N χ(p)e(bp/r) �

√
rN log(qN) for all N ≥ 2. By partial

summation we see that∑
p≤x

χ(p)e(pθ) =
∑
p≤x

χ(p)e(pb/r)e(pβ) =
∫ x

2

e(tβ)d
(∑

p≤t

χ(p)e(pb/r)
)
,

and integrating by parts using our bound above, we obtain that∑
p≤x

χ(p)e(pθ) � (1 + |β|x)
√

rx log q � x5/6 log q.

�

Lemma 5.2. Assume GRH. If χ (mod q) is a primitive character and x < q3/2,
then ∑

n≤x

χ(n)e(nα) =
∑
n≤x

n∈S(y)

χ(n)e(nα) + O(xy−1/6 log q).

Proof. Write n /∈ S(y) as pm where p is the largest prime divisor of n. Thus
x/m ≥ p > y and m ≤ x/y and so (denoting by P (m) the largest prime factor of
m) ∑

n≤x
n/∈S(y)

χ(n)e(nα) =
∑

m≤x/y

χ(m)
∑

max(P (m)−1,y)<p≤x/m

χ(p)e(pmα),

and by Lemma 5.1 this is

�
∑

m≤x/y

(x/m)5/6 log q � xy−1/6 log q,

as required. �

Lemma 5.2 and partial summation give that
∑
n≤q

χ(n)e(nθ)
n

=
∑
n≤q

n∈S(y)

χ(n)e(nθ)
n

+ O(y−1/6 log2 q),

and Proposition 2.3 follows.

We remark that Lemma 5.2 with α = 0 shows how character sums may be
approximated by character sums involving only smooth numbers. This question is
explored in greater depth in our paper [6].
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6. Proof of Theorems 2.1, 2.2, 2.4 and 2.5

The main ideas of our proof work whether or not GRH is assumed, the only
difference being that the relevant parameters need to be chosen differently in each
case. To present this in a unified manner we adopt the following convention. We
set Q = log q if GRH is assumed, and Q = q if no assumption is being made.
Accordingly we warn the reader that the results in this section must all be read
keeping this convention in mind.

By (2.1), to understand M(χ) we must first gain an understanding of∑
n≤q χ(n)e(nα)/n where α ∈ [0, 1]. If we assume GRH, then Proposition 2.3

shows that we may restrict ourselves to
∑

n≤q,n∈S((log q)12) χ(n)e(nα)/n. Thus,
with our convention, we seek to understand

(6.1)
∑
n≤q

n∈S(Q12)

χ(n)
n

e(nα),

since in the unconditional case the criterion n ∈ S(Q12) is vacuous.
We now define s = (log Q)

1
3 and S = exp((log Q)

5
6 ). We say that α lies on a

minor arc if there is a rational approximation |α − b/r| ≤ 1/(rS) with (b, r) = 1
and s < r ≤ S. Otherwise we say that α lies on a major arc; in this case there is a
rational approximation |α − b/r| ≤ 1/(rS) with (b, r) = 1 and r ≤ s.

Lemma 6.1. With the above conventions, if α lies on a minor arc, then
∑
n≤q

n∈S(Q12)

χ(n)
n

e(nα) � (log Q)
5
6+o(1).

Proof. Suppose |α − b/r| ≤ 1/(rS) where (b, r) = 1 and s < r ≤ S.
First we consider the unconditional case. By Lemma 4.2 with R = r we see that

∑
n≤q

χ(n)e(nα)
n

=
∑
n≤r2

χ(n)e(nα)
n

+
∑

r2≤n≤q

χ(n)e(nα)
n

� (log q)
5
6+o(1),

which proves the lemma in this case.
Now we consider the case when we assume GRH. By Lemma 4.2 with R = r we

see that
∑

r2≤n≤(log q)log s

n∈S((log q)12)

χ(n)
n

e(nα) � log log s + log log log q +
(log s)5/2

√
s

log log q.

Furthermore,∣∣∣ ∑
n>(log q)log s

n∈S((log q)12)

χ(n)
n

e(nα)
∣∣∣ ≤ 1

s

∑
n∈S((log q)12)

1
n1−1/ log log q

� 1
s

log log q,

and, trivially, ∑
n≤r2

n∈S((log q)12)

χ(n)
n

e(nα) � log r ≤ log S.

Combining these estimates we get the lemma in this situation. �
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We now consider (6.1) when α lies on a major arc. Thus we suppose that
|α − b/r| ≤ 1/(rS) where (b, r) = 1 and r ≤ s, and no such approximation exists
with s ≤ r ≤ S. Define N = Nq,α,b/r = min(q, 1/|rα − b|).

Lemma 6.2. With the above conventions, we have

∑
n≤q

n∈S(Q12)

χ(n)
n

e(nα) =
∑
n≤N

n∈S(Q12)

χ(n)
n

e(nb/r) + O(log log Q).

Proof. If N = q, then the lemma follows easily from |e(nα)−e(nb/r)| � n|α−b/r| ≤
n/N . Now suppose that S ≤ N = 1/|rα − b| < q. We find an approximation
|α − b1/r1| ≤ 1/(r1N) where (b1, r1) = 1 and r1 ≤ N . Note that 1/(rr1) ≤
|b/r − b1/r1| ≤ 1/(rN) + 1/(r1N) and so r1 ≥ N − r ≥ N − s ≥ N/2. We now set
R = (log Q)5 and divide the interval (N, q] into three intervals: I1 which contains
the integers in (N, q] that are in (N, Rr1], I2 which contains the integers in (N, q]
that are in (Rr1, exp((log Q)2)], and I3 which contains the integers in (N, q] that
are larger than exp((log Q)2).

Since N/2 ≤ r1 ≤ N it follows that

∑
n∈I1

n∈S(Q12)

χ(n)
n

e(nα) � log R � log log Q.

An application of Lemma 4.2 shows that

∑
n∈I2

n∈S(Q12)

χ(n)
n

e(nα) � log log Q.

Finally, since each element of I3 is at least exp((log Q)2) we see that

∑
n∈I3

n∈S(Q12)

χ(n)
n

e(nα) � 1
Q

∑
n∈S(Q12)

1
n1−1/ log Q

� 1.

Combining these estimates we obtain that

∑
n≤q

n∈S(Q12)

χ(n)
n

e(nα) =
∑
n≤N

n∈S(Q12)

χ(n)
n

e(nα) + O(log log Q),

and since |e(nα) − e(nb/r)| � n|α − b/r| ≤ n/N , the lemma follows. �

6.1. Lower bounds for M(χ): Proof of Theorems 2.2 and 2.5. We consider
the quantity (6.1) for αb,N = b/
 + 1/N where b runs over reduced residue classes
(mod 
) and 1 ≤ N ≤ q. We multiply this by ψ(b) and sum over all reduced residue
classes b (mod 
). Thus we arrive at

∑
b (mod �)

ψ(b)
∑
n≤q

n∈S(Q12)

χ(n)
n

e(nαb,N ) = τ (ψ)
∑
n≤q

n∈S(Q12)

(χψ)(n)
n

e(n/N).
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Exactly as in the proof of Lemma 6.2, set R = (log Q)5 and divide the integers in
(N, q] into intervals I1, I2 and I3. Then we deduce that

∑
b (mod �)

ψ(b)
∑
n≤q

n∈S(Q12)

χ(n)
n

e(nαb,N ) = τ (ψ)
∑
n≤N

n∈S(Q12)

(χψ)(n)
n

+ O(
√


 log log Q).

Now consider
∑�

b=1 ψ(b)
∑

n≤qαb,N
χ(n) which in magnitude is plainly ≤ φ(
)M(χ).

We see by (2.1), Proposition 2.3 (in the conditional case), and the above remarks
that if 
 > 1,

�∑
b=1

ψ(b)
∑

n≤qαb,N

χ(n) = −τ (χ)τ (ψ)
2πi

(ψ(−1) − χ(−1))
∑
n≤N

n∈S(Q12)

(χψ)(n)
n

+ O(
√

q
 log log Q),(6.2a)

while if 
 = 1 we have (because of the extra L(1, χ) term)

(6.2b)
∑

n≤qα1,N

χ(n) =
τ (χ)
2πi

(1 − χ(−1))
∑

N≤n≤q
n∈S(Q12)

χ(n)
n

+ O(
√

q log log Q).

If we assume GRH, then taking N = q in the case 
 > 1 and N = 1 when 
 = 1
we obtain easily that the sum over n in (6.2a,b) is � log Q exp(−D(χ, ψ; Q)2) and
Theorem 2.5 follows. In the unconditional case we show in the next lemma that a
similar lower bound holds for some 1 ≤ N ≤ q, which proves Theorem 2.2.

Lemma 6.3. Let η (mod r) be a primitive character. Then there exists 1 ≤ N ≤ r
such that ∣∣∣ ∑

n≤N

η(n)
n

∣∣∣ + 1 � log r exp(−D(η, 1; r)2).

There also exists 1 ≤ N ≤ r with∣∣∣ ∑
N≤n≤r

η(n)
n

∣∣∣ + 1 � log r exp(−D(η, 1; r)2).

Proof. Set δ = 1/ log r and observe that

1
e

∑
n≤r

η(n)
n

+
∫ r

1

δ

t1+δ

∑
n≤t

η(n)
n

dt =
∑
n≤r

η(n)
n1+δ

.

It follows that

max
N≤r

∣∣∣ ∑
n≤N

η(n)
n

∣∣∣ ≥ ∣∣∣ ∑
n≤r

η(n)
n1+δ

∣∣∣.
We see easily that L(1+δ, η) =

∑
n≤r η(n)/n1+δ+O(1), and from the Euler product

that L(1+ δ, η) � log r exp(−D(η, 1; r)2). The first part of the lemma follows. The
second part is similar starting from

∑
n≤r

η(n)
n

−
∫ r

1

δ

t1+δ

∑
t≤n≤r

η(n)
n

dt =
∑
n≤r

η(n)
n1+δ

.

�
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6.2. Upper bounds for M(χ): Proof of Theorems 2.1 and 2.4. We continue
from Lemma 6.2 our analysis of (6.1) in the case when α lies on a major arc. Of
all characters with conductor below s we let ξ (mod m) denote that character for
which D(χ, ψ; Q) is a minimum.

Lemma 6.4. We keep the conventions of this section. Suppose (b, r) = 1 with
r ≤ s. Then ∑

n≤N
n∈S(Q12)

χ(n)
n

e(nb/r) = O((log Q)
6
7 ),

unless m|r in which case it equals

ξ(b)τ (ξ)
φ(r)

∏
pα‖r/m

α≥1

(χ(pα) − ξ(p)χ(pα−1))
∑
n≤N

n∈S(Q2)

(χξ)(n)
n

+ O((log Q)
6
7 ).

Proof. Note that

(6.3)
∑
n≤N

n∈S(Q12)

χ(n)
n

e(nb/r) =
∑
d|r

χ(d)
d

∑
n≤N/d

n∈S(Q12)
(n,r/d)=1

χ(n)
n

e
( nb

r/d

)
.

Since (nb, r/d) = 1 we see that

e
( nb

r/d

)
=

1
φ(r/d)

∑
a (mod r/d)

e
( a

r/d

) ∑
ψ (mod r/d)

ψ(a)ψ(nb)

ψ(a)ψ(nb)

=
1

φ(r/d)

∑
ψ (mod r/d)

ψ(nb)τ (ψ).

Therefore

(6.4)
∑

n≤N/d

n∈S(Q12)
(n,r/d)=1

χ(n)
n

e
( nb

r/d

)
=

1
φ(r/d)

∑
ψ (mod r/d)

τ (ψ)ψ(b)
∑

n≤N/d

n∈S(Q12)

(χψ)(n)
n

.

By Lemma 4.3 we see that∣∣∣ ∑
n≤N/d

n∈S(Q12)

(χψ)(n)
n

∣∣∣ � (log Q) exp
(
− 1

2
D(χ, ψ; Q)2

)
.

Using Lemma 3.4 we see that if ψ is not induced by ξ, then

D(χ, ψ; Q)2 ≥ (1 − 1/
√

2 + o(1)) log log Q,

and further that there are at most 9 characters ψ (mod r/d) for which D(χ, ψ; Q)2 ≤
2
3 log log Q. Since |τ (ψ)| ≤

√
r/d we deduce that the contribution of all characters

not induced by ξ to (6.4) is

�
√

r/d

φ(r/d)
(log Q)

1
2+ 1

2
√

2
+o(1) +

√
r/d(log Q)

2
3 .
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The contribution of these terms to (6.3) is � (log Q)
1
2+ 1

2
√

2
+o(1)+

√
r(log Q)

2
3+o(1) �

(log Q)
6
7 .

We must now handle the contribution to (6.3) from characters ψ induced by ξ
(mod m). If m � r, then there are no such characters ψ, and the lemma follows in
this case. If m|r, then we have to account for the contribution of the characters
ψ (mod r/d) induced by ξ (thus d must be a divisor of r/m). By Lemma 4.1 and
(6.4) we see that the contribution of these induced characters to (6.3) is

(6.5)
∑

d|r/m

χ(d)
d

1
φ(r/d)

ξ(b)τ (ξ)µ
( r

dm

)
ξ
( r

dm

) ∑
n≤N/d

(n,r/d)=1

n∈S(Q12)

(χξ)(n)
n

.

By Lemma 4.4,

∑
n≤N/d

(n,r/d)=1

n∈S(Q12)

(χξ)(n)
n

=
∑
n≤N

(n,r/d)=1

n∈S(Q12)

(χξ)(n)
n

+ O(log d)

=
∏

p|r/d

(
1 − (χξ)(p)

p

) ∑
n≤N

n∈S(Q12)

(χξ)(n)
n

+ O(log log Q).

Therefore (6.5) equals, up to an error O(log log Q),

ξ(b)τ (ξ)
∑

d|r/m

χ(d)
d

1
φ(r/d)

µ
( r

md

)
ξ
( r

md

) ∏
p|r/(md)

(
1 − (χξ)(p)

p

) ∑
n≤N

n∈S(Q12)

(χξ)(n)
n

,

which by a straightforward calculation is

(6.6)
ξ(b)τ (ξ)

φ(r)

∏
pα‖r/m

α≥1

(χ(pα) − ξ(p)χ(pα−1))
∑
n≤N

n∈S(Q12)

(χξ)(n)
n

.

To complete the proof of the lemma, it remains to show that the terms in the
sum in (6.6) may be restricted to n ∈ S(Q2) with an acceptable error, in the case
where GRH is assumed. We must therefore estimate the contribution of terms n
which lie in S(Q12) but not in S(Q2). We may write such n uniquely as p
 where
p, the largest prime factor of n, lies between max(P (
)−1, Q2) and min(Q12, N/
),
and 
 ≤ N/Q2 is in S(Q12). Thus the contribution of these terms is

(6.7)
∑

�≤N/Q2

�∈S(Q12)

(χξ)(
)



∑
max(P (�)−1,Q2)≤p

p≤min(Q12,N/�)

(χξ)(p)
p

.

Using (5.1) and partial summation to handle the primes larger than Q2(log Q)2,
and estimating the smaller primes trivially, we obtain that the sum over primes in
(6.7) above is � (log log Q)/ log Q. Thus the quantity (6.7) is � log log Q, and the
lemma follows. �
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Combining Lemmas 6.1, 6.2 and 6.4 we arrive at the following:

Lemma 6.5. Keep the conventions of this section. Then
∑
n≤q

n∈S(Q12)

χ(n)
n

(e(−nα) − χ(−1)e(nα)) � (log Q)
6
7

unless α lies on a major arc |α − b/r| ≤ 1/(rS) with r ≤ s, (b, r) = 1 and m|r, in
which case it equals, up to an error O((log Q)

6
7 ),

(ξ(−1) − χ(−1))ξ(b)τ (ξ)
φ(r)

∏
pa‖r/m

a≥1

(χ(pa) − ξ(p)χ(pa−1))
∑
n≤N

n∈S(Q2)

(χξ)(n)
n

,

where N = min(q, 1/|rα − b|).

Proof of Theorems 2.1 and 2.4. From Lemma 6.5 we see easily that
∑
n≤q

n∈S(Q12)

χ(n)
n

(e(−nα) − χ(−1)e(nα)) � (log Q)
6
7

+
(1 − χ(−1)ξ(−1))

√
m

φ(m)
max
N≤q

∣∣∣ ∑
n≤N

n∈S(Q2)

(χξ)(n)
n

∣∣∣.

Using Lemma 4.3 this is

(6.8) � (log Q)
6
7 +

(1 − χ(−1)ξ(−1))
√

m

φ(m)
(log Q) exp

(
− 1

2
D(χ, ξ; Q)2

)
.

We also note that (using L(1, χ) =
∑

n≤q χ(n)/n + O(1) and Lemma 4.3 in the
unconditional case, and Littlewood’s (1.6) in the conditional case)

(6.9) L(1, χ) � (log Q) exp
(
− 1

2
D(χ, 1; Q)2

)
.

Using (6.8) and (6.9) in (2.1) (and using Proposition 2.3 in the conditional case)
we immediately obtain Theorems 2.1 and 2.4 in the case when m = 1 and ξ is the
trivial character ξ(n) = 1 for all n. In the case when m > 1 it follows from Lemma
3.4 that D(χ, 1; Q)2 ≥ (1−1/

√
2+ o(1)) log log Q. Using this in (6.9) we obtain the

bounds claimed in Theorems 2.1 and 2.4. �

Our development of results in section 2 is designed to dovetail with the easily
understood triangle inequality, and its consequences, as described in section 3.
Our analysis above shows that one can obtain a more precise (though less readily
applicable) evaluation of M(χ) in terms of

M∗(ψ) := max
N

∣∣∣ ∑
n≤N

n∈S(Q2)

ψ(n)
n

∣∣∣.

We describe such a result below, which improves, and was inspired by, Corollary 4
of [10].
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Corollary 6.6. Keep the conventions of this section. Then

M(χ) = εχ

√
q

π

√
m

φ(m)
M∗(χξ) max{1, |1 − (χξ)(2)|} + O(

√
q(log Q)

6
7 ),

where

εχ =

⎧⎪⎨
⎪⎩

0 if χ(−1)ξ(−1) = 1,

1 if χ(−1)ξ(−1) = −1, and m > 1,

∈ [1/2, 2] if m = 1 and χ(−1) = −1.

Proof. If m > 1, then L(1, χ) = O((log Q)
6
7 ) by Lemma 3.4, so the result follows

from (2.1) and Lemma 6.5. If m = 1, then (2.1) and Lemma 6.5 yield the result
when χ(−1) = 1, and when χ(−1) = −1 we obtain

M(χ) = max
r

max
N≤q

√
q

π

∣∣∣L(1, χ) − 1
φ(r)

∏
pa‖r
a≥1

(χ(pa) − χ(pa−1))
∑
n≤N

n∈S(Q2)

χ(n)
n

∣∣∣

+ O(
√

q(log Q)
6
7 ).

From this we easily obtain the upper bound

M(χ) ≤
√

q

π

(
|L(1, χ)| + M∗(χ) max{1, |1 − χ(2)|}

)
+ O(

√
q(log Q)

6
7 ),

and the upper bound on εχ follows as |L(1, χ)| ≤ (1 + o(1))M∗(χ).
Note that the case N = 0 implies that M(χ)

/√
q

π ≥ |L(1, χ)| + O((log Q)
6
7 ).

Furthermore, the choice of N which yields M∗(χ) together with r = 1 or 2 (the
latter if |1 − χ(2)| > 1) implies that M(χ)

/√
q

π ≥ M∗(χ) max{1, |1 − χ(2)|} −
|L(1, χ)| + O((log Q)

6
7 ). Taking the average of these two lower bounds yields the

lower bound on εχ. �

7. Proof of Theorem 6

To prove Theorem 6, we assume GRH and continue the analysis of the previous
section (note that Q = log q). We distinguish two cases: when the nearest character
ξ (mod m) is the trivial character (m = 1 and ξ(n) = 1 for all n), and when m > 1.

We start with the easier second case. By Lemma 3.4 we have that D(χ, 1; log q)2

≥ (1−1/
√

2+o(1)) log log log q and therefore, by (6.9), L(1, χ) = o(log log q). From
this, (2.1), Proposition 2.3, and Lemma 6.5 we obtain that M(χ) + o(

√
q log log q)

is

≤
√

q|τ (ξ)|
π

max
m|r,N≤q

∣∣∣ 1
φ(r)

∏
pa‖r/m

a≥1

(χ(pa) − ξ(p)χ(pa−1))
∑
n≤N

n∈S(log2 q)

(χξ)(n)
n

∣∣∣.

By Lemma 4.4 we see that, up to o(
√

q log log q), the above is

≤
√

qm

π
max

m|r,N≤q

∣∣∣ 1
φ(r)

∏
pa‖r/m

a≥1

χ(pa) − ξ(p)χ(pa−1)
1 − (χξ)(p)/p

∑
v≤N

v∈S(log2 q)
(v,r)=1

(χξ)(v)
v

∣∣∣.
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The product above is bounded in magnitude by
∏

p|r/m 2p/(p + 1), and the sum
over v above has size ≤

∏
p≤log2 q,p�r(1− 1/p)−1 = (2eγ + o(1))(φ(r)/r) log log q. It

follows readily that when m > 1,

M(χ) ≤
( 2eγ

π
√

m
+ o(1)

)√
q log log q.

Since there is no primitive character (mod 2) we have that m ≥ 3 and so the bounds
of Theorem 6 follow.

We now consider the more involved case when m = 1 and ξ is the trivial char-
acter. We consider

∑
α1q≤n≤α2q χ(n) where 0 ≤ α1 < α2 ≤ 1 and by (2.1) and

Proposition 2.3 this is
(7.1)

−τ (χ)
2πi

∑
n≤q

n∈S((log q)12)

χ(n)
n

(e(−nα1)−χ(−1)e(nα1)−e(−nα2)+χ(−1)e(nα2))+O(
√

q).

There arise three cases: both α1 and α2 lie on minor arcs, exactly one of α1 and
α2 lies on a major arc, and both α1 and α2 lie on major arcs. In the first case
we obtain from Lemma 6.5 that the above is � √

q(log log q)
6
7+o(1). We examine

the third case in detail, and omit the second case which is similar and simpler.
Suppose (for j = 1, 2) that |αj − bj/rj | ≤ 1/(rjS) where rj ≤ s, and (bj , rj) = 1.
Set Nj = min(q, 1/|rjαj − bj |). Using Lemma 6.5 and Lemma 4.4 we see that (7.1)
equals, up to an error O(

√
q(log log q)

6
7+o(1)),

(7.2) −(1 − χ(−1))
τ (χ)
2πi

(
λ1

∑
v≤N1

v∈S((log q)2)
(v,r1r2)=1

χ(v)
v

− λ2

∑
v≤N2

v∈S((log q)2)
(v,r1r2)=1

χ(v)
v

)
,

where

λj =
1

φ(rj)

∏
pa‖rj

a≥1

(χ(pa) − χ(pa−1))
∏

p|r1r2

(
1 − χ(p)

p

)−1

.

It is easy to see that (7.2) is bounded in magnitude by
√

q

π
max(|λ1|, |λ2|, |λ1 − λ2|)

∑
v∈S((log q)2)
(v,r1r2)=1

1
v

=
√

q

π
max(|λ1|, |λ2|, |λ1 − λ2|)

∏
p|r1r2

(
1 − 1

p

)
(2eγ + o(1)) log log q.

Thus Theorem 6 would follow if

(7.3) max(|λ1|, |λ2|, |λ1 − λ2|)φ(r1r2)/(r1r2) ≤ 1.

A simple optimization gives that

|λj |
φ(r1r2)

r1r2
≤ 1

rj

∏
pa‖rj

a≥1

∣∣∣χ(pa) − χ(pa − 1)
1 − χ(p)/p

∣∣∣ ≤ 1
rj

∏
p|rj

2p

p + 1
(≤ 1).
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This estimate immediately gives (7.3) in all but the following two cases: one of r1

or r2 equals 1, or one of r1 or r2 equals 2 and the other equals 3. In the second
case we see that

|λ1 − λ2|
φ(6)

6
=

∣∣∣ 2χ(2) − χ(3) − 1
(2 − χ(2))(3 − χ(3))

∣∣∣ ≤ 2
3
,

since this is maximized at χ(2) = −1 and χ(3) = 1 and so (7.3) holds. Finally we
have the case when one of r1 or r2 is 1 and the other equals r say. Here we must
show that

(7.4)
∣∣∣1 − 1

φ(r)

∏
pa‖r
a≥1

(χ(pa) − χ(pa−1))
∣∣∣∏

p|r

∣∣∣ p − 1
p − χ(p)

∣∣∣ ≤ 1.

If r = pa is a prime power, then the LHS of (7.4) equals

1
pa−1

∣∣∣(1 − 1
p

)pa − χ(p)a

p − χ(p)
+

χ(p)a−1

p

∣∣∣ ≤ 1
pa−1

((
1 − 1

p

)
(pa−1 + . . . + 1) +

1
p

)
= 1,

and so (7.4) holds. Now suppose that r has at least two distinct prime factors. For
any nonnegative a1, . . . , ak with k ≥ 2, we have that

(1 + a1 . . . ak)2 ≤ (1 + a2
1)(1 + (a2 . . . ak)2) ≤

k∏
i=1

(1 + a2
i ).

Therefore∣∣∣1 − 1
φ(r)

∏
pa‖r
a≥1

(χ(pa) − χ(pa−1))
∣∣∣2 ≤

(
1 +

∏
pa‖r
a≥1

|χ(pa) − χ(pa−1)|
pa−1(p − 1)

)2

≤
∏
p|r

(
1 +

∣∣∣1 − χ(p)
p − 1

∣∣∣2)

≤
∏
p|r

∣∣∣1 +
1 − χ(p)

p − 1

∣∣∣2

as desired since z = (1 − χ(p))/(p− 1) is a complex number with nonnegative real
part so that 1 + |z|2 ≤ |1 + z|2.

8. Paley’s bound in all directions: Proof of Theorem 3

Bateman and Chowla [1] showed that

1
q

∑
N≤q

∣∣∣ ∑
n≤N

χ(n) − τ (χ)
iπ

(1 − χ(−1))
2

L(1, χ)
∣∣∣2 =

q

12

∏
p|q

(
1 − 1

p2

)
.

If χ(−1) = −1 we deduce that

(8.1)
∑
n≤N

χ(n) =
τ (χ)
iπ

(L(1, χ) + O(log log log q))

for “almost all” N ≤ q. We now show that for most characters χ, L(1, χ) may
be approximated by a short Euler product. Throughout this section we let y :=
log q/ log log q.
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Proposition 8.1. For any large prime q,

L(1, χ) =
∏
p≤y

(
1 − χ(p)

p

)−1(
1 + O

( log log log q

log log q

))
,

for all but at most q1−1/(4 log log q) characters χ (mod q).

Proof. An immediate consequence of Proposition 2.2 of [8] is that

L(1, χ) =
∏

p≤(log q)3

(
1 − χ(p)

p

)−1 (
1 + O

( 1
log log q

))
,

for all but at most q3/4 characters χ (mod q). Consider

1
φ(q)

∑
χ (mod q)

∣∣∣ ∑
log q<p≤(log q)3

χ(p)
p

∣∣∣2k

=
∑

m≡n (mod q)

ak(m)ak(n)
mn

,

where ak(n) is the number of ways of writing n = p1 . . . pk where each pi is a prime
in (log q, (log q)3]. We choose k = [log q/(4 log log q)] so that ak(n) = 0 for n > q
and so the congruence m ≡ n (mod q) implies that m = n. Since ak(n) ≤ k! it
follows that∑

n

ak(n)2

n2
≤ k!

∑
n

ak(n)
n2

= k!
( ∑

log q<p≤(log q)3

1
p2

)k

≤
( 1

log log q

)2k

.

We deduce that there are fewer than φ(q)e−2k characters χ with

|
∑

log q<p≤(log q)3

χ(p)/p| ≥ e/ log log q.

Since
∑

y<p≤log q
χ(p)

p � log log log q/ log log q trivially, the proposition follows. �

Proposition 8.2. Given a prime q and an angle θ ∈ (−π, π], there are at least
q1−C0/(log log q)2 characters χ (mod q) with χ(−1) = −1 such that

τ (χ)
i
√

q

∏
p≤y

(
1 − χ(p)

p

)−1

= eiθ(eγ log log q) + O((log log q)1/2).

Proof of Theorem 3. Theorem 3 follows upon combining (8.1) with Propositions
8.1 and 8.2. �

To prove Proposition 8.2 we require the following consequence of P. Deligne’s
celebrated bound on hyper-Kloosterman sums.

Lemma 8.3. We have
2

φ(q)

∣∣∣ ∑
χ (mod q)
χ(−1)=−1

χ(a)τ (χ)n
∣∣∣ ≤ 2nq(n−1)/2.

Proof. Using the definition of τ (χ) and the orthogonality relation for characters we
see that

2
φ(q)

∑
χ (mod q)
χ(−1)=−1

χ(a)τ (χ)n = Kln(a, q) − Kln(−a, q),
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where

Kln(b, q) =
∑

x1,...,xn (mod q)
x1···xn≡b (mod q)

e
(x1 + . . . + xn

q

)
.

In (7.1.3) of [5] Deligne gives the bound (for (b, q) = 1)

|Kln(b, q)| ≤ nq(n−1)/2,

from which the lemma follows. �

Proof of Proposition 8.2. Set R :=
∏

p≤y(1−1/p)−1 = eγ log log q+O(log log log q)
and consider for a natural number k,

(8.2)
2

φ(q)

∑
χ (mod q)
χ(−1)=−1

∣∣∣τ (χ)
i
√

q

∏
p≤y

(
1 − χ(p)

p

)−1

+ Reiθ
∣∣∣2k

.

Expanding using the binomial theorem this equals
∑

0≤j,�≤k

(
k

j

)(
k




)
R2k−j−�eiθ(�−j)

∑
m,n∈S(y)

dj(m)
m

d�(n)
n

× 2
φ(q)

∑
χ (mod q)
χ(−1)=−1

χ(m)χ(n)
(τ (χ)

i
√

q

)j(τ (χ)
i
√

q

)�

.(8.3)

Using Lemma 8.3 we see that the terms j �= 
 above contribute an amount
bounded in magnitude by

(8.4)
2k
√

q

∑
0≤j,�≤k

(
k

j

)(
k




)
R2k−j−�RjR� =

2k
√

q
22kR2k.

Now we focus on the terms j = 
 in (8.3) which give, by the orthogonality relation
for characters,

(8.5)
∑

0≤j≤k

(
k

j

)2

R2k−2j
∑

m≡±n (mod q)
m,n∈S(y)

(±1)
dj(m)

m

dj(n)
n

.

If m ≡ ±n (mod q) but m �= n, then either m or n exceeds q/2. Thus such terms
contribute to the sum in (8.5) an amount

≤ 4
∑

m∈S(y)

dj(m)
m

∑
n≥q/2
n∈S(y)

dj(n)
n

≤ 4Rj
(2

q

)1/ log log q ∑
n∈S(y)

dj(n)
n1−1/ log log q

� CjR2jq−1/ log log q,

for some absolute constant C > 1. From this and (8.4) we conclude that our
quantity (8.2) is

(8.6)
∑

0≤j≤k

(
k

j

)2

R2k−2j
∑

n∈S(y)

dj(n)2

n2
+ O

(
(4C)kR2kq−1/ log log q

)
.
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Note that
∑

n∈S(y)

dj(n)2

n2
=

∏
p≤y

∞∑
�=0

dj(p�)2

p2�
=

∏
p≤y

∫ 1/2

−1/2

∣∣∣1 − e(θ)
p

∣∣∣−2j

dθ.

Observe that
∫ 1/2

−1/2
|1 − e(θ)

p |−2jdθ ≥ 1 always, and that if p ≤ j, then it is

≥
∫ p/(2j)

−p/(2j)

∣∣∣1 − e(θ)
p

∣∣∣−2j

dθ ≥ cp

j

(
1 − 1

p

)−2j

,

for a suitable positive constant c. It follows that if 2 ≤ j ≤ y, then

(8.7)
∑

n∈S(y)

dj(n)2

n2
≥

∏
p≤j

(
1 − 1

p

)−2j

exp
(
− Cj

log j

)
,

for some positive constant C.
We now take k = [c′y] for a suitably small constant c′ > 0, and consider only

the contribution of j = [k/2] in (8.6). Using (8.7) we deduce easily that the main
term in (8.6) exceeds 22kRk

∏
p≤k(1 − 1/p)−k exp(−Ck/ log k) and that the error

term there is substantially smaller. We conclude that

2
φ(q)

∑
χ (mod q)
χ(−1)=−1

∣∣∣τ (χ)
i
√

q

∏
p≤y

(
1 − χ(p)

p

)−1

+ Reiθ
∣∣∣2k

≥ (2R)2k exp
(
− Ck

log k

)
,

for some positive absolute constant C. From this estimate we deduce that (for some
absolute constant C0) there are at least q1−C0/(log log q)2 characters χ (mod q) with
χ(−1) = −1 such that

∣∣∣τ (χ)
i
√

q

∏
p≤y

(
1 − χ(p)

p

)−1

+ Reiθ
∣∣∣ ≥ 2R

(
1 − C ′

log log q

)
.

Now, if |z| ≤ 1 and |1 + z| ≥ 2 − ε, then we may check easily that z = 1 + O(
√

ε).
The proposition follows. �

9. The constant in the Pólya-Vinogradov theorem:

Proof of Theorem 7

Let ξ (mod m) denote the primitive character with conductor below (log q)
1
3

such that D(χ, ξ; q) is a minimum. We distinguish two cases depending on whether
m > 1 or m = 1.

We start with the easier first case. By Lemma 3.4 we know that D(χ, 1; q)2 ≥
(1 − 1/

√
2 + o(1)) log log q, and so by (6.9) we have that L(1, χ) = o(log q). Thus

by (2.1) and Lemma 6.5 we deduce that M(χ) + o(
√

q log q) is

(9.1) ≤
√

qm

π
max

m|r,N≤q

∣∣∣ 1
φ(r)

∏
pa‖r/m

a≥1

(χ(pa) − ξ(p)χ(pa−1))
∑
n≤N

(χξ)(n)
n

∣∣∣.

Observe that χξ is a nontrivial character to the modulus [q, m] (this denotes the
l.c.m. of q and m). Set c0 = 1/4 if [q, m] is cubefree and c0 = 1/3 otherwise, and
note that c0 = c unless m is divisible by a prime cube, and in any case c0 ≤ 4

3c.
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Burgess’s results on character sums (see [2]) show that
∑

n≤x(χξ)(n) = o(x) if
x > qc0+ε, from which it follows by partial summation that

∑
n≤N

(χξ)(n)
n

=
∑

n≤min(qc0 ,N)

(χξ)(n)
n

+ o(log q).

Using this and Lemma 4.4 in (9.1) we obtain that M(χ) + o(
√

q log q) is

(9.2) ≤
√

qm

π
max

m|r,N≤qc0

∣∣∣ 1
φ(r)

∏
pa‖r/m

a≥1

χ(pa) − ξ(p)χ(pa−1)
1 − (χξ)(p)/p

∑
n≤N

(n,r)=1

(χξ)(n)
n

∣∣∣.

The product above is bounded in magnitude by
∏

p|r/m 2p/(p + 1), while the
sum is bounded by ∼ (φ(r)/r)c0 log q. Thus (9.2) is bounded in magnitude by

√
q

π

√
m

r

∏
p|r/m

2p

p + 1
(c0 log q).

If c0 �= c, then m must be at least 8 and the above bound beats the estimates
claimed in the theorem. If 1 < m < 8, then c0 = c and the bound above suffices in
all cases except for m = r = 3 (and ξ = ( ·

3 )). In this final case we have that the
quantity in (9.2) is bounded in magnitude by

√
q

π

√
3

2
max
N≤qc

∣∣∣ ∑
n≤N

(χξ)(n)
n

∣∣∣.
Applying Theorem 1 of [9] we may see that

|L(1, χξ)| =
∣∣∣ ∑

n≤qc

(χξ)(n)
n

∣∣∣ + o(log q) ≤
(34

35
+ o(1)

)2
3
(c log q),

where the 2
3 accounts for the fact that (χξ)(3) = 0. It follows that for N ≤ qc,

∣∣∣ ∑
n≤N

(χξ)(n)
n

∣∣∣ ≤
(

2
3

+ o(1)
)

min
(

log N,
34
35

(c log q) + log
qc

N

)

≤ (1 + o(1))
69
70

· 2
3
(c log q),

which completes the proof of the theorem when m > 1.
Now consider the case m = 1. Here (2.1), Burgess’s estimate, and Lemma 6.5

give that M(χ) + o(
√

q log q) is

≤
√

q

π
max

r,N≤qc

∣∣∣ ∑
n≤qc

χ(n)
n

− 1
φ(r)

∏
pa‖r

(χ(pa) − χ(pa−1))
∑
n≤N

χ(n)
n

∣∣∣.
The estimate claimed in the theorem now follows from Lemma 4.4 and (7.4).
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