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Abstract

For a fixed non-zero integer a and increasing function f, we investigate the
lower density of the set of integers ¢ for which the least prime in the arithmetic
progression a(mod q) is less than ¢f(gq). In particular we conjecture that this
lower density is 1 for any f with log 2 = o(f(z)) and prove this, unconditionally,
for f(z) = x/g(x) for any g with log g(x) = o(log x). Under the assumption of
a strong form of the prime k-tuplets conjecture we prove our conjecture and get
strong results on the distribution of values of w(\glog ¢, q, a) for any fixed A, as ¢

varies.

1. Introduction

For given integers a and ¢, ¢ > 0, a # 0, (a,q) = 1, we define p(q, a) to be the least
prime p that is greater than a and congruent to a(mod q). We let p(q) be the largest value
of p(q, a) for a in the range

1<a<qg—1, (aaQ):l (1)

In 1944 Linnik [13] gave the remarkable result that there exists an absolute constant
¢ for which p(q) < ¢, for all positive integers q. Numerous authors have given better
and better explicit values for ¢, and most recently Chen [5] has shown that we may take
¢ to be 17. In 1930 Titchmarsh [20] showed, under the assumption of the Extended
Riemann hypothesis, that p(q) < ¢*(log q)*. Recently Heath-Brown [11] conjectured that
p(q) < q(log q)%, and Wagstaff [22] gave heuristic arguments which support this; more
precisely, McCurley noted that an adaptation of his heuristic arguments in [14] suggest

that mq%m% — 2.



Quite a number of authors have been concerned with bounding p(q) for almost all
values of ¢ (as we shall explain); but it seems that little work has gone into bounding
p(g, a) for almost all values of g, for some fixed value of a. We will do this here.

In 1977 Kumar Murty [15] used the Bombieri-Vinogradov Theorem [3], [21] to show
that, for all ¢ > 0, p(q) < ¢**¢ for almost all integers ¢. Under the assumption of the
Elliott-Halberstam conjecture [6] this result may be improved to p(q) < ¢'*¢ for almost
all ¢. In a series of recent papers, Bombieri, Friedlander and Iwaniec have extended the

Bombieri-Vinogradov Theorem ‘locally’ and this may be used to provide a sharper result
for p(q,a).
Theorem 1 Suppose that a is a given non-zero integer and g(x) is any positive valued
function of x, with log g(x) = o(log x) and x*/g(x) increasing for sufficiently large .
Then

p(a,a) < 4 / g(q)

for almost all positive integers q which are prime to a.
Proof:- Bombieri, Friedlander and Iwaniec [4] have shown

Lemma 1 Let a # 0 be an integer and A > 0, 2 < Q < 2%/* be reals. Let R be the set of

all integers q, prime to a, in some interval Q' < g < Q. Then

; —@ —1—2:15 -1 z oglog x — x
;|ﬂ(w,q,a) (b(q)lé{k(ﬁ 5) L™+ Ol 3(loglog ) }Z )+0 (zL~4)

where ¥ = log Q / log x, L =log x, k is an absolute constant, and the O’s depend on at

most a and A.

Choosing A = 5 in Lemma 1, we observe that for Q = (zg(z))"/?,

() T 9
\T(2;9,a) — | < (log g(x) + loglog x)
QQ;Q o)  (log z)?

(a,q)=1

where < depends only on a.
So assume that for at least Q) integers ¢ in the sum we have p(q,a) > ¢*/g(q)(>
Q?/9(Q) > z, for sufficiently large x), so that 7 (z, ¢, a) = 0. Thus

2 m(z) _ €
5 (log g(z) + loglog z)” > E 20 > 57"(55)7
Q<q<2Q, (q,a)=1
p(a.a)>q2/9(q)

(log z)



giving a contradiction for sufficiently large values of x. Summing over the intervals
[2771Q, 27Q) gives the result.

We make the following

Conjecture 1 Suppose that f(x) is any function that tends to co as x — oco. For any fized
non-zero integer a, p(q,a) < qlog qf(q) for almost all positive integers q that are prime
to a.

Evidently Conjecture 1 is considerably stronger than Theorem 1. Later in this paper
we will show that Conjecture 1 is true under the assumption of a strong form of the prime
k-tuplets conjecture (see [2], [19]).

In the other direction to these results, Pomerance [16], extending arguments of Prachar

[17] and Schinzel [18], used Jacobsthal’s function to show that for any ¢ > 0,

p(q) > (1 —¢)e” ¢(q)log qlog, qlog, q / (logs q)”

for almost all positive integers ¢. (By imitating the methods used by Maier and Pomerance
for giving lower bounds on Jacobsthal’s function (as announced at this meeting) it seems
likely that the constant €” can be improved by a small but significant amount.)

In fact Prachar and Schinzel gave the result that there exists an absolute constant
¢ > 0 such that for all non-zero integers a, there exists infinitely many positive inte-
gers ¢, that are prime to a, for which p(q,a) > cqlog q logyqlog,q / (logsq)?. It
would be nice if one could state that a positive density of integers ¢, prime to a, sat-
isfied, say, p(q,a) > bqlog g, for some constant b > 0; however, by using the method of
Prachar, Schinzel and Pomerance, it is not possible to do better than the statement that
p(q,a) > bqlog ¢ for > x/exp(c(log z)'/?) values of ¢ < z, that are prime to a, for some
constant ¢ = c(a,b) > 0. This restriction is due to the bound g(m) < (log m)? on
Jacobsthal’s function given by Iwaniec [12].

In 1950 Erdos [8] considered the question of how often p(q,a) < bglog g, as a varies
over the range (1). He showed that, for any fixed b > 0 there exists a constant U(b) > 0
such that, for all sufficiently large integers ¢, p(q, a) < bqlog ¢ for least U(b)¢(q) values of a
in the range (1). For fixed values of b and s, 0 < s < 1, we let D(b, s) be the lower density



of the set of positive integers ¢ for which p(q, a) < bglog q for at least s¢(q) values of a in
the range (1). Let s(b) be the supremum of the set of values of s for which D(b,s) = 1.
Clearly U(b) < s(b) < 1. Pomerance [16] conjectured that s(b) < 1 for all values of b,
but s(b) — 1 as b — oo. This conjecture would imply the following theorem, proved
independently by Elliott and Halberstam [7] and Wolke [23]:

Suppose that f(x) is any function that tends to oo as x — oo.

For almost all posistive integers q, for almost all a in the range (1),

p(q,a) < qlogqf(q).

We can see that Conjecture 1 is a ‘local’ analogue of this theorem. We now make an

analogous ‘local’ conjecture to that of Pomerance.

Conjecture 2 Suppose that a is a fived non-zero integer. For any b > 0, let t(a,b) be
the lower density of the set of positive integers q, (in the set of positive integers q that are
prime to a), for which p(q,a) < bqlog q. Then t(a,b) <1 for all b> 0, but t(a,b) — 1 as
b — oc.

It is evident that Conjecture 2 would imply Conjecture 1; we will concentrate for the
rest of this paper on Conjecture 2 - in giving lower bounds for ¢(a, b), and showing that,
under the assumption of a strong form of the prime k-tuplets conjecture, rather more than
Conjecture 2 is true.

For any A > 0 and non-negative integer t, define

Poisson (\,t) = e *At/t!.

Conjecture 3 Suppose that a is a fized non-zero integer. For any X\ > 0, the set of positive
integers q, for which T(Ap(q)log q,q,a) =t has density Poisson (A, t), in the set of positive
integers q that are prime to a.

Conjecture 3 would correspond rather nicely to a result of Gallagher [9] who showed,
under the assumption of a similar, strong form of the prime k-tuplets conjecture, that the
distribution of primes in an interval of length A log x is roughly Poisson with parameter \

(i.e. the set of positive integers z, for which the interval (z,x 4+ Alog ] contains precisely



t primes has density Poisson (\,?)). Using the techniques in this paper we are unable to
confirm Conjecture 3, even under the assumption of the prime k-tuplets conjecture, as our
method forces us to examine 7w(Aglog ¢, q, a) rather than 7m(Ap(q)log ¢, q, a).

On the other hand if we assume that a little bit more than Conjecture 3 holds; that
the distribution of integers with 7(A¢(q)log ¢,q,a) = t remains Poisson, independent
of the value of ¢/#(q), we see that d;(a,\), the density of positive integers ¢ for which
m(A\qlog q,q,a) =t, takes value

di(a,\) = Xlgnoo (o )/a X ; Poisson(Aq/#(q), t).
(a,0)=1
This is precisely the result that we get in Theorem 5 from assuming a strong form of

the prime k-tuplets conjecture.

2. Lower densities, via second moments.

Throughout this section we will take a to be a fixed non-zero integer. In order to
estimate t(a,b) we use a variation of the second moment method, previously used in a
paper of Ankeny and Erdos [1] who were considering the set of exponents for which the
First Case of Fermat’s Last Theorem is true. We will employ a number of well-known sieve
results (see [10], Thm.5.7) on prime constellations and also investigate what happens if a
strong conjecture on prime constellations is assumed to be true.

Suppose that integers a, r1,rs, ..., rk, with (a,r1...7rg) = 1, are given. For each prime
p we define w,.(p) to be the number of distinct solutions ¢(modp) of

Hf:l(qri + a) = 0(modp). Also let

Colri,o.osm) = [ (1=1/p) *(1 = w.(p)/p).

p prime

The prime k-tuplets conjecture, in its quantitative form (see [2]) states that, for each

k> 1,

#{q:x < q< 2z, each qr; + aprime} = Co(ry,...,7%)

pll+o(1)}

(s 7)
We will assume that this holds whenever each r; < blog z, with o dependent only on a, b

and k, for any given constant b.



This result is well known to hold for & = 1 (Dirichlet’s Theorem), and may be
stated with error term O(1/logz) (the Siegel-Walfisz Theorem). For k > 2 Selberg’s

upper bound sieve method gives, for r = the maximum of the r;’s,

#{q:x < q < 2z each gr; + a prime}
x loglog x + loglog r

S Qkk!C’a(Tl, .. ,Tk)w{l + O(

)}

log x

We will use the symbol ‘>’ to mean ‘=" under the assumption of the k-tuplets conjec-
ture and for k£ = 1, and ‘<’ otherwise. Also D; = 1 under the assumption of the k-tuplets

conjecture, and Dy, = 1 (k= 1), 2k! (k > 2), otherwise. Thus, for each k,

#{q:x < q <2z, each qr; + a prime} = DyC,(r1,.. .,rk)m{l +o(1)}.

We define B(z, g) to be the number of integers ¢, = < ¢ < 2z, for which there are
exactly g distinct positive integers rq,r2,...,7,, each less than or equal to blog z, with
qr; + a prime for each 1.

Note that

> Blx,g) = #{q: = <q<2z, p(q,a) <bglog x}

g>1
< #{q: < q <2z p(g,a)<bglog ¢}

Now, for any positive integer k,

Z(Z_)B(xvg) :#{(Q7T17T27"'7Tk): xSQ<233a 1§T1<’]“2<---<7“k§b10g$,
g=>k

and gr; + a prime for each i}
= Z {g:x<q< 2z, andgr; +a
1<ri<re<---<rp<blog z
prime for each i}

- Dk@ 3 Calris- .- i) {1 +o(1)}

1<ri<ro<---<rg<blog =

¢(a) b* pF—(p-1)F
- DkaH (1+ W) {1+0o(1)} (2)x

p fa

by Theorem 6, which we shall prove in Section 4.



Let u = b]], 1o(1+1/p(p— 1)) and v = Dol [T, 1o (1 + (2p — 1)/p(p — 1)?). Let
a = (u? + 4w)/(u + 2v)? and B = 2u?/(u + 2v)? so that, for any integer g,
og — ﬂ(g) =1-(1—-gu/(u+2v))? < 1. Then

> B(z,9)> a) gB(z,9) -8 (g)B(:v,g)

9=>1 g>1 g>2
¢(a)

> a@xu{l +o(1)} — BT

W 9@ 4 o))

T u+2v a

zv{l +o(1)}

This immediately gives the result that ¢(a,b) > u?/(u + 2v), so we may state

Theorem 2 For any given non-zero integer a, the lower density of integers q, prime to a,

for which p(q,a) < bq log q, is at least

[Ja+1/pe—1) /{7 [JA+1/p(p— 1)+ D2 [J(1+ (20— 1)/p(p — 1)*)}.

p fa p fa p fa

In particular, this tends to

2 1
1 1+ po-1) T P-1)?

2 1
Dy p fa 1+ Po-1) T pr-1)7

b

as b — oco. Of course we may take Dy = 8 unconditionally, and Do = 1 assuming the
prime k-tuplets congjecture.

Evidently the result in Theorem 2, even under the assumption of the prime k-tuplets
conjecture, is slightly weaker than that required for a proof of Conjecture 2. However we
shall look again, using the criteria (2); for each £ > 1 (instead of just for £ = 1 and 2, as
in the proof of Theorem 2).

By using the same arguments as above but taking a = 8 = 1, it is easy to show

Theorem 3 Suppose that a is a given non-zero integer and f(x) is a function that tends
to 0o as x — 00, is strictly increasing for sufficiently large values of x and that f(x) =
o(log x). Then the number of positive integers ¢ < x, prime to a, for which p(q,a) < qf(q)
18

e TT0 -+ 1plp — D))/ 1og 2){1 +0(1).

p fa



3. Densities, via the prime k-tuplets conjecture

Theorem 4 Suppose that the prime k-tuplets conjecture as stated above, is true. Let a be
a fired non-zero integer. For any real number b > 0, the set of positive integers q, prime

to a, for which p(q,a) < bqlog q, has density

d(a,b) = Z(—l)k“i 1+ w)

— 1\k
= K p(p—1)
=1- Zlirﬁ d(a,b, z),
where
a _ exp(—bn/¢(n))
d(aabaz) - C(Z) ! )
PR
(n,a)=1

and ((z) is the Riemann-zeta function.
In particular 0 < lim,_,1+ d(a,b,z) < exp(—b); so that 1 — e~ < d(a,b) < 1, and
limy,_,~ d(a,b) = 1. Thus Conjectures 1 and 2 both hold.

The main ingredients of the proof of Theorem 4, are the combinatorial identity,
B(z,0) = Zkzo(_l)k Dok (9)B(x,g), together with the uniform estimates for
D gk (Z)B(:{;,g) given by prime k-tuplets conjecture in (2); (for each k& > 1). If instead
we were to use the more general identity B(x,t) = Zkzt(—l)k*t (IZ) D gk (9)B(z,g), we

could derive the following stronger result. (N.B. As the details of the proof of Theorem 5

are essentially the same as those for Theorem 4, we shall omit them.)

Theorem 5 Suppose that the prime k-tuplets conjecture, as stated above, is true. Let a
be a fixed non-zero integer. For any real number b > 0, and non-negative integer t, the
density, di(a,b), of the set of positive integers q, prime to a, for which w(bqlog ¢; q,a) =t,

exists and equals

— b pk —(p— 1)k
di(a,b) = ) (-1) (t)gpl;[a(l + W)

o a 1 Poisson(bn/p(n),t)
zl_lglJr o(a) (2) ; n?
(n,a)=1
= Xlgnoo ﬁ X1 ; Poisson(bn/¢p(n),t).

(n,a)=1



If we let ¢, = Poisson(bn/¢(n),t) ((a,n) = 1), 0 (otherwise) then by Ikehara’s

theorem for Dirichlet series that converge to the right of 1, we see that limx . o, % Yon <x Cn

Cn

exists and equals lim,_,1+(s = 1) Y oy — = lim,_q+ ((s)71 Y0, oy — cn , which confirms
=tn ns

the last equality in the statement of Theorem 5.
Proof of Theorem 4:- Let ¢ = pra(l + %), d, = ’]’C,ck and

= > p_(=1)**1d,. Tt is easy to show that for each k > 4 and p > 2k, we have
k:+1_(p_1)k:—|-1

(1+ W) <(1 _p*3/2)*1(1 + %), and so, there exists ¢, > 0 such that
L 1 p
cr < coC(3/2)F H{l -+ —-(—)"}.
p<on PP p—l

But 1 — % + %(Yﬁ)k < (I%)k and so, by Mertens’ Theorem,
cr < COC(3/2)k{Hp§2k(1 — ]lg)*l}"C < (Alog3k)k for each k > 1, for some constant A.
Now as k! > (k/e)* we see that d, — 0 as k — oo, and that Y - (—1)**1d; converges
absolutely to some limit S.

Fix ¢ > 0 and choose n to be an integer such that |S — S,|,d, < &/4. Define
C(a) = ¥ Bla,g)/*Ma and

M) = S0 S (§) Bl - X B

k=1 g>k g1
-3 Lz;em'f“(z) B(z.9)

and as ‘Zk 0 )k“( )‘ < ) for all integers g and n > 1, we see that

4@ <Y (4) B = et row), W,

6¢()

———x, for sufficiently large values of x.
a

2
Similarly, by (2)g, for k =1,2,...,n we see that

#la)

x{S, — C(z)} = A(a:)+o(¢fla)x) < Az )+Z@

for = sufficiently large. Therefore |C(x) — S| < |S, =S|+ (S, —C(z)| <+ 7 +5=¢
for sufficiently large values of z, so that C'(x) — S as z — oo, and so d(a, b) exists and is

k —
equal to Zk21(_1)k+1% p ,I/a(]‘ + %)-



Now define, for x > 1,

Ty -1 _ki w
et ey g I e =

It is evident that d(a,b) =1 — S(a,b,1) =1 —1lim,_,;+ S(a, b, z). Now

—1 —b)k d)? k
O [T D IR D %; [U§€7>—1>

p|a k>0 ' (d(,iaz)l L p|d

P —1 (-0 u

A S ey Gy s

pia Jﬁl = X
T exp(—bn/p(n))
Z 0,0
(n, a) 1
=d(a,b, z).
Now, for any integer n, n/¢(n) =1+ 3, 1/p, and so
- exp(—b/p)
d(a,b,z) < — —lemb n)? | | =———L=
¢( ; H (p" = 1)
(n,a)=1
p -1 — exp(—b/p))
1-—
LS Tl - Ui,
pla p fa
b (1 — exp(—b/p))
e 1-— as z — 1
111 S
pfa
<e?’ = 0asb— oo

Finally, by observing that there exists a constant ¢ for which
n/on) <l+cy,, 1/p*/? for all integers n, we may use essentially the same method
(with the inequalities reversed) to show that d(a, b) > e™" ], rall— (1_””(;6!)/1’1/2))} > 0.

4. Technical stuff

In this section we prove the following result which was used in Section 2 to give the

equations (2).

Theorem 6 For given integers a and k, with a # 0, k> 0, and € > 0,

k _ _1\k
Frale) = 205 TLa+ " C P14 0naas ),



where Fy, qo(x) = >, Cq(r1,...,7%) and, henceforth ), is the sum over 1 < 1 < ry <
- <1 < x with (r;,a) =1 for each i.

In order to prove this we will start with some technical lemmas. First we note that

if pla then w,(p) =1 and if p Ja then w,(p) is precisely the number of distinct non-zero

residue classes (mod p) containing an r;. Let Ai(p) =D o<, . <pg Wr(D).

.....

Lemma 2 If p does not divide a then \x(p) = (p — 1)(p* — (p — 1)F).

Proof: - Define Ay (p) to be the number of (r1,...,7%), 0 < r; < p — 1, with entries
in exactly j distinct non-zero residue classes (modp). We note the recurrence relation

Mer1,5(0) = (G + DA j(0) + (P — J) Ak, j—1(p), so that

k+1

Mea1(p) = D iMer15(p) = (p— DM(p) + (p— 1) Zm
j=0
= (p— D[(p) + 2"

Now A, (p) = 0 and so the result follows easily by induction on k.
For each positive integer k define ¢r(n) =[] »in (p — k).
p>k

Lemma 3 For positive integer k, and £,6 > 0, if n is a sufficiently large squarefree integer

then

o kD /gi(d) < n"

d|n, d>n¢

Proof: - If d divides n then it is clear that d/¢(d) < n/¢r(n) and v(d) < v(n). Therefore

Do KO/ed) < 30 (/AR fon(n)

d|n, d>n® d|n, d>n*
nl—¢ ku(n)/¢k Z 1
- (%)”(")(n/¢k(n))-

Now, v(n) < logn/loglogn, by the prime number theorem, and
n/¢r(n) < (loglog n)* by an immediate application of the prime number theorem and

Mertens’ theorem, and so the result follows immediately.



Proof of Theorem 6: - Define J(r) = Hle i [li<icj<i(rj — i) and ug(p) = p — dr(p).
Then

Fra(z) = (a/¢(a)* ' TJ{Q —w(p)/p)(1 — 1/p) *}Gr.a(2) (3)
p fa

where

Gk,a(x) _ Zl H (1 4 Uk(p) _wT(p))

p fa, plo(r) P~ ux(p)
=2, 2 A (] ] uk(p) — wr(p)}/6i(d)
d|9(r), (d,£)=1 pld
=> > d)*{] ] ur(p) p)}/ or(d){1+O(z"""/?)}
d|9(r) pld

(d.0)=1, d<z'/?
by Lemma 3 as 9(r) < 2F*+1)/2 for each choice of the r;’s. Thus
Gralr) = Yoo w@?/or(d) D ][ PHL+O0@E 2} (4)
d<z'/2, (d,0)=1 d9(r)  pld
Note that there are at most (g)a:k_l possible vectors r where 1 < rq,...,r, < x, with
r; = r; for some i # j; so, as [[,; ur(p) — wr(p) < k(@) and v(d) < log =/ loglog x, for
d< m1/2, we have

Z l_Iu/.C — w,(p) = Op(zF~17).

1<ry,..., rp <z pld
Ti=Tj for some i#j

Therefore
S [T o) = 7 37, TTuelo) — weo) + Oula1+9) (5)
d|9(r) pld d|19(7‘) pld

where ), is the sum over 1 < ry,...,r, <z, with (r;,a) =1 for each 1.

Now, if r; = s;(modd) for each i then [, ;ur(p) — wr(p) = [1,1qur(p) — ws(p), so
that

S [Muw-wm= > JJu®) —w®i+0Mm)

dl9 d 1<r;<ad, (r;,a)=1 d
‘ (T) p| forzeach i, Zd\a( ™) p|

= @y S TTule) w1+ Opala™2).




Now

1<7*(11,‘?9(T7?k< pld pld 1<ry ..., <p
= [ [P u(p) = Ak (p)
pld

by Lemma 2.
Now pug(p) — (p— D)(B* — (p— 1F) = (5141 + Ok(p*~2) so that

<7ri,..., Tk

Therefore

S @) — wew) k0 a*/d > "2,

d[d(r) pld
so that, by (5) and (6),

1 90675 % k k

> T uelp) —welp) = Hp Uk - - (- 1"
dl9(r) pld pld

X {1+ Op (x5 1/2)}.

Therefore, by (4)

Ga(T) = 1 wcb Z b ;ldk Hp uk(p) = (p = D" = (p = 1))

1/2

x {1+ Ok,a(xe_l/Q)} (7)

Now ledpkuk(p) —(p=1)P* - (p—1DF) < E*DdF—1 <« d*=1%¢ and so

d)>? ) B
' p|d d221/2
o= (d,£)=1

N(d)2 k k p* + k+1
> e L) -6k -0 =117 e

(d,£)=1 p pfa




Finally combining this with (3), (7) and (8) gives the result.
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